cranelift_codegen/ir/pcc.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
//! Proof-carrying code. We attach "facts" to values and then check
//! that they remain true after compilation.
//!
//! A few key design principle of this approach are:
//!
//! - The producer of the IR provides the axioms. All "ground truth",
//! such as what memory is accessible -- is meant to come by way of
//! facts on the function arguments and global values. In some
//! sense, all we are doing here is validating the "internal
//! consistency" of the facts that are provided on values, and the
//! actions performed on those values.
//!
//! - We do not derive and forward-propagate facts eagerly. Rather,
//! the producer needs to provide breadcrumbs -- a "proof witness"
//! of sorts -- to allow the checking to complete. That means that
//! as an address is computed, or pointer chains are dereferenced,
//! each intermediate value will likely have some fact attached.
//!
//! This does create more verbose IR, but a significant positive
//! benefit is that it avoids unnecessary work: we do not build up a
//! knowledge base that effectively encodes the integer ranges of
//! many or most values in the program. Rather, we only check
//! specifically the memory-access sequences. In practice, each such
//! sequence is likely to be a carefully-controlled sequence of IR
//! operations from, e.g., a sandboxing compiler (such as
//! Wasmtime) so adding annotations here to communicate
//! intent (ranges, bounds-checks, and the like) is no problem.
//!
//! Facts are attached to SSA values in CLIF, and are maintained
//! through optimizations and through lowering. They are thus also
//! present on VRegs in the VCode. In theory, facts could be checked
//! at either level, though in practice it is most useful to check
//! them at the VCode level if the goal is an end-to-end verification
//! of certain properties (e.g., memory sandboxing).
//!
//! Checking facts entails visiting each instruction that defines a
//! value with a fact, and checking the result's fact against the
//! facts on arguments and the operand. For VCode, this is
//! fundamentally a question of the target ISA's semantics, so we call
//! into the `LowerBackend` for this. Note that during checking there
//! is also limited forward propagation / inference, but only within
//! an instruction: for example, an addressing mode commonly can
//! include an addition, multiplication/shift, or extend operation,
//! and there is no way to attach facts to the intermediate values
//! "inside" the instruction, so instead the backend can use
//! `FactContext::add()` and friends to forward-propagate facts.
//!
//! TODO:
//!
//! Deployment:
//! - Add to fuzzing
//! - Turn on during wasm spec-tests
//!
//! More checks:
//! - Check that facts on `vmctx` GVs are subsumed by the actual facts
//! on the vmctx arg in block0 (function arg).
//!
//! Generality:
//! - facts on outputs (in func signature)?
//! - Implement checking at the CLIF level as well.
//! - Check instructions that can trap as well?
//!
//! Nicer errors:
//! - attach instruction index or some other identifier to errors
//!
//! Text format cleanup:
//! - make the bitwidth on `max` facts optional in the CLIF text
//! format?
//! - make offset in `mem` fact optional in the text format?
//!
//! Bikeshed colors (syntax):
//! - Put fact bang-annotations after types?
//! `v0: i64 ! fact(..)` vs. `v0 ! fact(..): i64`
use crate::ir;
use crate::ir::types::*;
use crate::isa::TargetIsa;
use crate::machinst::{BlockIndex, LowerBackend, VCode};
use crate::trace;
use regalloc2::Function as _;
use std::fmt;
#[cfg(feature = "enable-serde")]
use serde_derive::{Deserialize, Serialize};
/// The result of checking proof-carrying-code facts.
pub type PccResult<T> = std::result::Result<T, PccError>;
/// An error or inconsistency discovered when checking proof-carrying
/// code.
#[derive(Debug, Clone)]
pub enum PccError {
/// An operation wraps around, invalidating the stated value
/// range.
Overflow,
/// An input to an operator that produces a fact-annotated value
/// does not have a fact describing it, and one is needed.
MissingFact,
/// A derivation of an output fact is unsupported (incorrect or
/// not derivable).
UnsupportedFact,
/// A block parameter claims a fact that one of its predecessors
/// does not support.
UnsupportedBlockparam,
/// A memory access is out of bounds.
OutOfBounds,
/// Proof-carrying-code checking is not implemented for a
/// particular compiler backend.
UnimplementedBackend,
/// Proof-carrying-code checking is not implemented for a
/// particular instruction that instruction-selection chose. This
/// is an internal compiler error.
UnimplementedInst,
/// Access to an invalid or undefined field offset in a struct.
InvalidFieldOffset,
/// Access to a field via the wrong type.
BadFieldType,
/// Store to a read-only field.
WriteToReadOnlyField,
/// Store of data to a field with a fact that does not subsume the
/// field's fact.
InvalidStoredFact,
}
/// A fact on a value.
#[derive(Clone, Debug, Hash, PartialEq, Eq)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum Fact {
/// A bitslice of a value (up to a bitwidth) is within the given
/// integer range.
///
/// The slicing behavior is needed because this fact can describe
/// both an SSA `Value`, whose entire value is well-defined, and a
/// `VReg` in VCode, whose bits beyond the type stored in that
/// register are don't-care (undefined).
Range {
/// The bitwidth of bits we care about, from the LSB upward.
bit_width: u16,
/// The minimum value that the bitslice can take
/// (inclusive). The range is unsigned: the specified bits of
/// the actual value will be greater than or equal to this
/// value, as evaluated by an unsigned integer comparison.
min: u64,
/// The maximum value that the bitslice can take
/// (inclusive). The range is unsigned: the specified bits of
/// the actual value will be less than or equal to this value,
/// as evaluated by an unsigned integer comparison.
max: u64,
},
/// A value bounded by a global value.
///
/// The range is in `(min_GV + min_offset)..(max_GV +
/// max_offset)`, inclusive on the lower and upper bound.
