cranelift_codegen/machinst/buffer.rs
1//! In-memory representation of compiled machine code, with labels and fixups to
2//! refer to those labels. Handles constant-pool island insertion and also
3//! veneer insertion for out-of-range jumps.
4//!
5//! This code exists to solve three problems:
6//!
7//! - Branch targets for forward branches are not known until later, when we
8//! emit code in a single pass through the instruction structs.
9//!
10//! - On many architectures, address references or offsets have limited range.
11//! For example, on AArch64, conditional branches can only target code +/- 1MB
12//! from the branch itself.
13//!
14//! - The lowering of control flow from the CFG-with-edges produced by
15//! [BlockLoweringOrder](super::BlockLoweringOrder), combined with many empty
16//! edge blocks when the register allocator does not need to insert any
17//! spills/reloads/moves in edge blocks, results in many suboptimal branch
18//! patterns. The lowering also pays no attention to block order, and so
19//! two-target conditional forms (cond-br followed by uncond-br) can often by
20//! avoided because one of the targets is the fallthrough. There are several
21//! cases here where we can simplify to use fewer branches.
22//!
23//! This "buffer" implements a single-pass code emission strategy (with a later
24//! "fixup" pass, but only through recorded fixups, not all instructions). The
25//! basic idea is:
26//!
27//! - Emit branches as they are, including two-target (cond/uncond) compound
28//! forms, but with zero offsets and optimistically assuming the target will be
29//! in range. Record the "fixup" for later. Targets are denoted instead by
30//! symbolic "labels" that are then bound to certain offsets in the buffer as
31//! we emit code. (Nominally, there is a label at the start of every basic
32//! block.)
33//!
34//! - As we do this, track the offset in the buffer at which the first label
35//! reference "goes out of range". We call this the "deadline". If we reach the
36//! deadline and we still have not bound the label to which an unresolved branch
37//! refers, we have a problem!
38//!
39//! - To solve this problem, we emit "islands" full of "veneers". An island is
40//! simply a chunk of code inserted in the middle of the code actually produced
41//! by the emitter (e.g., vcode iterating over instruction structs). The emitter
42//! has some awareness of this: it either asks for an island between blocks, so
43//! it is not accidentally executed, or else it emits a branch around the island
44//! when all other options fail (see `Inst::EmitIsland` meta-instruction).
45//!
46//! - A "veneer" is an instruction (or sequence of instructions) in an "island"
47//! that implements a longer-range reference to a label. The idea is that, for
48//! example, a branch with a limited range can branch to a "veneer" instead,
49//! which is simply a branch in a form that can use a longer-range reference. On
50//! AArch64, for example, conditionals have a +/- 1 MB range, but a conditional
51//! can branch to an unconditional branch which has a +/- 128 MB range. Hence, a
52//! conditional branch's label reference can be fixed up with a "veneer" to
53//! achieve a longer range.
54//!
55//! - To implement all of this, we require the backend to provide a `LabelUse`
56//! type that implements a trait. This is nominally an enum that records one of
57//! several kinds of references to an offset in code -- basically, a relocation
58//! type -- and will usually correspond to different instruction formats. The
59//! `LabelUse` implementation specifies the maximum range, how to patch in the
60//! actual label location when known, and how to generate a veneer to extend the
61//! range.
62//!
63//! That satisfies label references, but we still may have suboptimal branch
64//! patterns. To clean up the branches, we do a simple "peephole"-style
65//! optimization on the fly. To do so, the emitter (e.g., `Inst::emit()`)
66//! informs the buffer of branches in the code and, in the case of conditionals,
67//! the code that would have been emitted to invert this branch's condition. We
68//! track the "latest branches": these are branches that are contiguous up to
69//! the current offset. (If any code is emitted after a branch, that branch or
70//! run of contiguous branches is no longer "latest".) The latest branches are
71//! those that we can edit by simply truncating the buffer and doing something
72//! else instead.
73//!
74//! To optimize branches, we implement several simple rules, and try to apply
75//! them to the "latest branches" when possible:
76//!
77//! - A branch with a label target, when that label is bound to the ending
78//! offset of the branch (the fallthrough location), can be removed altogether,
79//! because the branch would have no effect).
80//!
81//! - An unconditional branch that starts at a label location, and branches to
82//! another label, results in a "label alias": all references to the label bound
83//! *to* this branch instruction are instead resolved to the *target* of the
84//! branch instruction. This effectively removes empty blocks that just
85//! unconditionally branch to the next block. We call this "branch threading".
86//!
