cranelift_codegen/ir/memflags.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
//! Memory operation flags.
use super::TrapCode;
use core::fmt;
use core::num::NonZeroU8;
use core::str::FromStr;
#[cfg(feature = "enable-serde")]
use serde_derive::{Deserialize, Serialize};
/// Endianness of a memory access.
#[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)]
pub enum Endianness {
/// Little-endian
Little,
/// Big-endian
Big,
}
/// Which disjoint region of aliasing memory is accessed in this memory
/// operation.
#[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)]
#[repr(u8)]
#[allow(missing_docs)]
#[rustfmt::skip]
pub enum AliasRegion {
// None = 0b00;
Heap = 0b01,
Table = 0b10,
Vmctx = 0b11,
}
impl AliasRegion {
const fn from_bits(bits: u8) -> Option<Self> {
match bits {
0b00 => None,
0b01 => Some(Self::Heap),
0b10 => Some(Self::Table),
0b11 => Some(Self::Vmctx),
_ => panic!("invalid alias region bits"),
}
}
const fn to_bits(region: Option<Self>) -> u8 {
match region {
None => 0b00,
Some(r) => r as u8,
}
}
}
/// Flags for memory operations like load/store.
///
/// Each of these flags introduce a limited form of undefined behavior. The flags each enable
/// certain optimizations that need to make additional assumptions. Generally, the semantics of a
/// program does not change when a flag is removed, but adding a flag will.
///
/// In addition, the flags determine the endianness of the memory access. By default,
/// any memory access uses the native endianness determined by the target ISA. This can
/// be overridden for individual accesses by explicitly specifying little- or big-endian
/// semantics via the flags.
#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct MemFlags {
// Initialized to all zeros to have all flags have their default value.
// This is interpreted through various methods below. Currently the bits of
// this are defined as:
//
// * 0 - aligned flag
// * 1 - readonly flag
// * 2 - little endian flag
// * 3 - big endian flag
// * 4 - checked flag
// * 5/6 - alias region
// * 7/8/9/10/11/12/13/14 - trap code
// * 15 - unallocated
//
// Current properties upheld are:
//
// * only one of little/big endian is set
// * only one alias region can be set - once set it cannot be changed
bits: u16,
}
/// Guaranteed to use "natural alignment" for the given type. This
/// may enable better instruction selection.
const BIT_ALIGNED: u16 = 1 << 0;
/// A load that reads data in memory that does not change for the
/// duration of the function's execution. This may enable
/// additional optimizations to be performed.
const BIT_READONLY: u16 = 1 << 1;
/// Load multi-byte values from memory in a little-endian format.
const BIT_LITTLE_ENDIAN: u16 = 1 << 2;
/// Load multi-byte values from memory in a big-endian format.
const BIT_BIG_ENDIAN: u16 = 1 << 3;
/// Check this load or store for safety when using the
/// proof-carrying-code framework. The address must have a
/// `PointsTo` fact attached with a sufficiently large valid range
/// for the accessed size.
const BIT_CHECKED: u16 = 1 << 4;
/// Used for alias analysis, indicates which disjoint part of the abstract state
/// is being accessed.
const MASK_ALIAS_REGION: u16 = 0b11 << ALIAS_REGION_OFFSET;
const ALIAS_REGION_OFFSET: u16 = 5;
/// Trap code, if any, for this memory operation.
const MASK_TRAP_CODE: u16 = 0b1111_1111 << TRAP_CODE_OFFSET;
const TRAP_CODE_OFFSET: u16 = 7;
impl MemFlags {
/// Create a new empty set of flags.
pub const fn new() -> Self {
Self { bits: 0 }.with_trap_code(Some(TrapCode::HEAP_OUT_OF_BOUNDS))
}
/// Create a set of flags representing an access from a "trusted" address, meaning it's
/// known to be aligned and non-trapping.
pub const fn trusted() -> Self {
Self::new().with_notrap().with_aligned()
}
/// Read a flag bit.
const fn read_bit(self, bit: u16) -> bool {
self.bits & bit != 0
}
/// Return a new `MemFlags` with this flag bit set.
const fn with_bit(mut self, bit: u16) -> Self {
self.bits |= bit;
self
}
/// Reads the alias region that this memory operation works with.
pub const fn alias_region(self) -> Option<AliasRegion> {
AliasRegion::from_bits(((self.bits & MASK_ALIAS_REGION) >> ALIAS_REGION_OFFSET) as u8)
}
/// Sets the alias region that this works on to the specified `region`.
pub const fn with_alias_region(mut self, region: Option<AliasRegion>) -> Self {
let bits = AliasRegion::to_bits(region);
self.bits &= !MASK_ALIAS_REGION;
self.bits |= (bits as u16) << ALIAS_REGION_OFFSET;
self
}
/// Sets the alias region that this works on to the specified `region`.
pub fn set_alias_region(&mut self, region: Option<AliasRegion>) {
*self = self.with_alias_region(region);
}
/// Set a flag bit by name.