DynamicRange {
/// The bitwidth of bits we care about, from the LSB upward.
bit_width: u16,
/// The lower bound, inclusive.
min: Expr,
/// The upper bound, inclusive.
max: Expr,
},
/// A pointer to a memory type.
Mem {
/// The memory type.
ty: ir::MemoryType,
/// The minimum offset into the memory type, inclusive.
min_offset: u64,
/// The maximum offset into the memory type, inclusive.
max_offset: u64,
/// This pointer can also be null.
nullable: bool,
},
/// A pointer to a memory type, dynamically bounded. The pointer
/// is within `(GV_min+offset_min)..(GV_max+offset_max)`
/// (inclusive on both ends) in the memory type.
DynamicMem {
/// The memory type.
ty: ir::MemoryType,
/// The lower bound, inclusive.
min: Expr,
/// The upper bound, inclusive.
max: Expr,
/// This pointer can also be null.
nullable: bool,
},
/// A definition of a value to be used as a symbol in
/// BaseExprs. There can only be one of these per value number.
///
/// Note that this differs from a `DynamicRange` specifying that
/// some value in the program is the same as `value`. A `def(v1)`
/// fact is propagated to machine code and serves as a source of
/// truth: the value or location labeled with this fact *defines*
/// what `v1` is, and any `dynamic_range(64, v1, v1)`-labeled
/// values elsewhere are claiming to be equal to this value.
///
/// This is necessary because we don't propagate SSA value labels
/// down to machine code otherwise; so when referring symbolically
/// to addresses and expressions derived from addresses, we need
/// to introduce the symbol first.
Def {
/// The SSA value this value defines.
value: ir::Value,
},
/// A comparison result between two dynamic values with a
/// comparison of a certain kind.
Compare {
/// The kind of comparison.
kind: ir::condcodes::IntCC,
/// The left-hand side of the comparison.
lhs: Expr,
/// The right-hand side of the comparison.
rhs: Expr,
},
/// A "conflict fact": this fact results from merging two other
/// facts, and it can never be satisfied -- checking any value
/// against this fact will fail.
Conflict,
}
/// A bound expression.
#[derive(Clone, Debug, Hash, PartialEq, Eq)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Expr {
/// The dynamic (base) part.
pub base: BaseExpr,
/// The static (offset) part.
pub offset: i64,
}
/// The base part of a bound expression.
#[derive(Clone, Debug, Hash, PartialEq, Eq)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum BaseExpr {
/// No dynamic part (i.e., zero).
None,
/// A global value.
GlobalValue(ir::GlobalValue),
/// An SSA Value as a symbolic value. This can be referenced in
/// facts even after we've lowered out of SSA: it becomes simply
/// some symbolic value.
Value(ir::Value),
/// Top of the address space. This is "saturating": the offset
/// doesn't matter.
Max,
}
impl BaseExpr {
/// Is one base less than or equal to another? (We can't always
/// know; in such cases, returns `false`.)
fn le(lhs: &BaseExpr, rhs: &BaseExpr) -> bool {
// (i) reflexivity; (ii) 0 <= x for all (unsigned) x; (iii) x <= max for all x.
lhs == rhs || *lhs == BaseExpr::None || *rhs == BaseExpr::Max
}
/// Compute some BaseExpr that will be less than or equal to both
/// inputs. This is a generalization of `min` (but looser).
fn min(lhs: &BaseExpr, rhs: &BaseExpr) -> BaseExpr {
if lhs == rhs {
lhs.clone()
} else if *lhs == BaseExpr::Max {
rhs.clone()
} else if *rhs == BaseExpr::Max {
lhs.clone()
} else {
BaseExpr::None // zero is <= x for all (unsigned) x.
}
}
/// Compute some BaseExpr that will be greater than or equal to
/// both inputs.
fn max(lhs: &BaseExpr, rhs: &BaseExpr) -> BaseExpr {
if lhs == rhs {
lhs.clone()
} else if *lhs == BaseExpr::None {
rhs.clone()
} else if *rhs == BaseExpr::None {
lhs.clone()
} else {
BaseExpr::Max
}
}
}
impl Expr {
/// Constant value.
pub fn constant(offset: i64) -> Self {
Expr {
base: BaseExpr::None,
offset,
}
}
/// The value of an SSA value.
pub fn value(value: ir::Value) -> Self {
Expr {
base: BaseExpr::Value(value),
offset: 0,
}
}
/// The value of a global value.
pub fn global_value(gv: ir::GlobalValue) -> Self {
Expr {
base: BaseExpr::GlobalValue(gv),
offset: 0,
}
}
/// Is one expression definitely less than or equal to another?
/// (We can't always know; in such cases, returns `false`.)
fn le(lhs: &Expr, rhs: &Expr) -> bool {
if rhs.base == BaseExpr::Max {
true
} else {
BaseExpr::le(&lhs.base, &rhs.base) && lhs.offset <= rhs.offset
}
}
/// Generalization of `min`: compute some Expr that is less than
/// or equal to both inputs.
fn min(lhs: &Expr, rhs: &Expr) -> Expr {
if lhs.base == BaseExpr::None && lhs.offset == 0 {
lhs.clone()
} else if rhs.base == BaseExpr::None && rhs.offset == 0 {
rhs.clone()
} else {
Expr {
base: BaseExpr::min(&lhs.base, &rhs.base),
offset: std::cmp::min(lhs.offset, rhs.offset),
}
}
}
/// Generalization of `max`: compute some Expr that is greater
/// than or equal to both inputs.
fn max(lhs: &Expr, rhs: &Expr) -> Expr {
if lhs.base == BaseExpr::None && lhs.offset == 0 {
rhs.clone()
} else if rhs.base == BaseExpr::None && rhs.offset == 0 {
lhs.clone()
} else {
Expr {
base: BaseExpr::max(&lhs.base, &rhs.base),
offset: std::cmp::max(lhs.offset, rhs.offset),
}
}
}
/// Add one expression to another.
