cranelift_codegen/isa/aarch64/inst/
imms.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
//! AArch64 ISA definitions: immediate constants.

use crate::ir::types::*;
use crate::isa::aarch64::inst::{OperandSize, ScalarSize};
use crate::machinst::PrettyPrint;

use std::string::String;

/// An immediate that represents the NZCV flags.
#[derive(Clone, Copy, Debug)]
pub struct NZCV {
    /// The negative condition flag.
    n: bool,
    /// The zero condition flag.
    z: bool,
    /// The carry condition flag.
    c: bool,
    /// The overflow condition flag.
    v: bool,
}

impl NZCV {
    /// Create a new NZCV flags representation.
    pub fn new(n: bool, z: bool, c: bool, v: bool) -> NZCV {
        NZCV { n, z, c, v }
    }

    /// Bits for encoding.
    pub fn bits(&self) -> u32 {
        (u32::from(self.n) << 3)
            | (u32::from(self.z) << 2)
            | (u32::from(self.c) << 1)
            | u32::from(self.v)
    }
}

/// An unsigned 5-bit immediate.
#[derive(Clone, Copy, Debug)]
pub struct UImm5 {
    /// The value.
    value: u8,
}

impl UImm5 {
    /// Create an unsigned 5-bit immediate from u8.
    pub fn maybe_from_u8(value: u8) -> Option<UImm5> {
        if value < 32 {
            Some(UImm5 { value })
        } else {
            None
        }
    }

    /// Bits for encoding.
    pub fn bits(&self) -> u32 {
        u32::from(self.value)
    }
}

/// A signed, scaled 7-bit offset.
#[derive(Clone, Copy, Debug)]
pub struct SImm7Scaled {
    /// The value.
    pub value: i16,
    /// multiplied by the size of this type
    pub scale_ty: Type,
}

impl SImm7Scaled {
    /// Create a SImm7Scaled from a raw offset and the known scale type, if
    /// possible.
    pub fn maybe_from_i64(value: i64, scale_ty: Type) -> Option<SImm7Scaled> {
        assert!(scale_ty == I64 || scale_ty == I32 || scale_ty == F64 || scale_ty == I8X16);
        let scale = scale_ty.bytes();
        assert!(scale.is_power_of_two());
        let scale = i64::from(scale);
        let upper_limit = 63 * scale;
        let lower_limit = -(64 * scale);
        if value >= lower_limit && value <= upper_limit && (value & (scale - 1)) == 0 {
            Some(SImm7Scaled {
                value: i16::try_from(value).unwrap(),
                scale_ty,
            })
        } else {
            None
        }
    }

    /// Bits for encoding.
    pub fn bits(&self) -> u32 {
        let ty_bytes: i16 = self.scale_ty.bytes() as i16;
        let scaled: i16 = self.value / ty_bytes;
        assert!(scaled <= 63 && scaled >= -64);
        let scaled: i8 = scaled as i8;
        let encoded: u32 = scaled as u32;
        encoded & 0x7f
    }
}

/// Floating-point unit immediate left shift.
#[derive(Clone, Copy, Debug)]
pub struct FPULeftShiftImm {
    /// Shift amount.
    pub amount: u8,
    /// Lane size in bits.
    pub lane_size_in_bits: u8,
}

impl FPULeftShiftImm {
    /// Create a floating-point unit immediate left shift from u8.
    pub fn maybe_from_u8(amount: u8, lane_size_in_bits: u8) -> Option<Self> {
        debug_assert!(lane_size_in_bits == 32 || lane_size_in_bits == 64);
        if amount < lane_size_in_bits {
            Some(Self {
                amount,
                lane_size_in_bits,
            })
        } else {
            None
        }
    }

    /// Returns the encoding of the immediate.
    pub fn enc(&self) -> u32 {
        debug_assert!(self.lane_size_in_bits.is_power_of_two());
        debug_assert!(self.lane_size_in_bits > self.amount);
        // The encoding of the immediate follows the table below,
        // where xs encode the shift amount.
        //
        // | lane_size_in_bits | encoding |
        // +------------------------------+
        // | 8                 | 0001xxx  |
        // | 16                | 001xxxx  |
        // | 32                | 01xxxxx  |
        // | 64                | 1xxxxxx  |
        //
        // The highest one bit is represented by `lane_size_in_bits`. Since
        // `lane_size_in_bits` is a power of 2 and `amount` is less
        // than `lane_size_in_bits`, they can be ORed
        // together to produced the encoded value.
        u32::from(self.lane_size_in_bits | self.amount)
    }
}