87//! - A conditional followed by an unconditional, when the conditional branches
88//! to the unconditional's fallthrough, results in (i) the truncation of the
89//! unconditional, (ii) the inversion of the condition's condition, and (iii)
90//! replacement of the conditional's target (using the original target of the
91//! unconditional). This is a fancy way of saying "we can flip a two-target
92//! conditional branch's taken/not-taken targets if it works better with our
93//! fallthrough". To make this work, the emitter actually gives the buffer
94//! *both* forms of every conditional branch: the true form is emitted into the
95//! buffer, and the "inverted" machine-code bytes are provided as part of the
96//! branch-fixup metadata.
97//!
98//! - An unconditional B preceded by another unconditional P, when B's label(s) have
99//! been redirected to target(B), can be removed entirely. This is an extension
100//! of the branch-threading optimization, and is valid because if we know there
101//! will be no fallthrough into this branch instruction (the prior instruction
102//! is an unconditional jump), and if we know we have successfully redirected
103//! all labels, then this branch instruction is unreachable. Note that this
104//! works because the redirection happens before the label is ever resolved
105//! (fixups happen at island emission time, at which point latest-branches are
106//! cleared, or at the end of emission), so we are sure to catch and redirect
107//! all possible paths to this instruction.
108//!
109//! # Branch-optimization Correctness
110//!
111//! The branch-optimization mechanism depends on a few data structures with
112//! invariants, which are always held outside the scope of top-level public
113//! methods:
114//!
115//! - The latest-branches list. Each entry describes a span of the buffer
116//! (start/end offsets), the label target, the corresponding fixup-list entry
117//! index, and the bytes (must be the same length) for the inverted form, if
118//! conditional. The list of labels that are bound to the start-offset of this
119//! branch is *complete* (if any label has a resolved offset equal to `start`
120//! and is not an alias, it must appear in this list) and *precise* (no label
121//! in this list can be bound to another offset). No label in this list should
122//! be an alias. No two branch ranges can overlap, and branches are in
123//! ascending-offset order.
124//!
125//! - The labels-at-tail list. This contains all MachLabels that have been bound
126//! to (whose resolved offsets are equal to) the tail offset of the buffer.
127//! No label in this list should be an alias.
128//!
129//! - The label_offsets array, containing the bound offset of a label or
130//! UNKNOWN. No label can be bound at an offset greater than the current
131//! buffer tail.
132//!
133//! - The label_aliases array, containing another label to which a label is
134//! bound or UNKNOWN. A label's resolved offset is the resolved offset
135//! of the label it is aliased to, if this is set.
136//!
137//! We argue below, at each method, how the invariants in these data structures
138//! are maintained (grep for "Post-invariant").
139//!
140//! Given these invariants, we argue why each optimization preserves execution
141//! semantics below (grep for "Preserves execution semantics").
142//!
143//! # Avoiding Quadratic Behavior
144//!
145//! There are two cases where we've had to take some care to avoid
146//! quadratic worst-case behavior:
147//!
148//! - The "labels at this branch" list can grow unboundedly if the
149//! code generator binds many labels at one location. If the count
150//! gets too high (defined by the `LABEL_LIST_THRESHOLD` constant), we
151//! simply abort an optimization early in a way that is always correct
152//! but is conservative.
153//!
154//! - The fixup list can interact with island emission to create
155//! "quadratic island behavior". In a little more detail, one can hit
156//! this behavior by having some pending fixups (forward label
157//! references) with long-range label-use kinds, and some others
158//! with shorter-range references that nonetheless still are pending
159//! long enough to trigger island generation. In such a case, we
160//! process the fixup list, generate veneers to extend some forward
161//! references' ranges, but leave the other (longer-range) ones
162//! alone. The way this was implemented put them back on a list and
163//! resulted in quadratic behavior.
164//!
165//! To avoid this fixups are split into two lists: one "pending" list and one
166//! final list. The pending list is kept around for handling fixups related to
167//! branches so it can be edited/truncated. When an island is reached, which
168//! starts processing fixups, all pending fixups are flushed into the final
169//! list. The final list is a `BinaryHeap` which enables fixup processing to
170//! only process those which are required during island emission, deferring
171//! all longer-range fixups to later.
172
173use crate::binemit::{Addend, CodeOffset, Reloc};
174use crate::ir::function::FunctionParameters;
175use crate::ir::{ExternalName, RelSourceLoc, SourceLoc, TrapCode};
176use crate::isa::unwind::UnwindInst;
177use crate::machinst::{
178 BlockIndex, MachInstLabelUse, TextSectionBuilder, VCodeConstant, VCodeConstants, VCodeInst,
179};
180use crate::trace;
181use crate::{ir, MachInstEmitState};
182use crate::{timing, VCodeConstantData};
183use cranelift_control::ControlPlane;
184use cranelift_entity::{entity_impl, PrimaryMap};
185use smallvec::SmallVec;
186use std::cmp::Ordering;
187use std::collections::BinaryHeap;
188use std::mem;
189use std::string::String;
190use std::vec::Vec;
191
192#[cfg(feature = "enable-serde")]
193use serde::{Deserialize, Serialize};
194
195#[cfg(feature = "enable-serde")]
196pub trait CompilePhase {
197 type MachSrcLocType: for<'a> Deserialize<'a> + Serialize + core::fmt::Debug + PartialEq + Clone;
198 type SourceLocType: for<'a> Deserialize<'a> + Serialize + core::fmt::Debug + PartialEq + Clone;
199}
200
201#[cfg(not(feature = "enable-serde"))]
202pub trait CompilePhase {
203 type MachSrcLocType: core::fmt::Debug + PartialEq + Clone;
204 type SourceLocType: core::fmt::Debug + PartialEq + Clone;
205}
206
207/// Status of a compiled artifact that needs patching before being used.