fn add(lhs: &Expr, rhs: &Expr) -> Option<Expr> {
if lhs.base == rhs.base {
Some(Expr {
base: lhs.base.clone(),
offset: lhs.offset.checked_add(rhs.offset)?,
})
} else if lhs.base == BaseExpr::None {
Some(Expr {
base: rhs.base.clone(),
offset: lhs.offset.checked_add(rhs.offset)?,
})
} else if rhs.base == BaseExpr::None {
Some(Expr {
base: lhs.base.clone(),
offset: lhs.offset.checked_add(rhs.offset)?,
})
} else {
Some(Expr {
base: BaseExpr::Max,
offset: 0,
})
}
}
/// Add a static offset to an expression.
pub fn offset(lhs: &Expr, rhs: i64) -> Option<Expr> {
let offset = lhs.offset.checked_add(rhs)?;
Some(Expr {
base: lhs.base.clone(),
offset,
})
}
/// Is this Expr a BaseExpr with no offset? Return it if so.
pub fn without_offset(&self) -> Option<&BaseExpr> {
if self.offset == 0 {
Some(&self.base)
} else {
None
}
}
}
impl fmt::Display for BaseExpr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
BaseExpr::None => Ok(()),
BaseExpr::Max => write!(f, "max"),
BaseExpr::GlobalValue(gv) => write!(f, "{gv}"),
BaseExpr::Value(value) => write!(f, "{value}"),
}
}
}
impl BaseExpr {
/// Does this dynamic_expression take an offset?
pub fn is_some(&self) -> bool {
match self {
BaseExpr::None => false,
_ => true,
}
}
}
impl fmt::Display for Expr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.base)?;
match self.offset {
offset if offset > 0 && self.base.is_some() => write!(f, "+{offset:#x}"),
offset if offset > 0 => write!(f, "{offset:#x}"),
offset if offset < 0 => {
let negative_offset = -i128::from(offset); // upcast to support i64::MIN.
write!(f, "-{negative_offset:#x}")
}
0 if self.base.is_some() => Ok(()),
0 => write!(f, "0"),
_ => unreachable!(),
}
}
}
impl fmt::Display for Fact {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Fact::Range {
bit_width,
min,
max,
} => write!(f, "range({bit_width}, {min:#x}, {max:#x})"),
Fact::DynamicRange {
bit_width,
min,
max,
} => {
write!(f, "dynamic_range({bit_width}, {min}, {max})")
}
Fact::Mem {
ty,
min_offset,
max_offset,
nullable,
} => {
let nullable_flag = if *nullable { ", nullable" } else { "" };
write!(
f,
"mem({ty}, {min_offset:#x}, {max_offset:#x}{nullable_flag})"
)
}
Fact::DynamicMem {
ty,
min,
max,
nullable,
} => {
let nullable_flag = if *nullable { ", nullable" } else { "" };
write!(f, "dynamic_mem({ty}, {min}, {max}{nullable_flag})")
}
Fact::Def { value } => write!(f, "def({value})"),
Fact::Compare { kind, lhs, rhs } => {
write!(f, "compare({kind}, {lhs}, {rhs})")
}
Fact::Conflict => write!(f, "conflict"),
}
}
}
impl Fact {
/// Create a range fact that specifies a single known constant value.
pub fn constant(bit_width: u16, value: u64) -> Self {
debug_assert!(value <= max_value_for_width(bit_width));
// `min` and `max` are inclusive, so this specifies a range of
// exactly one value.
Fact::Range {
bit_width,
min: value,
max: value,
}
}
/// Create a dynamic range fact that points to the base of a dynamic memory.
pub fn dynamic_base_ptr(ty: ir::MemoryType) -> Self {
Fact::DynamicMem {
ty,
min: Expr::constant(0),
max: Expr::constant(0),
nullable: false,
}
}
/// Create a fact that specifies the value is exactly an SSA value.
///
/// Note that this differs from a `def` fact: it is not *defining*
/// a symbol to have the value that this fact is attached to;
/// rather it is claiming that this value is the same as whatever
/// that symbol is. (In other words, the def should be elsewhere,
/// and we are tying ourselves to it.)
pub fn value(bit_width: u16, value: ir::Value) -> Self {
Fact::DynamicRange {
bit_width,
min: Expr::value(value),
max: Expr::value(value),
}
}
/// Create a fact that specifies the value is exactly an SSA value plus some offset.
pub fn value_offset(bit_width: u16, value: ir::Value, offset: i64) -> Self {
Fact::DynamicRange {
bit_width,
min: Expr::offset(&Expr::value(value), offset).unwrap(),
max: Expr::offset(&Expr::value(value), offset).unwrap(),
}
}
/// Create a fact that specifies the value is exactly the value of a GV.
pub fn global_value(bit_width: u16, gv: ir::GlobalValue) -> Self {
Fact::DynamicRange {
bit_width,
min: Expr::global_value(gv),
max: Expr::global_value(gv),
}
}
/// Create a fact that specifies the value is exactly the value of a GV plus some offset.
pub fn global_value_offset(bit_width: u16, gv: ir::GlobalValue, offset: i64) -> Self {
Fact::DynamicRange {
bit_width,
min: Expr::offset(&Expr::global_value(gv), offset).unwrap(),
max: Expr::offset(&Expr::global_value(gv), offset).unwrap(),
}
}
/// Create a range fact that specifies the maximum range for a
/// value of the given bit-width.