/// Floating-point unit immediate right shift.
#[derive(Clone, Copy, Debug)]
pub struct FPURightShiftImm {
    /// Shift amount.
    pub amount: u8,
    /// Lane size in bits.
    pub lane_size_in_bits: u8,
}

impl FPURightShiftImm {
    /// Create a floating-point unit immediate right shift from u8.
    pub fn maybe_from_u8(amount: u8, lane_size_in_bits: u8) -> Option<Self> {
        debug_assert!(lane_size_in_bits == 32 || lane_size_in_bits == 64);
        if amount > 0 && amount <= lane_size_in_bits {
            Some(Self {
                amount,
                lane_size_in_bits,
            })
        } else {
            None
        }
    }

    /// Returns encoding of the immediate.
    pub fn enc(&self) -> u32 {
        debug_assert_ne!(0, self.amount);
        // The encoding of the immediate follows the table below,
        // where xs encodes the negated shift amount.
        //
        // | lane_size_in_bits | encoding |
        // +------------------------------+
        // | 8                 | 0001xxx  |
        // | 16                | 001xxxx  |
        // | 32                | 01xxxxx  |
        // | 64                | 1xxxxxx  |
        //
        // The shift amount is negated such that a shift amount
        // of 1 (in 64-bit) is encoded as 0b111111 and a shift
        // amount of 64 is encoded as 0b000000,
        // in the bottom 6 bits.
        u32::from((self.lane_size_in_bits * 2) - self.amount)
    }
}

/// a 9-bit signed offset.
#[derive(Clone, Copy, Debug)]
pub struct SImm9 {
    /// The value.
    pub value: i16,
}

impl SImm9 {
    /// Create a signed 9-bit offset from a full-range value, if possible.
    pub fn maybe_from_i64(value: i64) -> Option<SImm9> {
        if value >= -256 && value <= 255 {
            Some(SImm9 {
                value: value as i16,
            })
        } else {
            None
        }
    }

    /// Bits for encoding.
    pub fn bits(&self) -> u32 {
        (self.value as u32) & 0x1ff
    }

    /// Signed value of immediate.
    pub fn value(&self) -> i32 {
        self.value as i32
    }
}

/// An unsigned, scaled 12-bit offset.
#[derive(Clone, Copy, Debug)]
pub struct UImm12Scaled {
    /// The value.
    value: u16,
    /// multiplied by the size of this type
    scale_ty: Type,
}

impl UImm12Scaled {
    /// Create a UImm12Scaled from a raw offset and the known scale type, if
    /// possible.
    pub fn maybe_from_i64(value: i64, scale_ty: Type) -> Option<UImm12Scaled> {
        let scale = scale_ty.bytes();
        assert!(scale.is_power_of_two());
        let scale = scale as i64;
        let limit = 4095 * scale;
        if value >= 0 && value <= limit && (value & (scale - 1)) == 0 {
            Some(UImm12Scaled {
                value: value as u16,
                scale_ty,
            })
        } else {
            None
        }
    }

    /// Create a zero immediate of this format.
    pub fn zero(scale_ty: Type) -> UImm12Scaled {
        UImm12Scaled { value: 0, scale_ty }
    }

    /// Encoded bits.
    pub fn bits(&self) -> u32 {
        (self.value as u32 / self.scale_ty.bytes()) & 0xfff
    }

    /// Value after scaling.
    pub fn value(&self) -> u32 {
        self.value as u32
    }
}

/// A shifted immediate value in 'imm12' format: supports 12 bits, shifted
/// left by 0 or 12 places.
#[derive(Copy, Clone, Debug)]
pub struct Imm12 {
    /// The immediate bits.
    pub bits: u16,
    /// Whether the immediate bits are shifted left by 12 or not.
    pub shift12: bool,
}

impl Imm12 {
    /// Compute a Imm12 from raw bits, if possible.
    pub fn maybe_from_u64(val: u64) -> Option<Imm12> {
        if val & !0xfff == 0 {
            Some(Imm12 {
                bits: val as u16,
                shift12: false,
            })
        } else if val & !(0xfff << 12) == 0 {
            Some(Imm12 {
                bits: (val >> 12) as u16,
                shift12: true,
            })
        } else {
            None
        }
    }

    /// Bits for 2-bit "shift" field in e.g. AddI.
    pub fn shift_bits(&self) -> u32 {
        if self.shift12 {
            0b01
        } else {
            0b00
        }
    }

    /// Bits for 12-bit "imm" field in e.g. AddI.
    pub fn imm_bits(&self) -> u32 {
        self.bits as u32
    }

    /// Get the actual value that this immediate corresponds to.
    pub fn value(&self) -> u32 {
        let base = self.bits as u32;
        if self.shift12 {
            base << 12
        } else {
            base
        }
    }
}