208#[derive(Clone, Debug, PartialEq)]
209#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
210pub struct Stencil;
211
212/// Status of a compiled artifact ready to use.
213#[derive(Clone, Debug, PartialEq)]
214pub struct Final;
215
216impl CompilePhase for Stencil {
217 type MachSrcLocType = MachSrcLoc<Stencil>;
218 type SourceLocType = RelSourceLoc;
219}
220
221impl CompilePhase for Final {
222 type MachSrcLocType = MachSrcLoc<Final>;
223 type SourceLocType = SourceLoc;
224}
225
226#[derive(Clone, Copy, Debug, PartialEq, Eq)]
227enum ForceVeneers {
228 Yes,
229 No,
230}
231
232/// A buffer of output to be produced, fixed up, and then emitted to a CodeSink
233/// in bulk.
234///
235/// This struct uses `SmallVec`s to support small-ish function bodies without
236/// any heap allocation. As such, it will be several kilobytes large. This is
237/// likely fine as long as it is stack-allocated for function emission then
238/// thrown away; but beware if many buffer objects are retained persistently.
239pub struct MachBuffer<I: VCodeInst> {
240 /// The buffer contents, as raw bytes.
241 data: SmallVec<[u8; 1024]>,
242 /// Any relocations referring to this code. Note that only *external*
243 /// relocations are tracked here; references to labels within the buffer are
244 /// resolved before emission.
245 relocs: SmallVec<[MachReloc; 16]>,
246 /// Any trap records referring to this code.
247 traps: SmallVec<[MachTrap; 16]>,
248 /// Any call site records referring to this code.
249 call_sites: SmallVec<[MachCallSite; 16]>,
250 /// Any source location mappings referring to this code.
251 srclocs: SmallVec<[MachSrcLoc<Stencil>; 64]>,
252 /// Any user stack maps for this code.
253 ///
254 /// Each entry is an `(offset, span, stack_map)` triple. Entries are sorted
255 /// by code offset, and each stack map covers `span` bytes on the stack.
256 user_stack_maps: SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]>,
257 /// Any unwind info at a given location.
258 unwind_info: SmallVec<[(CodeOffset, UnwindInst); 8]>,
259 /// The current source location in progress (after `start_srcloc()` and
260 /// before `end_srcloc()`). This is a (start_offset, src_loc) tuple.
261 cur_srcloc: Option<(CodeOffset, RelSourceLoc)>,
262 /// Known label offsets; `UNKNOWN_LABEL_OFFSET` if unknown.
263 label_offsets: SmallVec<[CodeOffset; 16]>,
264 /// Label aliases: when one label points to an unconditional jump, and that
265 /// jump points to another label, we can redirect references to the first
266 /// label immediately to the second.
267 ///
268 /// Invariant: we don't have label-alias cycles. We ensure this by,
269 /// before setting label A to alias label B, resolving B's alias
270 /// target (iteratively until a non-aliased label); if B is already
271 /// aliased to A, then we cannot alias A back to B.
272 label_aliases: SmallVec<[MachLabel; 16]>,
273 /// Constants that must be emitted at some point.
274 pending_constants: SmallVec<[VCodeConstant; 16]>,
275 /// Byte size of all constants in `pending_constants`.
276 pending_constants_size: CodeOffset,
277 /// Traps that must be emitted at some point.
278 pending_traps: SmallVec<[MachLabelTrap; 16]>,
279 /// Fixups that haven't yet been flushed into `fixup_records` below and may
280 /// be related to branches that are chomped. These all get added to
281 /// `fixup_records` during island emission.
282 pending_fixup_records: SmallVec<[MachLabelFixup<I>; 16]>,
283 /// The nearest upcoming deadline for entries in `pending_fixup_records`.
284 pending_fixup_deadline: CodeOffset,
285 /// Fixups that must be performed after all code is emitted.
286 fixup_records: BinaryHeap<MachLabelFixup<I>>,
287 /// Latest branches, to facilitate in-place editing for better fallthrough
288 /// behavior and empty-block removal.