pub const fn max_range_for_width(bit_width: u16) -> Self {
match bit_width {
bit_width if bit_width < 64 => Fact::Range {
bit_width,
min: 0,
max: (1u64 << bit_width) - 1,
},
64 => Fact::Range {
bit_width: 64,
min: 0,
max: u64::MAX,
},
_ => panic!("bit width too large!"),
}
}
/// Create a range fact that specifies the maximum range for a
/// value of the given bit-width, zero-extended into a wider
/// width.
pub const fn max_range_for_width_extended(from_width: u16, to_width: u16) -> Self {
debug_assert!(from_width <= to_width);
match from_width {
from_width if from_width < 64 => Fact::Range {
bit_width: to_width,
min: 0,
max: (1u64 << from_width) - 1,
},
64 => Fact::Range {
bit_width: to_width,
min: 0,
max: u64::MAX,
},
_ => panic!("bit width too large!"),
}
}
/// Try to infer a minimal fact for a value of the given IR type.
pub fn infer_from_type(ty: ir::Type) -> Option<&'static Self> {
static FACTS: [Fact; 4] = [
Fact::max_range_for_width(8),
Fact::max_range_for_width(16),
Fact::max_range_for_width(32),
Fact::max_range_for_width(64),
];
match ty {
I8 => Some(&FACTS[0]),
I16 => Some(&FACTS[1]),
I32 => Some(&FACTS[2]),
I64 => Some(&FACTS[3]),
_ => None,
}
}
/// Does this fact "propagate" automatically, i.e., cause
/// instructions that process it to infer their own output facts?
/// Not all facts propagate automatically; otherwise, verification
/// would be much slower.
pub fn propagates(&self) -> bool {
match self {
Fact::Mem { .. } => true,
_ => false,
}
}
/// Is this a constant value of the given bitwidth? Return it as a
/// `Some(value)` if so.
pub fn as_const(&self, bits: u16) -> Option<u64> {
match self {
Fact::Range {
bit_width,
min,
max,
} if *bit_width == bits && min == max => Some(*min),
_ => None,
}
}
/// Is this fact a single-value range with a symbolic Expr?
pub fn as_symbol(&self) -> Option<&Expr> {
match self {
Fact::DynamicRange { min, max, .. } if min == max => Some(min),
_ => None,
}
}
/// Merge two facts. We take the *intersection*: that is, we know
/// both facts to be true, so we can intersect ranges. (This
/// differs from the usual static analysis approach, where we are
/// merging multiple possibilities into a generalized / widened
/// fact. We want to narrow here.)
pub fn intersect(a: &Fact, b: &Fact) -> Fact {
match (a, b) {
(
Fact::Range {
bit_width: bw_lhs,
min: min_lhs,
max: max_lhs,
},
Fact::Range {
bit_width: bw_rhs,
min: min_rhs,
max: max_rhs,
},
) if bw_lhs == bw_rhs && max_lhs >= min_rhs && max_rhs >= min_lhs => Fact::Range {
bit_width: *bw_lhs,
min: std::cmp::max(*min_lhs, *min_rhs),
max: std::cmp::min(*max_lhs, *max_rhs),
},
(
Fact::DynamicRange {
bit_width: bw_lhs,
min: min_lhs,
max: max_lhs,
},
Fact::DynamicRange {
bit_width: bw_rhs,
min: min_rhs,
max: max_rhs,
},
) if bw_lhs == bw_rhs && Expr::le(min_rhs, max_lhs) && Expr::le(min_lhs, max_rhs) => {
Fact::DynamicRange {
bit_width: *bw_lhs,
min: Expr::max(min_lhs, min_rhs),
max: Expr::min(max_lhs, max_rhs),
}
}
(
Fact::Mem {
ty: ty_lhs,
min_offset: min_offset_lhs,
max_offset: max_offset_lhs,
nullable: nullable_lhs,
},
Fact::Mem {
ty: ty_rhs,
min_offset: min_offset_rhs,
max_offset: max_offset_rhs,
nullable: nullable_rhs,
},
) if ty_lhs == ty_rhs
&& max_offset_lhs >= min_offset_rhs
&& max_offset_rhs >= min_offset_lhs =>
{
Fact::Mem {
ty: *ty_lhs,
min_offset: std::cmp::max(*min_offset_lhs, *min_offset_rhs),
max_offset: std::cmp::min(*max_offset_lhs, *max_offset_rhs),
nullable: *nullable_lhs && *nullable_rhs,
}
}
(
Fact::DynamicMem {
ty: ty_lhs,
min: min_lhs,
max: max_lhs,
nullable: null_lhs,
},
Fact::DynamicMem {
ty: ty_rhs,
min: min_rhs,
max: max_rhs,
nullable: null_rhs,
},
) if ty_lhs == ty_rhs && Expr::le(min_rhs, max_lhs) && Expr::le(min_lhs, max_rhs) => {
Fact::DynamicMem {
ty: *ty_lhs,
min: Expr::max(min_lhs, min_rhs),
max: Expr::min(max_lhs, max_rhs),
nullable: *null_lhs && *null_rhs,
}
}
_ => Fact::Conflict,
}
}
}
macro_rules! ensure {
( $condition:expr, $err:tt $(,)? ) => {
if !$condition {
return Err(PccError::$err);
}
};
}
macro_rules! bail {
( $err:tt ) => {{
return Err(PccError::$err);
}};
}
/// The two kinds of inequalities: "strict" (`<`, `>`) and "loose"
/// (`<=`, `>=`), the latter of which admit equality.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum InequalityKind {
/// Strict inequality: {less,greater}-than.
Strict,
/// Loose inequality: {less,greater}-than-or-equal.