/// An immediate for logical instructions.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct ImmLogic {
    /// The actual value.
    value: u64,
    /// `N` flag.
    pub n: bool,
    /// `S` field: element size and element bits.
    pub r: u8,
    /// `R` field: rotate amount.
    pub s: u8,
    /// Was this constructed for a 32-bit or 64-bit instruction?
    pub size: OperandSize,
}

impl ImmLogic {
    /// Compute an ImmLogic from raw bits, if possible.
    pub fn maybe_from_u64(value: u64, ty: Type) -> Option<ImmLogic> {
        // Note: This function is a port of VIXL's Assembler::IsImmLogical.

        if ty != I64 && ty != I32 {
            return None;
        }
        let operand_size = OperandSize::from_ty(ty);

        let original_value = value;

        let value = if ty == I32 {
            // To handle 32-bit logical immediates, the very easiest thing is to repeat
            // the input value twice to make a 64-bit word. The correct encoding of that
            // as a logical immediate will also be the correct encoding of the 32-bit
            // value.

            // Avoid making the assumption that the most-significant 32 bits are zero by
            // shifting the value left and duplicating it.
            let value = value << 32;
            value | value >> 32
        } else {
            value
        };

        // Logical immediates are encoded using parameters n, imm_s and imm_r using
        // the following table:
        //
        //    N   imms    immr    size        S             R
        //    1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
        //    0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
        //    0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
        //    0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
        //    0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
        //    0  11110s  xxxxxr     2    UInt(s)       UInt(r)
        // (s bits must not be all set)
        //
        // A pattern is constructed of size bits, where the least significant S+1 bits
        // are set. The pattern is rotated right by R, and repeated across a 32 or
        // 64-bit value, depending on destination register width.
        //
        // Put another way: the basic format of a logical immediate is a single
        // contiguous stretch of 1 bits, repeated across the whole word at intervals
        // given by a power of 2. To identify them quickly, we first locate the
        // lowest stretch of 1 bits, then the next 1 bit above that; that combination
        // is different for every logical immediate, so it gives us all the
        // information we need to identify the only logical immediate that our input
        // could be, and then we simply check if that's the value we actually have.
        //
        // (The rotation parameter does give the possibility of the stretch of 1 bits
        // going 'round the end' of the word. To deal with that, we observe that in
        // any situation where that happens the bitwise NOT of the value is also a
        // valid logical immediate. So we simply invert the input whenever its low bit
        // is set, and then we know that the rotated case can't arise.)
        let (value, inverted) = if value & 1 == 1 {
            (!value, true)
        } else {
            (value, false)
        };

        if value == 0 {
            return None;
        }

        // The basic analysis idea: imagine our input word looks like this.
        //
        //    0011111000111110001111100011111000111110001111100011111000111110
        //                                                          c  b    a
        //                                                          |<--d-->|
        //
        // We find the lowest set bit (as an actual power-of-2 value, not its index)
        // and call it a. Then we add a to our original number, which wipes out the
        // bottommost stretch of set bits and replaces it with a 1 carried into the
        // next zero bit. Then we look for the new lowest set bit, which is in
        // position b, and subtract it, so now our number is just like the original
        // but with the lowest stretch of set bits completely gone. Now we find the
        // lowest set bit again, which is position c in the diagram above. Then we'll
        // measure the distance d between bit positions a and c (using CLZ), and that
        // tells us that the only valid logical immediate that could possibly be equal
        // to this number is the one in which a stretch of bits running from a to just
        // below b is replicated every d bits.
        fn lowest_set_bit(value: u64) -> u64 {
            let bit = value.trailing_zeros();
            1u64.checked_shl(bit).unwrap_or(0)
        }
        let a = lowest_set_bit(value);
        assert_ne!(0, a);
        let value_plus_a = value.wrapping_add(a);
        let b = lowest_set_bit(value_plus_a);
        let value_plus_a_minus_b = value_plus_a - b;
        let c = lowest_set_bit(value_plus_a_minus_b);

        let (d, clz_a, out_n, mask) = if c != 0 {
            // The general case, in which there is more than one stretch of set bits.
            // Compute the repeat distance d, and set up a bitmask covering the basic
            // unit of repetition (i.e. a word with the bottom d bits set). Also, in all
            // of these cases the N bit of the output will be zero.
            let clz_a = a.leading_zeros();
            let clz_c = c.leading_zeros();
            let d = clz_a - clz_c;
            let mask = (1 << d) - 1;
            (d, clz_a, 0, mask)
        } else {
            (64, a.leading_zeros(), 1, u64::max_value())
        };