289 latest_branches: SmallVec<[MachBranch; 4]>,
290 /// All labels at the current offset (emission tail). This is lazily
291 /// cleared: it is actually accurate as long as the current offset is
292 /// `labels_at_tail_off`, but if `cur_offset()` has grown larger, it should
293 /// be considered as empty.
294 ///
295 /// For correctness, this *must* be complete (i.e., the vector must contain
296 /// all labels whose offsets are resolved to the current tail), because we
297 /// rely on it to update labels when we truncate branches.
298 labels_at_tail: SmallVec<[MachLabel; 4]>,
299 /// The last offset at which `labels_at_tail` is valid. It is conceptually
300 /// always describing the tail of the buffer, but we do not clear
301 /// `labels_at_tail` eagerly when the tail grows, rather we lazily clear it
302 /// when the offset has grown past this (`labels_at_tail_off`) point.
303 /// Always <= `cur_offset()`.
304 labels_at_tail_off: CodeOffset,
305 /// Metadata about all constants that this function has access to.
306 ///
307 /// This records the size/alignment of all constants (not the actual data)
308 /// along with the last available label generated for the constant. This map
309 /// is consulted when constants are referred to and the label assigned to a
310 /// constant may change over time as well.
311 constants: PrimaryMap<VCodeConstant, MachBufferConstant>,
312 /// All recorded usages of constants as pairs of the constant and where the
313 /// constant needs to be placed within `self.data`. Note that the same
314 /// constant may appear in this array multiple times if it was emitted
315 /// multiple times.
316 used_constants: SmallVec<[(VCodeConstant, CodeOffset); 4]>,
317 /// Indicates when a patchable region is currently open, to guard that it's
318 /// not possible to nest patchable regions.
319 open_patchable: bool,
320}
321
322impl MachBufferFinalized<Stencil> {
323 /// Get a finalized machine buffer by applying the function's base source location.
324 pub fn apply_base_srcloc(self, base_srcloc: SourceLoc) -> MachBufferFinalized<Final> {
325 MachBufferFinalized {
326 data: self.data,
327 relocs: self.relocs,
328 traps: self.traps,
329 call_sites: self.call_sites,
330 srclocs: self
331 .srclocs
332 .into_iter()
333 .map(|srcloc| srcloc.apply_base_srcloc(base_srcloc))
334 .collect(),
335 user_stack_maps: self.user_stack_maps,
336 unwind_info: self.unwind_info,
337 alignment: self.alignment,
338 }
339 }
340}
341
342/// A `MachBuffer` once emission is completed: holds generated code and records,
343/// without fixups. This allows the type to be independent of the backend.
344#[derive(PartialEq, Debug, Clone)]
345#[cfg_attr(
346 feature = "enable-serde",
347 derive(serde_derive::Serialize, serde_derive::Deserialize)
348)]
349pub struct MachBufferFinalized<T: CompilePhase> {
350 /// The buffer contents, as raw bytes.
351 pub(crate) data: SmallVec<[u8; 1024]>,
352 /// Any relocations referring to this code. Note that only *external*
353 /// relocations are tracked here; references to labels within the buffer are
354 /// resolved before emission.
355 pub(crate) relocs: SmallVec<[FinalizedMachReloc; 16]>,
356 /// Any trap records referring to this code.
357 pub(crate) traps: SmallVec<[MachTrap; 16]>,
358 /// Any call site records referring to this code.
359 pub(crate) call_sites: SmallVec<[MachCallSite; 16]>,
360 /// Any source location mappings referring to this code.
361 pub(crate) srclocs: SmallVec<[T::MachSrcLocType; 64]>,
362 /// Any user stack maps for this code.
363 ///
364 /// Each entry is an `(offset, span, stack_map)` triple. Entries are sorted
365 /// by code offset, and each stack map covers `span` bytes on the stack.
366 pub(crate) user_stack_maps: SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]>,
367 /// Any unwind info at a given location.
368 pub unwind_info: SmallVec<[(CodeOffset, UnwindInst); 8]>,
369 /// The required alignment of this buffer.
370 pub alignment: u32,
371}
372
373const UNKNOWN_LABEL_OFFSET: CodeOffset = 0xffff_ffff;
374const UNKNOWN_LABEL: MachLabel = MachLabel(0xffff_ffff);
375
376/// Threshold on max length of `labels_at_this_branch` list to avoid
377/// unbounded quadratic behavior (see comment below at use-site).
378const LABEL_LIST_THRESHOLD: usize = 100;
379
380/// A label refers to some offset in a `MachBuffer`. It may not be resolved at
381/// the point at which it is used by emitted code; the buffer records "fixups"
382/// for references to the label, and will come back and patch the code
383/// appropriately when the label's location is eventually known.