Loose,
}
/// A "context" in which we can evaluate and derive facts. This
/// context carries environment/global properties, such as the machine
/// pointer width.
pub struct FactContext<'a> {
function: &'a ir::Function,
pointer_width: u16,
}
impl<'a> FactContext<'a> {
/// Create a new "fact context" in which to evaluate facts.
pub fn new(function: &'a ir::Function, pointer_width: u16) -> Self {
FactContext {
function,
pointer_width,
}
}
/// Computes whether `lhs` "subsumes" (implies) `rhs`.
pub fn subsumes(&self, lhs: &Fact, rhs: &Fact) -> bool {
match (lhs, rhs) {
// Reflexivity.
(l, r) if l == r => true,
(
Fact::Range {
bit_width: bw_lhs,
min: min_lhs,
max: max_lhs,
},
Fact::Range {
bit_width: bw_rhs,
min: min_rhs,
max: max_rhs,
},
) => {
// If the bitwidths we're claiming facts about are the
// same, or the left-hand-side makes a claim about a
// wider bitwidth, and if the right-hand-side range is
// larger than the left-hand-side range, than the LHS
// subsumes the RHS.
//
// In other words, we can always expand the claimed
// possible value range.
bw_lhs >= bw_rhs && max_lhs <= max_rhs && min_lhs >= min_rhs
}
(
Fact::DynamicRange {
bit_width: bw_lhs,
min: min_lhs,
max: max_lhs,
},
Fact::DynamicRange {
bit_width: bw_rhs,
min: min_rhs,
max: max_rhs,
},
) => {
// Nearly same as above, but with dynamic-expression
// comparisons. Note that we require equal bitwidths
// here: unlike in the static case, we don't have
// fixed values for min and max, so we can't lean on
// the well-formedness requirements of the static
// ranges fitting within the bit-width max.
bw_lhs == bw_rhs && Expr::le(max_lhs, max_rhs) && Expr::le(min_rhs, min_lhs)
}
(
Fact::Mem {
ty: ty_lhs,
min_offset: min_offset_lhs,
max_offset: max_offset_lhs,
nullable: nullable_lhs,
},
Fact::Mem {
ty: ty_rhs,
min_offset: min_offset_rhs,
max_offset: max_offset_rhs,
nullable: nullable_rhs,
},
) => {
ty_lhs == ty_rhs
&& max_offset_lhs <= max_offset_rhs
&& min_offset_lhs >= min_offset_rhs
&& (*nullable_lhs || !*nullable_rhs)
}
(
Fact::DynamicMem {
ty: ty_lhs,
min: min_lhs,
max: max_lhs,
nullable: nullable_lhs,
},
Fact::DynamicMem {
ty: ty_rhs,
min: min_rhs,
max: max_rhs,
nullable: nullable_rhs,
},
) => {
ty_lhs == ty_rhs
&& Expr::le(max_lhs, max_rhs)
&& Expr::le(min_rhs, min_lhs)
&& (*nullable_lhs || !*nullable_rhs)
}
// Constant zero subsumes nullable DynamicMem pointers.
(
Fact::Range {
bit_width,
min: 0,
max: 0,
},
Fact::DynamicMem { nullable: true, .. },
) if *bit_width == self.pointer_width => true,
// Any fact subsumes a Def, because the Def makes no
// claims about the actual value (it ties a symbol to that
// value, but the value is fed to the symbol, not the
// other way around).
(_, Fact::Def { .. }) => true,
_ => false,
}
}
/// Computes whether the optional fact `lhs` subsumes (implies)
/// the optional fact `lhs`. A `None` never subsumes any fact, and
/// is always subsumed by any fact at all (or no fact).
pub fn subsumes_fact_optionals(&self, lhs: Option<&Fact>, rhs: Option<&Fact>) -> bool {
match (lhs, rhs) {
(None, None) => true,
(Some(_), None) => true,
(None, Some(_)) => false,
(Some(lhs), Some(rhs)) => self.subsumes(lhs, rhs),
}
}
/// Computes whatever fact can be known about the sum of two
/// values with attached facts. The add is performed to the given
/// bit-width. Note that this is distinct from the machine or
/// pointer width: e.g., many 64-bit machines can still do 32-bit
/// adds that wrap at 2^32.
pub fn add(&self, lhs: &Fact, rhs: &Fact, add_width: u16) -> Option<Fact> {
let result = match (lhs, rhs) {
(
Fact::Range {
bit_width: bw_lhs,
min: min_lhs,
max: max_lhs,
},
Fact::Range {
bit_width: bw_rhs,
min: min_rhs,
max: max_rhs,
},
) if bw_lhs == bw_rhs && add_width >= *bw_lhs => {
let computed_min = min_lhs.checked_add(*min_rhs)?;
let computed_max = max_lhs.checked_add(*max_rhs)?;
let computed_max = std::cmp::min(max_value_for_width(add_width), computed_max);
Some(Fact::Range {
bit_width: *bw_lhs,
min: computed_min,
max: computed_max,
})
}
(
Fact::Range {
bit_width: bw_max,
min,
max,
},
Fact::Mem {
ty,
min_offset,
max_offset,
nullable,
},
)
| (
Fact::Mem {
ty,
min_offset,
max_offset,
nullable,
},
Fact::Range {
bit_width: bw_max,
min,
max,
},
) if *bw_max >= self.pointer_width
&& add_width >= *bw_max
&& (!*nullable || *max == 0) =>
{
let min_offset = min_offset.checked_add(*min)?;
let max_offset = max_offset.checked_add(*max)?;
Some(Fact::Mem {
ty: *ty,
min_offset,
max_offset,
nullable: false,
})
}
(
Fact::Range {
bit_width: bw_static,
min: min_static,
max: max_static,
},
Fact::DynamicRange {
bit_width: bw_dynamic,
min: ref min_dynamic,
max: ref max_dynamic,
},
)
| (
Fact::DynamicRange {
bit_width: bw_dynamic,
min: ref min_dynamic,
max: ref max_dynamic,
},
Fact::Range {
bit_width: bw_static,
min: min_static,
max: max_static,
},
) if bw_static == bw_dynamic => {
let min = Expr::offset(min_dynamic, i64::try_from(*min_static).ok()?)?;