        // If the repeat period d is not a power of two, it can't be encoded.
        if !d.is_power_of_two() {
            return None;
        }

        if ((b.wrapping_sub(a)) & !mask) != 0 {
            // If the bit stretch (b - a) does not fit within the mask derived from the
            // repeat period, then fail.
            return None;
        }

        // The only possible option is b - a repeated every d bits. Now we're going to
        // actually construct the valid logical immediate derived from that
        // specification, and see if it equals our original input.
        //
        // To repeat a value every d bits, we multiply it by a number of the form
        // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
        // be derived using a table lookup on CLZ(d).
        const MULTIPLIERS: [u64; 6] = [
            0x0000000000000001,
            0x0000000100000001,
            0x0001000100010001,
            0x0101010101010101,
            0x1111111111111111,
            0x5555555555555555,
        ];
        let multiplier = MULTIPLIERS[(u64::from(d).leading_zeros() - 57) as usize];
        let candidate = b.wrapping_sub(a) * multiplier;

        if value != candidate {
            // The candidate pattern doesn't match our input value, so fail.
            return None;
        }

        // We have a match! This is a valid logical immediate, so now we have to
        // construct the bits and pieces of the instruction encoding that generates
        // it.

        // Count the set bits in our basic stretch. The special case of clz(0) == -1
        // makes the answer come out right for stretches that reach the very top of
        // the word (e.g. numbers like 0xffffc00000000000).
        let clz_b = if b == 0 {
            u32::max_value() // -1
        } else {
            b.leading_zeros()
        };
        let s = clz_a.wrapping_sub(clz_b);

        // Decide how many bits to rotate right by, to put the low bit of that basic
        // stretch in position a.
        let (s, r) = if inverted {
            // If we inverted the input right at the start of this function, here's
            // where we compensate: the number of set bits becomes the number of clear
            // bits, and the rotation count is based on position b rather than position
            // a (since b is the location of the 'lowest' 1 bit after inversion).
            // Need wrapping for when clz_b is max_value() (for when b == 0).
            (d - s, clz_b.wrapping_add(1) & (d - 1))
        } else {
            (s, (clz_a + 1) & (d - 1))
        };

        // Now we're done, except for having to encode the S output in such a way that
        // it gives both the number of set bits and the length of the repeated
        // segment. The s field is encoded like this:
        //
        //     imms    size        S
        //    ssssss    64    UInt(ssssss)
        //    0sssss    32    UInt(sssss)
        //    10ssss    16    UInt(ssss)
        //    110sss     8    UInt(sss)
        //    1110ss     4    UInt(ss)
        //    11110s     2    UInt(s)
        //
        // So we 'or' (2 * -d) with our computed s to form imms.
        let s = ((d * 2).wrapping_neg() | (s - 1)) & 0x3f;
        debug_assert!(u8::try_from(r).is_ok());
        debug_assert!(u8::try_from(s).is_ok());
        Some(ImmLogic {
            value: original_value,
            n: out_n != 0,
            r: r as u8,
            s: s as u8,
            size: operand_size,
        })
    }

    /// Returns bits ready for encoding: (N:1, R:6, S:6)
    pub fn enc_bits(&self) -> u32 {
        ((self.n as u32) << 12) | ((self.r as u32) << 6) | (self.s as u32)
    }

    /// Returns the value that this immediate represents.
    pub fn value(&self) -> u64 {
        self.value
    }

    /// Return an immediate for the bitwise-inverted value.
    pub fn invert(&self) -> ImmLogic {
        // For every ImmLogical immediate, the inverse can also be encoded.
        Self::maybe_from_u64(!self.value, self.size.to_ty()).unwrap()
    }
}

/// An immediate for shift instructions.
#[derive(Copy, Clone, Debug)]
pub struct ImmShift {
    /// 6-bit shift amount.
    pub imm: u8,
}

impl ImmShift {
    /// Create an ImmShift from raw bits, if possible.
    pub fn maybe_from_u64(val: u64) -> Option<ImmShift> {
        if val < 64 {
            Some(ImmShift { imm: val as u8 })
        } else {
            None
        }
    }

    /// Get the immediate value.
    pub fn value(&self) -> u8 {
        self.imm
    }
}