///
/// Returns true if the flag was found and set, false for an unknown flag
/// name.
///
/// # Errors
///
/// Returns an error message if the `name` is known but couldn't be applied
/// due to it being a semantic error.
pub fn set_by_name(&mut self, name: &str) -> Result<bool, &'static str> {
*self = match name {
"notrap" => self.with_trap_code(None),
"aligned" => self.with_aligned(),
"readonly" => self.with_readonly(),
"little" => {
if self.read_bit(BIT_BIG_ENDIAN) {
return Err("cannot set both big and little endian bits");
}
self.with_endianness(Endianness::Little)
}
"big" => {
if self.read_bit(BIT_LITTLE_ENDIAN) {
return Err("cannot set both big and little endian bits");
}
self.with_endianness(Endianness::Big)
}
"heap" => {
if self.alias_region().is_some() {
return Err("cannot set more than one alias region");
}
self.with_alias_region(Some(AliasRegion::Heap))
}
"table" => {
if self.alias_region().is_some() {
return Err("cannot set more than one alias region");
}
self.with_alias_region(Some(AliasRegion::Table))
}
"vmctx" => {
if self.alias_region().is_some() {
return Err("cannot set more than one alias region");
}
self.with_alias_region(Some(AliasRegion::Vmctx))
}
"checked" => self.with_checked(),
other => match TrapCode::from_str(other) {
Ok(code) => self.with_trap_code(Some(code)),
Err(()) => return Ok(false),
},
};
Ok(true)
}
/// Return endianness of the memory access. This will return the endianness
/// explicitly specified by the flags if any, and will default to the native
/// endianness otherwise. The native endianness has to be provided by the
/// caller since it is not explicitly encoded in CLIF IR -- this allows a
/// front end to create IR without having to know the target endianness.
pub const fn endianness(self, native_endianness: Endianness) -> Endianness {
if self.read_bit(BIT_LITTLE_ENDIAN) {
Endianness::Little
} else if self.read_bit(BIT_BIG_ENDIAN) {
Endianness::Big
} else {
native_endianness
}
}
/// Return endianness of the memory access, if explicitly specified.
///
/// If the endianness is not explicitly specified, this will return `None`,
/// which means "native endianness".
pub const fn explicit_endianness(self) -> Option<Endianness> {
if self.read_bit(BIT_LITTLE_ENDIAN) {
Some(Endianness::Little)
} else if self.read_bit(BIT_BIG_ENDIAN) {
Some(Endianness::Big)
} else {
None
}
}
/// Set endianness of the memory access.
pub fn set_endianness(&mut self, endianness: Endianness) {
*self = self.with_endianness(endianness);
}
/// Set endianness of the memory access, returning new flags.
pub const fn with_endianness(self, endianness: Endianness) -> Self {
let res = match endianness {
Endianness::Little => self.with_bit(BIT_LITTLE_ENDIAN),
Endianness::Big => self.with_bit(BIT_BIG_ENDIAN),
};
assert!(!(res.read_bit(BIT_LITTLE_ENDIAN) && res.read_bit(BIT_BIG_ENDIAN)));
res
}
/// Test if this memory operation cannot trap.
///
/// By default `MemFlags` will assume that any load/store can trap and is
/// associated with a `TrapCode::HeapOutOfBounds` code. If the trap code is
/// configured to `None` though then this method will return `true` and
/// indicates that the memory operation will not trap.
///
/// If this returns `true` then the memory is *accessible*, which means
/// that accesses will not trap. This makes it possible to delete an unused
/// load or a dead store instruction.
pub const fn notrap(self) -> bool {
self.trap_code().is_none()
}
/// Sets the trap code for this `MemFlags` to `None`.
pub fn set_notrap(&mut self) {
*self = self.with_notrap();
}
/// Sets the trap code for this `MemFlags` to `None`, returning the new
/// flags.
pub const fn with_notrap(self) -> Self {
self.with_trap_code(None)
}
/// Test if the `aligned` flag is set.
///
/// By default, Cranelift memory instructions work with any unaligned effective address. If the
/// `aligned` flag is set, the instruction is permitted to trap or return a wrong result if the
/// effective address is misaligned.
pub const fn aligned(self) -> bool {
self.read_bit(BIT_ALIGNED)
}
/// Set the `aligned` flag.
pub fn set_aligned(&mut self) {
*self = self.with_aligned();
}
/// Set the `aligned` flag, returning new flags.
pub const fn with_aligned(self) -> Self {
self.with_bit(BIT_ALIGNED)
}
/// Test if the `readonly` flag is set.