384#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
385pub struct MachLabel(u32);
386entity_impl!(MachLabel);
387
388impl MachLabel {
389 /// Get a label for a block. (The first N MachLabels are always reserved for
390 /// the N blocks in the vcode.)
391 pub fn from_block(bindex: BlockIndex) -> MachLabel {
392 MachLabel(bindex.index() as u32)
393 }
394
395 /// Creates a string representing this label, for convenience.
396 pub fn to_string(&self) -> String {
397 format!("label{}", self.0)
398 }
399}
400
401impl Default for MachLabel {
402 fn default() -> Self {
403 UNKNOWN_LABEL
404 }
405}
406
407/// Represents the beginning of an editable region in the [`MachBuffer`], while code emission is
408/// still occurring. An [`OpenPatchRegion`] is closed by [`MachBuffer::end_patchable`], consuming
409/// the [`OpenPatchRegion`] token in the process.
410pub struct OpenPatchRegion(usize);
411
412/// A region in the [`MachBuffer`] code buffer that can be edited prior to finalization. An example
413/// of where you might want to use this is for patching instructions that mention constants that
414/// won't be known until later: [`MachBuffer::start_patchable`] can be used to begin the patchable
415/// region, instructions can be emitted with placeholder constants, and the [`PatchRegion`] token
416/// can be produced by [`MachBuffer::end_patchable`]. Once the values of those constants are known,
417/// the [`PatchRegion::patch`] function can be used to get a mutable buffer to the instruction
418/// bytes, and the constants uses can be updated directly.
419pub struct PatchRegion {
420 range: std::ops::Range<usize>,
421}
422
423impl PatchRegion {
424 /// Consume the patch region to yield a mutable slice of the [`MachBuffer`] data buffer.
425 pub fn patch<I: VCodeInst>(self, buffer: &mut MachBuffer<I>) -> &mut [u8] {
426 &mut buffer.data[self.range]
427 }
428}
429
430impl<I: VCodeInst> MachBuffer<I> {
431 /// Create a new section, known to start at `start_offset` and with a size limited to
432 /// `length_limit`.
433 pub fn new() -> MachBuffer<I> {
434 MachBuffer {
435 data: SmallVec::new(),
436 relocs: SmallVec::new(),
437 traps: SmallVec::new(),
438 call_sites: SmallVec::new(),
439 srclocs: SmallVec::new(),
440 user_stack_maps: SmallVec::new(),
441 unwind_info: SmallVec::new(),
442 cur_srcloc: None,
443 label_offsets: SmallVec::new(),
444 label_aliases: SmallVec::new(),
445 pending_constants: SmallVec::new(),
446 pending_constants_size: 0,
447 pending_traps: SmallVec::new(),
448 pending_fixup_records: SmallVec::new(),
449 pending_fixup_deadline: u32::MAX,
450 fixup_records: Default::default(),
451 latest_branches: SmallVec::new(),
452 labels_at_tail: SmallVec::new(),
453 labels_at_tail_off: 0,
454 constants: Default::default(),
455 used_constants: Default::default(),
456 open_patchable: false,
457 }
458 }
459
460 /// Current offset from start of buffer.
461 pub fn cur_offset(&self) -> CodeOffset {
462 self.data.len() as CodeOffset
463 }
464
465 /// Add a byte.
466 pub fn put1(&mut self, value: u8) {
467 self.data.push(value);
468
469 // Post-invariant: conceptual-labels_at_tail contains a complete and
470 // precise list of labels bound at `cur_offset()`. We have advanced
471 // `cur_offset()`, hence if it had been equal to `labels_at_tail_off`
472 // before, it is not anymore (and it cannot become equal, because
473 // `labels_at_tail_off` is always <= `cur_offset()`). Thus the list is
474 // conceptually empty (even though it is only lazily cleared). No labels
475 // can be bound at this new offset (by invariant on `label_offsets`).
476 // Hence the invariant holds.
477 }
478
479 /// Add 2 bytes.
480 pub fn put2(&mut self, value: u16) {
481 let bytes = value.to_le_bytes();
482 self.data.extend_from_slice(&bytes[..]);
483
484 // Post-invariant: as for `put1()`.
485 }
486
487 /// Add 4 bytes.
488 pub fn put4(&mut self, value: u32) {
489 let bytes = value.to_le_bytes();
490 self.data.extend_from_slice(&bytes[..]);
491
492 // Post-invariant: as for `put1()`.
493 }
494
495 /// Add 8 bytes.
496 pub fn put8(&mut self, value: u64) {
497 let bytes = value.to_le_bytes();
498 self.data.extend_from_slice(&bytes[..]);
499
500 // Post-invariant: as for `put1()`.
501 }
502
503 /// Add a slice of bytes.
504 pub fn put_data(&mut self, data: &[u8]) {
505 self.data.extend_from_slice(data);
506
507 // Post-invariant: as for `put1()`.