/// A 16-bit immediate for a MOVZ instruction, with a {0,16,32,48}-bit shift.
#[derive(Clone, Copy, Debug)]
pub struct MoveWideConst {
    /// The value.
    pub bits: u16,
    /// Result is `bits` shifted 16*shift bits to the left.
    pub shift: u8,
}

impl MoveWideConst {
    /// Construct a MoveWideConst from an arbitrary 64-bit constant if possible.
    pub fn maybe_from_u64(value: u64) -> Option<MoveWideConst> {
        let mask0 = 0x0000_0000_0000_ffffu64;
        let mask1 = 0x0000_0000_ffff_0000u64;
        let mask2 = 0x0000_ffff_0000_0000u64;
        let mask3 = 0xffff_0000_0000_0000u64;

        if value == (value & mask0) {
            return Some(MoveWideConst {
                bits: (value & mask0) as u16,
                shift: 0,
            });
        }
        if value == (value & mask1) {
            return Some(MoveWideConst {
                bits: ((value >> 16) & mask0) as u16,
                shift: 1,
            });
        }
        if value == (value & mask2) {
            return Some(MoveWideConst {
                bits: ((value >> 32) & mask0) as u16,
                shift: 2,
            });
        }
        if value == (value & mask3) {
            return Some(MoveWideConst {
                bits: ((value >> 48) & mask0) as u16,
                shift: 3,
            });
        }
        None
    }

    /// Create a `MoveWideCosnt` from a given shift, if possible.
    pub fn maybe_with_shift(imm: u16, shift: u8) -> Option<MoveWideConst> {
        let shift_enc = shift / 16;
        if shift_enc > 3 {
            None
        } else {
            Some(MoveWideConst {
                bits: imm,
                shift: shift_enc,
            })
        }
    }

    /// Create a zero immediate of this format.
    pub fn zero() -> MoveWideConst {
        MoveWideConst { bits: 0, shift: 0 }
    }
}

/// Advanced SIMD modified immediate as used by MOVI/MVNI.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct ASIMDMovModImm {
    imm: u8,
    shift: u8,
    is_64bit: bool,
    shift_ones: bool,
}

impl ASIMDMovModImm {
    /// Construct an ASIMDMovModImm from an arbitrary 64-bit constant, if possible.
    /// Note that the bits in `value` outside of the range specified by `size` are
    /// ignored; for example, in the case of `ScalarSize::Size8` all bits above the
    /// lowest 8 are ignored.
    pub fn maybe_from_u64(value: u64, size: ScalarSize) -> Option<ASIMDMovModImm> {
        match size {
            ScalarSize::Size8 => Some(ASIMDMovModImm {
                imm: value as u8,
                shift: 0,
                is_64bit: false,
                shift_ones: false,
            }),
            ScalarSize::Size16 => {
                let value = value as u16;

                if value >> 8 == 0 {
                    Some(ASIMDMovModImm {
                        imm: value as u8,
                        shift: 0,
                        is_64bit: false,
                        shift_ones: false,
                    })
                } else if value as u8 == 0 {
                    Some(ASIMDMovModImm {
                        imm: (value >> 8) as u8,
                        shift: 8,
                        is_64bit: false,
                        shift_ones: false,
                    })
                } else {
                    None
                }
            }
            ScalarSize::Size32 => {
                let value = value as u32;

                // Value is of the form 0x00MMFFFF.
                if value & 0xFF00FFFF == 0x0000FFFF {
                    let imm = (value >> 16) as u8;

                    Some(ASIMDMovModImm {
                        imm,
                        shift: 16,
                        is_64bit: false,
                        shift_ones: true,
                    })
                // Value is of the form 0x0000MMFF.
                } else if value & 0xFFFF00FF == 0x000000FF {
                    let imm = (value >> 8) as u8;

                    Some(ASIMDMovModImm {
                        imm,
                        shift: 8,
                        is_64bit: false,
                        shift_ones: true,
                    })
                } else {
                    // Of the 4 bytes, at most one is non-zero.
                    for shift in (0..32).step_by(8) {
                        if value & (0xFF << shift) == value {
                            return Some(ASIMDMovModImm {
                                imm: (value >> shift) as u8,
                                shift,
                                is_64bit: false,
                                shift_ones: false,
                            });
                        }
                    }

                    None
                }
            }
            ScalarSize::Size64 => {
                let mut imm = 0u8;

                // Check if all bytes are either 0 or 0xFF.
                for i in 0..8 {
                    let b = (value >> (i * 8)) as u8;

                    if b == 0 || b == 0xFF {
                        imm |= (b & 1) << i;
                    } else {
                        return None;
                    }
                }

                Some(ASIMDMovModImm {
                    imm,
                    shift: 0,
                    is_64bit: true,
                    shift_ones: false,
                })
            }
            _ => None,
        }
    }

    /// Create a zero immediate of this format.
    pub fn zero(size: ScalarSize) -> Self {
        ASIMDMovModImm {
            imm: 0,
            shift: 0,
            is_64bit: size == ScalarSize::Size64,
            shift_ones: false,
        }
    }