let max = Expr::offset(max_dynamic, i64::try_from(*max_static).ok()?)?;
Some(Fact::DynamicRange {
bit_width: *bw_dynamic,
min,
max,
})
}
(
Fact::DynamicMem {
ty,
min: min_mem,
max: max_mem,
nullable: false,
},
Fact::DynamicRange {
bit_width,
min: min_range,
max: max_range,
},
)
| (
Fact::DynamicRange {
bit_width,
min: min_range,
max: max_range,
},
Fact::DynamicMem {
ty,
min: min_mem,
max: max_mem,
nullable: false,
},
) if *bit_width == self.pointer_width => {
let min = Expr::add(min_mem, min_range)?;
let max = Expr::add(max_mem, max_range)?;
Some(Fact::DynamicMem {
ty: *ty,
min,
max,
nullable: false,
})
}
(
Fact::Mem {
ty,
min_offset,
max_offset,
nullable: false,
},
Fact::DynamicRange {
bit_width,
min: min_range,
max: max_range,
},
)
| (
Fact::DynamicRange {
bit_width,
min: min_range,
max: max_range,
},
Fact::Mem {
ty,
min_offset,
max_offset,
nullable: false,
},
) if *bit_width == self.pointer_width => {
let min = Expr::offset(min_range, i64::try_from(*min_offset).ok()?)?;
let max = Expr::offset(max_range, i64::try_from(*max_offset).ok()?)?;
Some(Fact::DynamicMem {
ty: *ty,
min,
max,
nullable: false,
})
}
(
Fact::Range {
bit_width: bw_static,
min: min_static,
max: max_static,
},
Fact::DynamicMem {
ty,
min: ref min_dynamic,
max: ref max_dynamic,
nullable,
},
)
| (
Fact::DynamicMem {
ty,
min: ref min_dynamic,
max: ref max_dynamic,
nullable,
},
Fact::Range {
bit_width: bw_static,
min: min_static,
max: max_static,
},
) if *bw_static == self.pointer_width && (!*nullable || *max_static == 0) => {
let min = Expr::offset(min_dynamic, i64::try_from(*min_static).ok()?)?;
let max = Expr::offset(max_dynamic, i64::try_from(*max_static).ok()?)?;
Some(Fact::DynamicMem {
ty: *ty,
min,
max,
nullable: false,
})
}
_ => None,
};
trace!("add: {lhs:?} + {rhs:?} -> {result:?}");
result
}
/// Computes the `uextend` of a value with the given facts.
pub fn uextend(&self, fact: &Fact, from_width: u16, to_width: u16) -> Option<Fact> {
if from_width == to_width {
return Some(fact.clone());
}
let result = match fact {
// If the claim is already for a same-or-wider value and the min
// and max are within range of the narrower value, we can
// claim the same range.
Fact::Range {
bit_width,
min,
max,
} if *bit_width >= from_width
&& *min <= max_value_for_width(from_width)
&& *max <= max_value_for_width(from_width) =>
{
Some(Fact::Range {
bit_width: to_width,
min: *min,
max: *max,
})
}
// If the claim is a dynamic range for the from-width, we
// can extend to the to-width.
Fact::DynamicRange {
bit_width,
min,
max,
} if *bit_width == from_width => Some(Fact::DynamicRange {
bit_width: to_width,
min: min.clone(),
max: max.clone(),
}),
// If the claim is a definition of a value, we can say
// that the output has a range of exactly that value.
Fact::Def { value } => Some(Fact::value(to_width, *value)),
// Otherwise, we can at least claim that the value is
// within the range of `from_width`.
Fact::Range { .. } => Some(Fact::max_range_for_width_extended(from_width, to_width)),
_ => None,
};
trace!("uextend: fact {fact:?} from {from_width} to {to_width} -> {result:?}");
result
}
/// Computes the `sextend` of a value with the given facts.
pub fn sextend(&self, fact: &Fact, from_width: u16, to_width: u16) -> Option<Fact> {
match fact {
// If we have a defined value in bits 0..bit_width, and
// the MSB w.r.t. `from_width` is *not* set, then we can
// do the same as `uextend`.
Fact::Range {
bit_width,
// We can ignore `min`: it is always <= max in
// unsigned terms, and we check max's LSB below.
min: _,
max,
} if *bit_width == from_width && (*max & (1 << (*bit_width - 1)) == 0) => {
self.uextend(fact, from_width, to_width)
}
_ => None,
}
}
/// Computes the bit-truncation of a value with the given fact.
pub fn truncate(&self, fact: &Fact, from_width: u16, to_width: u16) -> Option<Fact> {
if from_width == to_width {
return Some(fact.clone());
}
trace!(
"truncate: fact {:?} from {} to {}",
fact,
from_width,
to_width
);
match fact {
Fact::Range {
bit_width,
min,
max,
} if *bit_width == from_width => {
let max_val = (1u64 << to_width) - 1;
if *min <= max_val && *max <= max_val {
Some(Fact::Range {
bit_width: to_width,
min: *min,
max: *max,
})
} else {
Some(Fact::Range {
bit_width: to_width,
min: 0,
max: max_val,
})
}
}
_ => None,
}
}
/// Scales a value with a fact by a known constant.
pub fn scale(&self, fact: &Fact, width: u16, factor: u32) -> Option<Fact> {
let result = match fact {
x if factor == 1 => Some(x.clone()),
Fact::Range {
bit_width,
min,
max,
} if *bit_width == width => {
let min = min.checked_mul(u64::from(factor))?;
let max = max.checked_mul(u64::from(factor))?;
if *bit_width < 64 && max > max_value_for_width(width) {
return None;
}
Some(Fact::Range {
bit_width: *bit_width,
min,
max,
})
}
_ => None,
};
trace!("scale: {fact:?} * {factor} at width {width} -> {result:?}");
result
}
/// Left-shifts a value with a fact by a known constant.
