cranelift_codegen/isa/unwind/winarm64.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
//! Windows Arm64 ABI unwind information.
use alloc::vec::Vec;
#[cfg(feature = "enable-serde")]
use serde_derive::{Deserialize, Serialize};
use crate::binemit::CodeOffset;
use crate::isa::unwind::UnwindInst;
use crate::result::CodegenResult;
use super::Writer;
/// The supported unwind codes for the Arm64 Windows ABI.
///
/// See: <https://learn.microsoft.com/en-us/cpp/build/arm64-exception-handling>
/// Only what is needed to describe the prologues generated by the Cranelift AArch64 ISA are represented here.
#[allow(dead_code)]
#[derive(Clone, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub(crate) enum UnwindCode {
/// Save int register, or register pair.
SaveReg {
reg: u8,
stack_offset: u16,
is_pair: bool,
},
/// Save floating point register, or register pair.
SaveFReg {
reg: u8,
stack_offset: u16,
is_pair: bool,
},
/// Save frame-pointer register (X29) and LR register pair.
SaveFpLrPair {
stack_offset: u16,
},
// Small (<512b) stack allocation.
AllocS {
size: u16,
},
// Medium (<32Kb) stack allocation.
AllocM {
size: u16,
},
// Large (<256Mb) stack allocation.
AllocL {
size: u32,
},
/// PAC sign the LR register.
PacSignLr,
/// Set the frame-pointer register to the stack-pointer register.
SetFp,
/// Set the frame-pointer register to the stack-pointer register with an
/// offset.
AddFp {
offset: u16,
},
}
/// Represents Windows Arm64 unwind information.
///
/// For information about Windows Arm64 unwind info, see:
/// <https://learn.microsoft.com/en-us/cpp/build/arm64-exception-handling>
#[derive(Clone, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct UnwindInfo {
pub(crate) unwind_codes: Vec<UnwindCode>,
}
impl UnwindInfo {
/// Calculate the number of words needed to encode the unwind codes.
pub fn code_words(&self) -> u8 {
let mut bytes = 0u16;
for code in self.unwind_codes.iter() {
let next_bytes = match code {
UnwindCode::SaveFpLrPair { .. }
| UnwindCode::AllocS { .. }
| UnwindCode::PacSignLr
| UnwindCode::SetFp => 1,
UnwindCode::SaveReg { .. }
| UnwindCode::SaveFReg { .. }
| UnwindCode::AllocM { .. }
| UnwindCode::AddFp { .. } => 2,
UnwindCode::AllocL { .. } => 4,
};
bytes = bytes.checked_add(next_bytes).unwrap();
}
bytes.div_ceil(4).try_into().unwrap()
}
/// Emits the unwind information into the given mutable byte slice.
///
/// This function will panic if the slice is not at least `emit_size` in length.
pub fn emit(&self, buf: &mut [u8]) {
fn encode_stack_offset<const BITS: u8>(stack_offset: u16) -> u16 {
let encoded = (stack_offset / 8) - 1;
assert!(encoded < (1 << BITS), "Stack offset too large");
encoded
}
// NOTE: Unwind codes are written in big-endian!
let mut writer = Writer::new(buf);
for code in self.unwind_codes.iter().rev() {
match code {
&UnwindCode::SaveReg {
reg,
stack_offset,
is_pair,
} => {
assert!(reg >= 19, "Can't save registers before X19");
let reg = u16::from(reg - 19);
let encoding = if is_pair {
let mut encoding = 0b11001100_00000000u16;
encoding |= reg << 6;
encoding |= encode_stack_offset::<6>(stack_offset);
encoding
} else {
let mut encoding = 0b11010100_00000000u16;
encoding |= reg << 5;
encoding |= encode_stack_offset::<5>(stack_offset);
encoding
};
writer.write_u16_be(encoding);
}
&UnwindCode::SaveFReg {
reg,
stack_offset,
is_pair,
} => {
assert!(reg >= 8, "Can't save registers before D8");
let reg = u16::from(reg - 8);
let encoding = if is_pair {
let mut encoding = 0b11011010_00000000u16;
encoding |= reg << 6;
encoding |= encode_stack_offset::<6>(stack_offset);
encoding
} else {
let mut encoding = 0b11011110_00000000u16;
encoding |= reg << 5;
encoding |= encode_stack_offset::<5>(stack_offset);
encoding
};
writer.write_u16_be(encoding);
}
&UnwindCode::SaveFpLrPair { stack_offset } => {
if stack_offset == 0 {
writer.write_u8(0b01000000);
} else {
let encoding = 0b10000000u8
| u8::try_from(encode_stack_offset::<6>(stack_offset)).unwrap();
writer.write_u8(encoding);
}
}
&UnwindCode::AllocS { size } => {
// Size is measured in double 64-bit words.
let encoding = size / 16;
assert!(encoding < (1 << 5), "Stack alloc size too large");
// Tag is 0b000, so we don't need to encode that.
writer.write_u8(encoding.try_into().unwrap());
}
&UnwindCode::AllocM { size } => {
// Size is measured in double 64-bit words.
let mut encoding = size / 16;
assert!(encoding < (1 << 11), "Stack alloc size too large");
encoding |= 0b11000 << 11;
writer.write_u16_be(encoding);
}
&UnwindCode::AllocL { size } => {
// Size is measured in double 64-bit words.