    /// Returns the value that this immediate represents.
    pub fn value(&self) -> (u8, u32, bool) {
        (self.imm, self.shift as u32, self.shift_ones)
    }
}

/// Advanced SIMD modified immediate as used by the vector variant of FMOV.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct ASIMDFPModImm {
    imm: u8,
    size: ScalarSize,
}

impl ASIMDFPModImm {
    /// Construct an ASIMDFPModImm from an arbitrary 64-bit constant, if possible.
    pub fn maybe_from_u64(value: u64, size: ScalarSize) -> Option<ASIMDFPModImm> {
        // In all cases immediates are encoded as an 8-bit number 0b_abcdefgh;
        // let `D` be the inverse of the digit `d`.
        match size {
            ScalarSize::Size16 => {
                // In this case the representable immediates are 16-bit numbers of the form
                // 0b_aBbb_cdef_gh00_0000.
                let value = value as u16;
                let b0_5 = (value >> 6) & 0b111111;
                let b6 = (value >> 6) & (1 << 6);
                let b7 = (value >> 8) & (1 << 7);
                let imm = (b0_5 | b6 | b7) as u8;

                if value == Self::value16(imm) {
                    Some(ASIMDFPModImm { imm, size })
                } else {
                    None
                }
            }
            ScalarSize::Size32 => {
                // In this case the representable immediates are 32-bit numbers of the form
                // 0b_aBbb_bbbc_defg_h000 shifted to the left by 16.
                let value = value as u32;
                let b0_5 = (value >> 19) & 0b111111;
                let b6 = (value >> 19) & (1 << 6);
                let b7 = (value >> 24) & (1 << 7);
                let imm = (b0_5 | b6 | b7) as u8;

                if value == Self::value32(imm) {
                    Some(ASIMDFPModImm { imm, size })
                } else {
                    None
                }
            }
            ScalarSize::Size64 => {
                // In this case the representable immediates are 64-bit numbers of the form
                // 0b_aBbb_bbbb_bbcd_efgh shifted to the left by 48.
                let b0_5 = (value >> 48) & 0b111111;
                let b6 = (value >> 48) & (1 << 6);
                let b7 = (value >> 56) & (1 << 7);
                let imm = (b0_5 | b6 | b7) as u8;

                if value == Self::value64(imm) {
                    Some(ASIMDFPModImm { imm, size })
                } else {
                    None
                }
            }
            _ => None,
        }
    }

    /// Returns bits ready for encoding.
    pub fn enc_bits(&self) -> u8 {
        self.imm
    }

    /// Returns the 16-bit value that corresponds to an 8-bit encoding.
    fn value16(imm: u8) -> u16 {
        let imm = imm as u16;
        let b0_5 = imm & 0b111111;
        let b6 = (imm >> 6) & 1;
        let b6_inv = b6 ^ 1;
        let b7 = (imm >> 7) & 1;

        b0_5 << 6 | (b6 * 0b11) << 12 | b6_inv << 14 | b7 << 15
    }

    /// Returns the 32-bit value that corresponds to an 8-bit encoding.
    fn value32(imm: u8) -> u32 {
        let imm = imm as u32;
        let b0_5 = imm & 0b111111;
        let b6 = (imm >> 6) & 1;
        let b6_inv = b6 ^ 1;
        let b7 = (imm >> 7) & 1;

        b0_5 << 19 | (b6 * 0b11111) << 25 | b6_inv << 30 | b7 << 31
    }

    /// Returns the 64-bit value that corresponds to an 8-bit encoding.
    fn value64(imm: u8) -> u64 {
        let imm = imm as u64;
        let b0_5 = imm & 0b111111;
        let b6 = (imm >> 6) & 1;
        let b6_inv = b6 ^ 1;
        let b7 = (imm >> 7) & 1;

        b0_5 << 48 | (b6 * 0b11111111) << 54 | b6_inv << 62 | b7 << 63
    }
}

impl PrettyPrint for NZCV {
    fn pretty_print(&self, _: u8) -> String {
        let fmt = |c: char, v| if v { c.to_ascii_uppercase() } else { c };
        format!(
            "#{}{}{}{}",
            fmt('n', self.n),
            fmt('z', self.z),
            fmt('c', self.c),
            fmt('v', self.v)
        )
    }
}

impl PrettyPrint for UImm5 {
    fn pretty_print(&self, _: u8) -> String {
        format!("#{}", self.value)
    }
}

impl PrettyPrint for Imm12 {
    fn pretty_print(&self, _: u8) -> String {
        let shift = if self.shift12 { 12 } else { 0 };
        let value = u32::from(self.bits) << shift;
        format!("#{value}")
    }
}