pub fn shl(&self, fact: &Fact, width: u16, amount: u16) -> Option<Fact> {
if amount >= 32 {
return None;
}
let factor: u32 = 1 << amount;
self.scale(fact, width, factor)
}
/// Offsets a value with a fact by a known amount.
pub fn offset(&self, fact: &Fact, width: u16, offset: i64) -> Option<Fact> {
if offset == 0 {
return Some(fact.clone());
}
let compute_offset = |base: u64| -> Option<u64> {
if offset >= 0 {
base.checked_add(u64::try_from(offset).unwrap())
} else {
base.checked_sub(u64::try_from(-offset).unwrap())
}
};
let result = match fact {
Fact::Range {
bit_width,
min,
max,
} if *bit_width == width => {
let min = compute_offset(*min)?;
let max = compute_offset(*max)?;
Some(Fact::Range {
bit_width: *bit_width,
min,
max,
})
}
Fact::DynamicRange {
bit_width,
min,
max,
} if *bit_width == width => {
let min = Expr::offset(min, offset)?;
let max = Expr::offset(max, offset)?;
Some(Fact::DynamicRange {
bit_width: *bit_width,
min,
max,
})
}
Fact::Mem {
ty,
min_offset: mem_min_offset,
max_offset: mem_max_offset,
nullable: false,
} => {
let min_offset = compute_offset(*mem_min_offset)?;
let max_offset = compute_offset(*mem_max_offset)?;
Some(Fact::Mem {
ty: *ty,
min_offset,
max_offset,
nullable: false,
})
}
Fact::DynamicMem {
ty,
min,
max,
nullable: false,
} => {
let min = Expr::offset(min, offset)?;
let max = Expr::offset(max, offset)?;
Some(Fact::DynamicMem {
ty: *ty,
min,
max,
nullable: false,
})
}
_ => None,
};
trace!("offset: {fact:?} + {offset} in width {width} -> {result:?}");
result
}
/// Check that accessing memory via a pointer with this fact, with
/// a memory access of the given size, is valid.
///
/// If valid, returns the memory type and offset into that type
/// that this address accesses, if known, or `None` if the range
/// doesn't constrain the access to exactly one location.
fn check_address(&self, fact: &Fact, size: u32) -> PccResult<Option<(ir::MemoryType, u64)>> {
trace!("check_address: fact {:?} size {}", fact, size);
match fact {
Fact::Mem {
ty,
min_offset,
max_offset,
nullable: _,
} => {
let end_offset: u64 = max_offset
.checked_add(u64::from(size))
.ok_or(PccError::Overflow)?;
match &self.function.memory_types[*ty] {
ir::MemoryTypeData::Struct { size, .. }
| ir::MemoryTypeData::Memory { size } => {
ensure!(end_offset <= *size, OutOfBounds)
}
ir::MemoryTypeData::DynamicMemory { .. } => bail!(OutOfBounds),
ir::MemoryTypeData::Empty => bail!(OutOfBounds),
}
let specific_ty_and_offset = if min_offset == max_offset {
Some((*ty, *min_offset))
} else {
None
};
Ok(specific_ty_and_offset)
}
Fact::DynamicMem {
ty,
min: _,
max:
Expr {
base: BaseExpr::GlobalValue(max_gv),
offset: max_offset,
},
nullable: _,
} => match &self.function.memory_types[*ty] {
ir::MemoryTypeData::DynamicMemory {
gv,
size: mem_static_size,
} if gv == max_gv => {
let end_offset = max_offset
.checked_add(i64::from(size))
.ok_or(PccError::Overflow)?;
let mem_static_size =
i64::try_from(*mem_static_size).map_err(|_| PccError::Overflow)?;
ensure!(end_offset <= mem_static_size, OutOfBounds);
Ok(None)
}
_ => bail!(OutOfBounds),
},
_ => bail!(OutOfBounds),
}
}
/// Get the access struct field, if any, by a pointer with the
/// given fact and an access of the given type.
pub fn struct_field<'b>(
&'b self,
fact: &Fact,
access_ty: ir::Type,
) -> PccResult<Option<&'b ir::MemoryTypeField>> {
let (ty, offset) = match self.check_address(fact, access_ty.bytes())? {
Some((ty, offset)) => (ty, offset),
None => return Ok(None),
};
if let ir::MemoryTypeData::Struct { fields, .. } = &self.function.memory_types[ty] {
let field = fields
.iter()
.find(|field| field.offset == offset)
.ok_or(PccError::InvalidFieldOffset)?;
if field.ty != access_ty {
bail!(BadFieldType);
}
Ok(Some(field))
} else {
// Access to valid memory, but not a struct: no facts can be attached to the result.
Ok(None)
}
}
/// Check a load, and determine what fact, if any, the result of the load might have.
pub fn load<'b>(&'b self, fact: &Fact, access_ty: ir::Type) -> PccResult<Option<&'b Fact>> {
Ok(self
.struct_field(fact, access_ty)?
.and_then(|field| field.fact()))
}
/// Check a store.
pub fn store(
&self,
fact: &Fact,
access_ty: ir::Type,
data_fact: Option<&Fact>,
) -> PccResult<()> {
if let Some(field) = self.struct_field(fact, access_ty)? {
// If it's a read-only field, disallow.
if field.readonly {
bail!(WriteToReadOnlyField);
}
// Check that the fact on the stored data subsumes the field's fact.
if !self.subsumes_fact_optionals(data_fact, field.fact()) {
bail!(InvalidStoredFact);
}
}
Ok(())
}
/// Apply a known inequality to rewrite dynamic bounds using transitivity, if possible.