508 }
509
510 /// Reserve appended space and return a mutable slice referring to it.
511 pub fn get_appended_space(&mut self, len: usize) -> &mut [u8] {
512 let off = self.data.len();
513 let new_len = self.data.len() + len;
514 self.data.resize(new_len, 0);
515 &mut self.data[off..]
516
517 // Post-invariant: as for `put1()`.
518 }
519
520 /// Align up to the given alignment.
521 pub fn align_to(&mut self, align_to: CodeOffset) {
522 trace!("MachBuffer: align to {}", align_to);
523 assert!(
524 align_to.is_power_of_two(),
525 "{align_to} is not a power of two"
526 );
527 while self.cur_offset() & (align_to - 1) != 0 {
528 self.put1(0);
529 }
530
531 // Post-invariant: as for `put1()`.
532 }
533
534 /// Begin a region of patchable code. There is one requirement for the
535 /// code that is emitted: It must not introduce any instructions that
536 /// could be chomped (branches are an example of this). In other words,
537 /// you must not call [`MachBuffer::add_cond_branch`] or
538 /// [`MachBuffer::add_uncond_branch`] between calls to this method and
539 /// [`MachBuffer::end_patchable`].
540 pub fn start_patchable(&mut self) -> OpenPatchRegion {
541 assert!(!self.open_patchable, "Patchable regions may not be nested");
542 self.open_patchable = true;
543 OpenPatchRegion(usize::try_from(self.cur_offset()).unwrap())
544 }
545
546 /// End a region of patchable code, yielding a [`PatchRegion`] value that
547 /// can be consumed later to produce a one-off mutable slice to the
548 /// associated region of the data buffer.
549 pub fn end_patchable(&mut self, open: OpenPatchRegion) -> PatchRegion {
550 // No need to assert the state of `open_patchable` here, as we take
551 // ownership of the only `OpenPatchable` value.
552 self.open_patchable = false;
553 let end = usize::try_from(self.cur_offset()).unwrap();
554 PatchRegion { range: open.0..end }
555 }
556
557 /// Allocate a `Label` to refer to some offset. May not be bound to a fixed
558 /// offset yet.
559 pub fn get_label(&mut self) -> MachLabel {
560 let l = self.label_offsets.len() as u32;
561 self.label_offsets.push(UNKNOWN_LABEL_OFFSET);
562 self.label_aliases.push(UNKNOWN_LABEL);
563 trace!("MachBuffer: new label -> {:?}", MachLabel(l));
564 MachLabel(l)
565
566 // Post-invariant: the only mutation is to add a new label; it has no
567 // bound offset yet, so it trivially satisfies all invariants.
568 }
569
570 /// Reserve the first N MachLabels for blocks.
571 pub fn reserve_labels_for_blocks(&mut self, blocks: usize) {
572 trace!("MachBuffer: first {} labels are for blocks", blocks);
573 debug_assert!(self.label_offsets.is_empty());
574 self.label_offsets.resize(blocks, UNKNOWN_LABEL_OFFSET);
575 self.label_aliases.resize(blocks, UNKNOWN_LABEL);
576
577 // Post-invariant: as for `get_label()`.
578 }
579
580 /// Registers metadata in this `MachBuffer` about the `constants` provided.
581 ///
582 /// This will record the size/alignment of all constants which will prepare
583 /// them for emission later on.
584 pub fn register_constants(&mut self, constants: &VCodeConstants) {
585 for (c, val) in constants.iter() {
586 self.register_constant(&c, val);
587 }
588 }
589
590 /// Similar to [`MachBuffer::register_constants`] but registers a
591 /// single constant metadata. This function is useful in
592 /// situations where not all constants are known at the time of
593 /// emission.
594 pub fn register_constant(&mut self, constant: &VCodeConstant, data: &VCodeConstantData) {
595 let c2 = self.constants.push(MachBufferConstant {
596 upcoming_label: None,
597 align: data.alignment(),
598 size: data.as_slice().len(),
599 });
600 assert_eq!(*constant, c2);
601 }
602
603 /// Completes constant emission by iterating over `self.used_constants` and
604 /// filling in the "holes" with the constant values provided by `constants`.
605 ///
606 /// Returns the alignment required for this entire buffer. Alignment starts
607 /// at the ISA's minimum function alignment and can be increased due to
608 /// constant requirements.
609 fn finish_constants(&mut self, constants: &VCodeConstants) -> u32 {
610 let mut alignment = I::function_alignment().minimum;
611 for (constant, offset) in mem::take(&mut self.used_constants) {
612 let constant = constants.get(constant);
613 let data = constant.as_slice();
614 self.data[offset as usize..][..data.len()].copy_from_slice(data);
615 alignment = constant.alignment().max(alignment);
616 }
617 alignment
618 }
619
620 /// Returns a label that can be used to refer to the `constant` provided.