///
/// Loads with this flag have no memory dependencies.
/// This results in undefined behavior if the dereferenced memory is mutated at any time
/// between when the function is called and when it is exited.
pub const fn readonly(self) -> bool {
self.read_bit(BIT_READONLY)
}
/// Set the `readonly` flag.
pub fn set_readonly(&mut self) {
*self = self.with_readonly();
}
/// Set the `readonly` flag, returning new flags.
pub const fn with_readonly(self) -> Self {
self.with_bit(BIT_READONLY)
}
/// Test if the `checked` bit is set.
///
/// Loads and stores with this flag are verified to access
/// pointers only with a validated `PointsTo` fact attached, and
/// with that fact validated, when using the proof-carrying-code
/// framework. If initial facts on program inputs are correct
/// (i.e., correctly denote the shape and types of data structures
/// in memory), and if PCC validates the compiled output, then all
/// `checked`-marked memory accesses are guaranteed (up to the
/// checker's correctness) to access valid memory. This can be
/// used to ensure memory safety and sandboxing.
pub const fn checked(self) -> bool {
self.read_bit(BIT_CHECKED)
}
/// Set the `checked` bit.
pub fn set_checked(&mut self) {
*self = self.with_checked();
}
/// Set the `checked` bit, returning new flags.
pub const fn with_checked(self) -> Self {
self.with_bit(BIT_CHECKED)
}
/// Get the trap code to report if this memory access traps.
///
/// A `None` trap code indicates that this memory access does not trap.
pub const fn trap_code(self) -> Option<TrapCode> {
let byte = ((self.bits & MASK_TRAP_CODE) >> TRAP_CODE_OFFSET) as u8;
match NonZeroU8::new(byte) {
Some(code) => Some(TrapCode::from_raw(code)),
None => None,
}
}
/// Configures these flags with the specified trap code `code`.
///
/// A trap code indicates that this memory operation cannot be optimized
/// away and it must "stay where it is" in the programs. Traps are
/// considered side effects, for example, and have meaning through the trap
/// code that is communicated and which instruction trapped.
pub const fn with_trap_code(mut self, code: Option<TrapCode>) -> Self {
let bits = match code {
Some(code) => code.as_raw().get() as u16,
None => 0,
};
self.bits &= !MASK_TRAP_CODE;
self.bits |= bits << TRAP_CODE_OFFSET;
self
}
}
impl fmt::Display for MemFlags {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.trap_code() {
None => write!(f, " notrap")?,
// This is the default trap code, so don't print anything extra
// for this.
Some(TrapCode::HEAP_OUT_OF_BOUNDS) => {}
Some(t) => write!(f, " {t}")?,
}
if self.aligned() {
write!(f, " aligned")?;
}
if self.readonly() {
write!(f, " readonly")?;
}
if self.read_bit(BIT_BIG_ENDIAN) {
write!(f, " big")?;
}
if self.read_bit(BIT_LITTLE_ENDIAN) {
write!(f, " little")?;
}
if self.checked() {
write!(f, " checked")?;
}
match self.alias_region() {
None => {}
Some(AliasRegion::Heap) => write!(f, " heap")?,
Some(AliasRegion::Table) => write!(f, " table")?,
Some(AliasRegion::Vmctx) => write!(f, " vmctx")?,
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn roundtrip_traps() {
for trap in TrapCode::non_user_traps().iter().copied() {
let flags = MemFlags::new().with_trap_code(Some(trap));
assert_eq!(flags.trap_code(), Some(trap));
}
let flags = MemFlags::new().with_trap_code(None);
assert_eq!(flags.trap_code(), None);
}
#[test]
fn cannot_set_big_and_little() {
let mut big = MemFlags::new().with_endianness(Endianness::Big);
assert!(big.set_by_name("little").is_err());
let mut little = MemFlags::new().with_endianness(Endianness::Little);
assert!(little.set_by_name("big").is_err());
}
#[test]
fn only_one_region() {
let mut big = MemFlags::new().with_alias_region(Some(AliasRegion::Heap));
assert!(big.set_by_name("table").is_err());
assert!(big.set_by_name("vmctx").is_err());
let mut big = MemFlags::new().with_alias_region(Some(AliasRegion::Table));
assert!(big.set_by_name("heap").is_err());
assert!(big.set_by_name("vmctx").is_err());
let mut big = MemFlags::new().with_alias_region(Some(AliasRegion::Vmctx));
assert!(big.set_by_name("heap").is_err());
assert!(big.set_by_name("table").is_err());
}
}