///
/// Given that `lhs >= rhs` (if not `strict`) or `lhs > rhs` (if
/// `strict`), update `fact`.
pub fn apply_inequality(
&self,
fact: &Fact,
lhs: &Fact,
rhs: &Fact,
kind: InequalityKind,
) -> Fact {
let result = match (
lhs.as_symbol(),
lhs.as_const(self.pointer_width)
.and_then(|k| i64::try_from(k).ok()),
rhs.as_symbol(),
fact,
) {
(
Some(lhs),
None,
Some(rhs),
Fact::DynamicMem {
ty,
min,
max,
nullable,
},
) if rhs.base == max.base => {
let strict_offset = match kind {
InequalityKind::Strict => 1,
InequalityKind::Loose => 0,
};
if let Some(offset) = max
.offset
.checked_add(lhs.offset)
.and_then(|x| x.checked_sub(rhs.offset))
.and_then(|x| x.checked_sub(strict_offset))
{
let new_max = Expr {
base: lhs.base.clone(),
offset,
};
Fact::DynamicMem {
ty: *ty,
min: min.clone(),
max: new_max,
nullable: *nullable,
}
} else {
fact.clone()
}
}
(
None,
Some(lhs_const),
Some(rhs),
Fact::DynamicMem {
ty,
min: _,
max,
nullable,
},
) if rhs.base == max.base => {
let strict_offset = match kind {
InequalityKind::Strict => 1,
InequalityKind::Loose => 0,
};
if let Some(offset) = max
.offset
.checked_add(lhs_const)
.and_then(|x| x.checked_sub(rhs.offset))
.and_then(|x| x.checked_sub(strict_offset))
{
Fact::Mem {
ty: *ty,
min_offset: 0,
max_offset: u64::try_from(offset).unwrap_or(0),
nullable: *nullable,
}
} else {
fact.clone()
}
}
_ => fact.clone(),
};
trace!("apply_inequality({fact:?}, {lhs:?}, {rhs:?}, {kind:?} -> {result:?}");
result
}
/// Compute the union of two facts, if possible.
pub fn union(&self, lhs: &Fact, rhs: &Fact) -> Option<Fact> {
let result = match (lhs, rhs) {
(lhs, rhs) if lhs == rhs => Some(lhs.clone()),
(
Fact::DynamicMem {
ty: ty_lhs,
min: min_lhs,
max: max_lhs,
nullable: nullable_lhs,
},
Fact::DynamicMem {
ty: ty_rhs,
min: min_rhs,
max: max_rhs,
nullable: nullable_rhs,
},
) if ty_lhs == ty_rhs => Some(Fact::DynamicMem {
ty: *ty_lhs,
min: Expr::min(min_lhs, min_rhs),
max: Expr::max(max_lhs, max_rhs),
nullable: *nullable_lhs || *nullable_rhs,
}),
(
Fact::Range {
bit_width: bw_const,
min: 0,
max: 0,
},
Fact::DynamicMem {
ty,
min,
max,
nullable: _,
},
)
| (
Fact::DynamicMem {
ty,
min,
max,
nullable: _,
},
Fact::Range {
bit_width: bw_const,
min: 0,
max: 0,
},
) if *bw_const == self.pointer_width => Some(Fact::DynamicMem {
ty: *ty,
min: min.clone(),
max: max.clone(),
nullable: true,
}),
(
Fact::Range {
bit_width: bw_const,
min: 0,
max: 0,
},
Fact::Mem {
ty,
min_offset,
max_offset,
nullable: _,
},
)
| (
Fact::Mem {
ty,
min_offset,
max_offset,
nullable: _,
},
Fact::Range {
bit_width: bw_const,
min: 0,
max: 0,
},
) if *bw_const == self.pointer_width => Some(Fact::Mem {
ty: *ty,
min_offset: *min_offset,
max_offset: *max_offset,
nullable: true,
}),
_ => None,
};
trace!("union({lhs:?}, {rhs:?}) -> {result:?}");
result
}
}
fn max_value_for_width(bits: u16) -> u64 {
assert!(bits <= 64);
if bits == 64 {
u64::MAX
} else {
(1u64 << bits) - 1
}
}
/// Top-level entry point after compilation: this checks the facts in
/// VCode.
pub fn check_vcode_facts<B: LowerBackend + TargetIsa>(
f: &ir::Function,
vcode: &mut VCode<B::MInst>,
backend: &B,
) -> PccResult<()> {
let ctx = FactContext::new(f, backend.triple().pointer_width().unwrap().bits().into());
// Check that individual instructions are valid according to input
// facts, and support the stated output facts.
for block in 0..vcode.num_blocks() {
let block = BlockIndex::new(block);
let mut flow_state = B::FactFlowState::default();
for inst in vcode.block_insns(block).iter() {
// Check any output facts on this inst.
if let Err(e) = backend.check_fact(&ctx, vcode, inst, &mut flow_state) {
log::info!("Error checking instruction: {:?}", vcode[inst]);
return Err(e);
}
// If this is a branch, check that all block arguments subsume
// the assumed facts on the blockparams of successors.
if vcode.is_branch(inst) {
for (succ_idx, succ) in vcode.block_succs(block).iter().enumerate() {
for (arg, param) in vcode
.branch_blockparams(block, inst, succ_idx)
.iter()
.zip(vcode.block_params(*succ).iter())
{
let arg_fact = vcode.vreg_fact(*arg);
let param_fact = vcode.vreg_fact(*param);
if !ctx.subsumes_fact_optionals(arg_fact, param_fact) {
return Err(PccError::UnsupportedBlockparam);
}
}
}
}
}
}
Ok(())
}