cranelift_codegen/traversals.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
//! Traversals over the IR.
use crate::ir;
use alloc::vec::Vec;
use core::fmt::Debug;
use core::hash::Hash;
use cranelift_entity::EntitySet;
/// A low-level DFS traversal event: either entering or exiting the traversal of
/// a block.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum Event {
/// Entering traversal of a block.
///
/// Processing a block upon this event corresponds to a pre-order,
/// depth-first traversal.
Enter,
/// Exiting traversal of a block.
///
/// Processing a block upon this event corresponds to a post-order,
/// depth-first traversal.
Exit,
}
/// A depth-first traversal.
///
/// This is a fairly low-level traversal type, and is generally intended to be
/// used as a building block for making specific pre-order or post-order
/// traversals for whatever problem is at hand.
///
/// This type may be reused multiple times across different passes or functions
/// and will internally reuse any heap allocations its already made.
///
/// Traversal is not recursive.
#[derive(Debug, Default, Clone)]
pub struct Dfs {
stack: Vec<(Event, ir::Block)>,
seen: EntitySet<ir::Block>,
}
impl Dfs {
/// Construct a new depth-first traversal.
pub fn new() -> Self {
Self::default()
}
/// Perform a depth-first traversal over the given function.
///
/// Yields pairs of `(Event, ir::Block)`.
///
/// This iterator can be used to perform either pre- or post-order
/// traversals, or a combination of the two.
pub fn iter<'a>(&'a mut self, func: &'a ir::Function) -> DfsIter<'a> {
self.seen.clear();
self.stack.clear();
if let Some(e) = func.layout.entry_block() {
self.stack.push((Event::Enter, e));
}
DfsIter { dfs: self, func }
}
/// Perform a pre-order traversal over the given function.
///
/// Yields `ir::Block` items.
pub fn pre_order_iter<'a>(&'a mut self, func: &'a ir::Function) -> DfsPreOrderIter<'a> {
DfsPreOrderIter(self.iter(func))
}
/// Perform a post-order traversal over the given function.
///
/// Yields `ir::Block` items.
pub fn post_order_iter<'a>(&'a mut self, func: &'a ir::Function) -> DfsPostOrderIter<'a> {
DfsPostOrderIter(self.iter(func))
}
}
/// An iterator that yields pairs of `(Event, ir::Block)` items as it performs a
/// depth-first traversal over its associated function.
pub struct DfsIter<'a> {
dfs: &'a mut Dfs,
func: &'a ir::Function,
}
impl Iterator for DfsIter<'_> {
type Item = (Event, ir::Block);
fn next(&mut self) -> Option<(Event, ir::Block)> {
let (event, block) = self.dfs.stack.pop()?;
if event == Event::Enter && self.dfs.seen.insert(block) {
self.dfs.stack.push((Event::Exit, block));
if let Some(inst) = self.func.layout.last_inst(block) {
self.dfs.stack.extend(
self.func.dfg.insts[inst]
.branch_destination(&self.func.dfg.jump_tables)
.iter()
// Heuristic: chase the children in reverse. This puts
// the first successor block first in the postorder, all
// other things being equal, which tends to prioritize
// loop backedges over out-edges, putting the edge-block
// closer to the loop body and minimizing live-ranges in
// linear instruction space. This heuristic doesn't have
// any effect on the computation of dominators, and is
// purely for other consumers of the postorder we cache
// here.
.rev()
.map(|block| block.block(&self.func.dfg.value_lists))
// This is purely an optimization to avoid additional
// iterations of the loop, and is not required; it's
// merely inlining the check from the outer conditional
// of this case to avoid the extra loop iteration. This
// also avoids potential excess stack growth.
.filter(|block| !self.dfs.seen.contains(*block))
.map(|block| (Event::Enter, block)),
);
}
}
Some((event, block))
}
}
/// An iterator that yields `ir::Block` items during a depth-first, pre-order
/// traversal over its associated function.
pub struct DfsPreOrderIter<'a>(DfsIter<'a>);
impl Iterator for DfsPreOrderIter<'_> {
type Item = ir::Block;
fn next(&mut self) -> Option<Self::Item> {
loop {
match self.0.next()? {
(Event::Enter, b) => return Some(b),
(Event::Exit, _) => continue,
}
}
}
}
/// An iterator that yields `ir::Block` items during a depth-first, post-order
/// traversal over its associated function.
pub struct DfsPostOrderIter<'a>(DfsIter<'a>);
impl Iterator for DfsPostOrderIter<'_> {
type Item = ir::Block;
fn next(&mut self) -> Option<Self::Item> {
loop {
match self.0.next()? {
(Event::Exit, b) => return Some(b),
(Event::Enter, _) => continue,
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::cursor::{Cursor, FuncCursor};
use crate::ir::{types::I32, Function, InstBuilder, TrapCode};
#[test]
fn test_dfs_traversal() {
let _ = env_logger::try_init();
let mut func = Function::new();
let block0 = func.dfg.make_block();
let v0 = func.dfg.append_block_param(block0, I32);
let block1 = func.dfg.make_block();
let block2 = func.dfg.make_block();
let block3 = func.dfg.make_block();
let mut cur = FuncCursor::new(&mut func);
// block0(v0):
// br_if v0, block2, trap_block
cur.insert_block(block0);
cur.ins().brif(v0, block2, &[], block3, &[]);
// block3:
// trap user0
cur.insert_block(block3);
cur.ins().trap(TrapCode::User(0));
// block1:
// v1 = iconst.i32 1
// v2 = iadd v0, v1
// jump block0(v2)
cur.insert_block(block1);
let v1 = cur.ins().iconst(I32, 1);
let v2 = cur.ins().iadd(v0, v1);
cur.ins().jump(block0, &[v2]);
// block2:
// return v0
cur.insert_block(block2);
cur.ins().return_(&[v0]);
let mut dfs = Dfs::new();
assert_eq!(
dfs.iter(&func).collect::<Vec<_>>(),
vec![
(Event::Enter, block0),
(Event::Enter, block2),
(Event::Exit, block2),
(Event::Enter, block3),
(Event::Exit, block3),
(Event::Exit, block0)
],
);
}
}