621 ///
622 /// This will automatically defer a new constant to be emitted for
623 /// `constant` if it has not been previously emitted. Note that this
624 /// function may return a different label for the same constant at
625 /// different points in time. The label is valid to use only from the
626 /// current location; the MachBuffer takes care to emit the same constant
627 /// multiple times if needed so the constant is always in range.
628 pub fn get_label_for_constant(&mut self, constant: VCodeConstant) -> MachLabel {
629 let MachBufferConstant {
630 align,
631 size,
632 upcoming_label,
633 } = self.constants[constant];
634 if let Some(label) = upcoming_label {
635 return label;
636 }
637
638 let label = self.get_label();
639 trace!(
640 "defer constant: eventually emit {size} bytes aligned \
641 to {align} at label {label:?}",
642 );
643 self.pending_constants.push(constant);
644 self.pending_constants_size += size as u32;
645 self.constants[constant].upcoming_label = Some(label);
646 label
647 }
648
649 /// Bind a label to the current offset. A label can only be bound once.
650 pub fn bind_label(&mut self, label: MachLabel, ctrl_plane: &mut ControlPlane) {
651 trace!(
652 "MachBuffer: bind label {:?} at offset {}",
653 label,
654 self.cur_offset()
655 );
656 debug_assert_eq!(self.label_offsets[label.0 as usize], UNKNOWN_LABEL_OFFSET);
657 debug_assert_eq!(self.label_aliases[label.0 as usize], UNKNOWN_LABEL);
658 let offset = self.cur_offset();
659 self.label_offsets[label.0 as usize] = offset;
660 self.lazily_clear_labels_at_tail();
661 self.labels_at_tail.push(label);
662
663 // Invariants hold: bound offset of label is <= cur_offset (in fact it
664 // is equal). If the `labels_at_tail` list was complete and precise
665 // before, it is still, because we have bound this label to the current
666 // offset and added it to the list (which contains all labels at the
667 // current offset).
668
669 self.optimize_branches(ctrl_plane);
670
671 // Post-invariant: by `optimize_branches()` (see argument there).
672 }
673
674 /// Lazily clear `labels_at_tail` if the tail offset has moved beyond the
675 /// offset that it applies to.
676 fn lazily_clear_labels_at_tail(&mut self) {
677 let offset = self.cur_offset();
678 if offset > self.labels_at_tail_off {
679 self.labels_at_tail_off = offset;
680 self.labels_at_tail.clear();
681 }
682
683 // Post-invariant: either labels_at_tail_off was at cur_offset, and
684 // state is untouched, or was less than cur_offset, in which case the
685 // labels_at_tail list was conceptually empty, and is now actually
686 // empty.
687 }
688
689 /// Resolve a label to an offset, if known. May return `UNKNOWN_LABEL_OFFSET`.
690 pub(crate) fn resolve_label_offset(&self, mut label: MachLabel) -> CodeOffset {
691 let mut iters = 0;
692 while self.label_aliases[label.0 as usize] != UNKNOWN_LABEL {
693 label = self.label_aliases[label.0 as usize];
694 // To protect against an infinite loop (despite our assurances to
695 // ourselves that the invariants make this impossible), assert out
696 // after 1M iterations. The number of basic blocks is limited
697 // in most contexts anyway so this should be impossible to hit with
698 // a legitimate input.
699 iters += 1;
700 assert!(iters < 1_000_000, "Unexpected cycle in label aliases");
701 }
702 self.label_offsets[label.0 as usize]
703
704 // Post-invariant: no mutations.
705 }
706
707 /// Emit a reference to the given label with the given reference type (i.e.,
708 /// branch-instruction format) at the current offset. This is like a
709 /// relocation, but handled internally.
710 ///
711 /// This can be called before the branch is actually emitted; fixups will
712 /// not happen until an island is emitted or the buffer is finished.
713 pub fn use_label_at_offset(&mut self, offset: CodeOffset, label: MachLabel, kind: I::LabelUse) {
714 trace!(
715 "MachBuffer: use_label_at_offset: offset {} label {:?} kind {:?}",
716 offset,
717 label,
718 kind
719 );
720
721 // Add the fixup, and update the worst-case island size based on a
722 // veneer for this label use.
723 let fixup = MachLabelFixup {
724 label,
725 offset,
726 kind,
727 };
728 self.pending_fixup_deadline = self.pending_fixup_deadline.min(fixup.deadline());
729 self.pending_fixup_records.push(fixup);
730
731 // Post-invariant: no mutations to branches/labels data structures.
732 }
733
734 /// Inform the buffer of an unconditional branch at the given offset,
735 /// targeting the given label. May be used to optimize branches.
736 /// The last added label-use must correspond to this branch.