let mut encoding = size / 16;
assert!(encoding < (1 << 24), "Stack alloc size too large");
encoding |= 0b11100000 << 24;
writer.write_u32_be(encoding);
}
UnwindCode::PacSignLr => {
writer.write_u8(0b11111100);
}
UnwindCode::SetFp => {
writer.write_u8(0b11100001);
}
&UnwindCode::AddFp { mut offset } => {
offset /= 8;
assert!(offset & !0xFF == 0, "Offset too large");
let encoding = (0b11100010 << 8) | offset;
writer.write_u16_be(encoding);
}
}
}
}
}
pub(crate) fn create_unwind_info_from_insts(
insts: &[(CodeOffset, UnwindInst)],
) -> CodegenResult<UnwindInfo> {
let mut unwind_codes = vec![];
let mut last_stackalloc = None;
let mut last_clobber_offset = None;
for &(_, ref inst) in insts {
match inst {
&UnwindInst::PushFrameRegs { .. } => {
unwind_codes.push(UnwindCode::SaveFpLrPair { stack_offset: 16 });
unwind_codes.push(UnwindCode::SetFp);
}
&UnwindInst::DefineNewFrame {
offset_downward_to_clobbers,
..
} => {
assert!(last_clobber_offset.is_none(), "More than one frame defined");
last_clobber_offset = Some(offset_downward_to_clobbers);
// If we've seen a stackalloc, then we were adjusting the stack
// to make space for additional arguments, so encode that now.
if let &Some(last_stackalloc) = &last_stackalloc {
assert!(last_stackalloc < (1u32 << 8) * 8);
unwind_codes.push(UnwindCode::AddFp {
offset: u16::try_from(last_stackalloc).unwrap(),
});
unwind_codes.push(UnwindCode::SaveFpLrPair { stack_offset: 0 });
unwind_codes.push(UnwindCode::SetFp);
}
}
&UnwindInst::StackAlloc { size } => {
last_stackalloc = Some(size);
assert!(size % 16 == 0, "Size must be a multiple of 16");
const SMALL_STACK_ALLOC_MAX: u32 = (1 << 5) * 16 - 1;
const MEDIUM_STACK_ALLOC_MIN: u32 = SMALL_STACK_ALLOC_MAX + 1;
const MEDIUM_STACK_ALLOC_MAX: u32 = (1 << 11) * 16 - 1;
const LARGE_STACK_ALLOC_MIN: u32 = MEDIUM_STACK_ALLOC_MAX + 1;
const LARGE_STACK_ALLOC_MAX: u32 = (1 << 24) * 16 - 1;
match size {
0..=SMALL_STACK_ALLOC_MAX => unwind_codes.push(UnwindCode::AllocS {
size: size.try_into().unwrap(),
}),
MEDIUM_STACK_ALLOC_MIN..=MEDIUM_STACK_ALLOC_MAX => {
unwind_codes.push(UnwindCode::AllocM {
size: size.try_into().unwrap(),
})
}
LARGE_STACK_ALLOC_MIN..=LARGE_STACK_ALLOC_MAX => {
unwind_codes.push(UnwindCode::AllocL { size: size })
}
_ => panic!("Stack allocation size too large"),
}
}
&UnwindInst::SaveReg {
clobber_offset,
reg,
} => {
// We're given the clobber offset, but we need to encode how far
// the stack was adjusted, so calculate that based on the last
// clobber offset we saw.
let last_clobber_offset = last_clobber_offset.as_mut().expect("No frame defined");
if *last_clobber_offset > clobber_offset {
let stack_offset = *last_clobber_offset - clobber_offset;
*last_clobber_offset = clobber_offset;
assert!(stack_offset % 8 == 0, "Offset must be a multiple of 8");
match reg.class() {
regalloc2::RegClass::Int => {
let reg = reg.hw_enc();
if reg < 19 {
panic!("Can't save registers before X19");
}
unwind_codes.push(UnwindCode::SaveReg {
reg,
stack_offset: stack_offset.try_into().unwrap(),
is_pair: false,
});
}
regalloc2::RegClass::Float => {
let reg = reg.hw_enc();
if reg < 8 {
panic!("Can't save registers before D8");
}
unwind_codes.push(UnwindCode::SaveFReg {
reg,
stack_offset: stack_offset.try_into().unwrap(),
is_pair: false,
});
}
regalloc2::RegClass::Vector => unreachable!(),
}
} else {
// If we see a clobber offset within the last offset amount,
// then we're actually saving a pair of registers.
let last_unwind_code = unwind_codes.last_mut().unwrap();
match last_unwind_code {
UnwindCode::SaveReg { is_pair, .. } => {
assert_eq!(reg.class(), regalloc2::RegClass::Int);
assert!(!*is_pair);
*is_pair = true;
}
UnwindCode::SaveFReg { is_pair, .. } => {
assert_eq!(reg.class(), regalloc2::RegClass::Float);
assert!(!*is_pair);
*is_pair = true;
}
_ => unreachable!("Previous code should have been a register save"),
}
}
}
&UnwindInst::Aarch64SetPointerAuth { return_addresses } => {
assert!(
return_addresses,
"Windows doesn't support explicitly disabling return address signing"
);
unwind_codes.push(UnwindCode::PacSignLr);
}
}
}
Ok(UnwindInfo { unwind_codes })
}