impl PrettyPrint for SImm7Scaled {
    fn pretty_print(&self, _: u8) -> String {
        format!("#{}", self.value)
    }
}

impl PrettyPrint for FPULeftShiftImm {
    fn pretty_print(&self, _: u8) -> String {
        format!("#{}", self.amount)
    }
}

impl PrettyPrint for FPURightShiftImm {
    fn pretty_print(&self, _: u8) -> String {
        format!("#{}", self.amount)
    }
}

impl PrettyPrint for SImm9 {
    fn pretty_print(&self, _: u8) -> String {
        format!("#{}", self.value)
    }
}

impl PrettyPrint for UImm12Scaled {
    fn pretty_print(&self, _: u8) -> String {
        format!("#{}", self.value)
    }
}

impl PrettyPrint for ImmLogic {
    fn pretty_print(&self, _: u8) -> String {
        format!("#{}", self.value())
    }
}

impl PrettyPrint for ImmShift {
    fn pretty_print(&self, _: u8) -> String {
        format!("#{}", self.imm)
    }
}

impl PrettyPrint for MoveWideConst {
    fn pretty_print(&self, _: u8) -> String {
        if self.shift == 0 {
            format!("#{}", self.bits)
        } else {
            format!("#{}, LSL #{}", self.bits, self.shift * 16)
        }
    }
}

impl PrettyPrint for ASIMDMovModImm {
    fn pretty_print(&self, _: u8) -> String {
        if self.is_64bit {
            debug_assert_eq!(self.shift, 0);

            let enc_imm = self.imm as i8;
            let mut imm = 0u64;

            for i in 0..8 {
                let b = (enc_imm >> i) & 1;

                imm |= (-b as u8 as u64) << (i * 8);
            }

            format!("#{imm}")
        } else if self.shift == 0 {
            format!("#{}", self.imm)
        } else {
            let shift_type = if self.shift_ones { "MSL" } else { "LSL" };
            format!("#{}, {} #{}", self.imm, shift_type, self.shift)
        }
    }
}

impl PrettyPrint for ASIMDFPModImm {
    fn pretty_print(&self, _: u8) -> String {
        match self.size {
            ScalarSize::Size16 => {
                // FIXME(#8312): Use `f16` once it is stable.
                // `value` will always be a normal number. Convert it to a `f32`.
                let value: u32 = Self::value16(self.imm).into();
                let sign = (value & 0x8000) << 16;
                // Adjust the exponent for the difference between the `f16` exponent bias and the
                // `f32` exponent bias.
                let exponent = ((value & 0x7c00) + ((127 - 15) << 10)) << 13;
                let significand = (value & 0x3ff) << 13;
                format!("#{}", f32::from_bits(sign | exponent | significand))
            }
            ScalarSize::Size32 => format!("#{}", f32::from_bits(Self::value32(self.imm))),
            ScalarSize::Size64 => format!("#{}", f64::from_bits(Self::value64(self.imm))),
            _ => unreachable!(),
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn imm_logical_test() {
        assert_eq!(None, ImmLogic::maybe_from_u64(0, I64));
        assert_eq!(None, ImmLogic::maybe_from_u64(u64::max_value(), I64));

        assert_eq!(
            Some(ImmLogic {
                value: 1,
                n: true,
                r: 0,
                s: 0,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(1, I64)
        );

        assert_eq!(
            Some(ImmLogic {
                value: 2,
                n: true,
                r: 63,
                s: 0,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(2, I64)
        );

        assert_eq!(None, ImmLogic::maybe_from_u64(5, I64));

        assert_eq!(None, ImmLogic::maybe_from_u64(11, I64));

        assert_eq!(
            Some(ImmLogic {
                value: 248,
                n: true,
                r: 61,
                s: 4,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(248, I64)
        );

        assert_eq!(None, ImmLogic::maybe_from_u64(249, I64));

        assert_eq!(
            Some(ImmLogic {
                value: 1920,
                n: true,
                r: 57,
                s: 3,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(1920, I64)
        );

        assert_eq!(
            Some(ImmLogic {
                value: 0x7ffe,
                n: true,
                r: 63,
                s: 13,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(0x7ffe, I64)
        );

        assert_eq!(
            Some(ImmLogic {
                value: 0x30000,
                n: true,
                r: 48,
                s: 1,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(0x30000, I64)
        );

        assert_eq!(
            Some(ImmLogic {
                value: 0x100000,
                n: true,
                r: 44,
                s: 0,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(0x100000, I64)
        );

        assert_eq!(
            Some(ImmLogic {
                value: u64::max_value() - 1,
                n: true,
                r: 63,
                s: 62,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(u64::max_value() - 1, I64)
        );

        assert_eq!(
            Some(ImmLogic {
                value: 0xaaaaaaaaaaaaaaaa,
                n: false,
                r: 1,
                s: 60,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(0xaaaaaaaaaaaaaaaa, I64)
        );

        assert_eq!(
            Some(ImmLogic {
                value: 0x8181818181818181,
                n: false,
                r: 1,
                s: 49,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(0x8181818181818181, I64)
        );

        assert_eq!(
            Some(ImmLogic {
                value: 0xffc3ffc3ffc3ffc3,
                n: false,
                r: 10,
                s: 43,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(0xffc3ffc3ffc3ffc3, I64)
        );

        assert_eq!(
            Some(ImmLogic {
                value: 0x100000001,
                n: false,
                r: 0,
                s: 0,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(0x100000001, I64)
        );

        assert_eq!(
            Some(ImmLogic {
                value: 0x1111111111111111,
                n: false,
                r: 0,
                s: 56,
                size: OperandSize::Size64,
            }),
            ImmLogic::maybe_from_u64(0x1111111111111111, I64)
        );

        for n in 0..2 {
            let types = if n == 0 { vec![I64, I32] } else { vec![I64] };
            for s in 0..64 {
                for r in 0..64 {
                    let imm = get_logical_imm(n, s, r);
                    for &ty in &types {
                        match ImmLogic::maybe_from_u64(imm, ty) {
                            Some(ImmLogic { value, .. }) => {
                                assert_eq!(imm, value);
                                ImmLogic::maybe_from_u64(!value, ty).unwrap();
                            }
                            None => assert_eq!(0, imm),
                        };
                    }
                }
            }
        }
    }

    // Repeat a value that has `width` bits, across a 64-bit value.
    fn repeat(value: u64, width: u64) -> u64 {
        let mut result = value & ((1 << width) - 1);
        let mut i = width;
        while i < 64 {
            result |= result << i;
            i *= 2;
        }
        result
    }

    // Get the logical immediate, from the encoding N/R/S bits.
    fn get_logical_imm(n: u32, s: u32, r: u32) -> u64 {
        // An integer is constructed from the n, imm_s and imm_r bits according to
        // the following table:
        //
        //  N   imms    immr    size        S             R
        //  1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
        //  0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
        //  0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
        //  0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
        //  0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
        //  0  11110s  xxxxxr     2    UInt(s)       UInt(r)
        // (s bits must not be all set)
        //
        // A pattern is constructed of size bits, where the least significant S+1
        // bits are set. The pattern is rotated right by R, and repeated across a
        // 64-bit value.

        if n == 1 {
            if s == 0x3f {
                return 0;
            }
            let bits = (1u64 << (s + 1)) - 1;
            bits.rotate_right(r)
        } else {
            if (s >> 1) == 0x1f {
                return 0;
            }
            let mut width = 0x20;
            while width >= 0x2 {
                if (s & width) == 0 {
                    let mask = width - 1;
                    if (s & mask) == mask {
                        return 0;
                    }
                    let bits = (1u64 << ((s & mask) + 1)) - 1;
                    return repeat(bits.rotate_right(r & mask), width.into());
                }
                width >>= 1;
            }
            unreachable!();
        }
    }

    #[test]
    fn asimd_fp_mod_imm_test() {
        assert_eq!(None, ASIMDFPModImm::maybe_from_u64(0, ScalarSize::Size32));
        assert_eq!(
            None,
            ASIMDFPModImm::maybe_from_u64(0.013671875_f32.to_bits() as u64, ScalarSize::Size32)
        );
        assert_eq!(None, ASIMDFPModImm::maybe_from_u64(0, ScalarSize::Size64));
        assert_eq!(
            None,
            ASIMDFPModImm::maybe_from_u64(10000_f64.to_bits(), ScalarSize::Size64)
        );
    }

    #[test]
    fn asimd_mov_mod_imm_test() {
        assert_eq!(
            None,
            ASIMDMovModImm::maybe_from_u64(513, ScalarSize::Size16)
        );
        assert_eq!(
            None,
            ASIMDMovModImm::maybe_from_u64(4278190335, ScalarSize::Size32)
        );
        assert_eq!(
            None,
            ASIMDMovModImm::maybe_from_u64(8388608, ScalarSize::Size64)
        );

        assert_eq!(
            Some(ASIMDMovModImm {
                imm: 66,
                shift: 16,
                is_64bit: false,
                shift_ones: true,
            }),
            ASIMDMovModImm::maybe_from_u64(4390911, ScalarSize::Size32)
        );
    }
}