737 /// This must be called when the current offset is equal to `start`; i.e.,
738 /// before actually emitting the branch. This implies that for a branch that
739 /// uses a label and is eligible for optimizations by the MachBuffer, the
740 /// proper sequence is:
741 ///
742 /// - Call `use_label_at_offset()` to emit the fixup record.
743 /// - Call `add_uncond_branch()` to make note of the branch.
744 /// - Emit the bytes for the branch's machine code.
745 ///
746 /// Additional requirement: no labels may be bound between `start` and `end`
747 /// (exclusive on both ends).
748 pub fn add_uncond_branch(&mut self, start: CodeOffset, end: CodeOffset, target: MachLabel) {
749 debug_assert!(
750 !self.open_patchable,
751 "Branch instruction inserted within a patchable region"
752 );
753 assert!(self.cur_offset() == start);
754 debug_assert!(end > start);
755 assert!(!self.pending_fixup_records.is_empty());
756 let fixup = self.pending_fixup_records.len() - 1;
757 self.lazily_clear_labels_at_tail();
758 self.latest_branches.push(MachBranch {
759 start,
760 end,
761 target,
762 fixup,
763 inverted: None,
764 labels_at_this_branch: self.labels_at_tail.clone(),
765 });
766
767 // Post-invariant: we asserted branch start is current tail; the list of
768 // labels at branch is cloned from list of labels at current tail.
769 }
770
771 /// Inform the buffer of a conditional branch at the given offset,
772 /// targeting the given label. May be used to optimize branches.
773 /// The last added label-use must correspond to this branch.
774 ///
775 /// Additional requirement: no labels may be bound between `start` and `end`
776 /// (exclusive on both ends).
777 pub fn add_cond_branch(
778 &mut self,
779 start: CodeOffset,
780 end: CodeOffset,
781 target: MachLabel,
782 inverted: &[u8],
783 ) {
784 debug_assert!(
785 !self.open_patchable,
786 "Branch instruction inserted within a patchable region"
787 );
788 assert!(self.cur_offset() == start);
789 debug_assert!(end > start);
790 assert!(!self.pending_fixup_records.is_empty());
791 debug_assert!(
792 inverted.len() == (end - start) as usize,
793 "branch length = {}, but inverted length = {}",
794 end - start,
795 inverted.len()
796 );
797 let fixup = self.pending_fixup_records.len() - 1;
798 let inverted = Some(SmallVec::from(inverted));
799 self.lazily_clear_labels_at_tail();
800 self.latest_branches.push(MachBranch {
801 start,
802 end,
803 target,
804 fixup,
805 inverted,
806 labels_at_this_branch: self.labels_at_tail.clone(),
807 });
808
809 // Post-invariant: we asserted branch start is current tail; labels at
810 // branch list is cloned from list of labels at current tail.
811 }
812
813 fn truncate_last_branch(&mut self) {
814 debug_assert!(
815 !self.open_patchable,
816 "Branch instruction truncated within a patchable region"
817 );
818
819 self.lazily_clear_labels_at_tail();
820 // Invariants hold at this point.
821
822 let b = self.latest_branches.pop().unwrap();
823 assert!(b.end == self.cur_offset());
824
825 // State:
826 // [PRE CODE]
827 // Offset b.start, b.labels_at_this_branch:
828 // [BRANCH CODE]
829 // cur_off, self.labels_at_tail -->
830 // (end of buffer)
831 self.data.truncate(b.start as usize);
832 self.pending_fixup_records.truncate(b.fixup);
833 while let Some(last_srcloc) = self.srclocs.last_mut() {
834 if last_srcloc.end <= b.start {
835 break;
836 }
837 if last_srcloc.start < b.start {
838 last_srcloc.end = b.start;
839 break;
840 }
841 self.srclocs.pop();
842 }
843 // State:
844 // [PRE CODE]
845 // cur_off, Offset b.start, b.labels_at_this_branch:
846 // (end of buffer)
847 //
848 // self.labels_at_tail --> (past end of buffer)
849 let cur_off = self.cur_offset();
850 self.labels_at_tail_off = cur_off;
851 // State:
852 // [PRE CODE]
853 // cur_off, Offset b.start, b.labels_at_this_branch,
854 // self.labels_at_tail:
855 // (end of buffer)
856 //
857 // resolve_label_offset(l) for l in labels_at_tail:
858 // (past end of buffer)
859
860 trace!(
861 "truncate_last_branch: truncated {:?}; off now {}",
862 b,
863 cur_off
864 );
865
866 // Fix up resolved label offsets for labels at tail.
867 for &l in &self.labels_at_tail {
868 self.label_offsets[l.0 as usize] = cur_off;
869 }
870 // Old labels_at_this_branch are now at cur_off.
871 self.labels_at_tail
872 .extend(b.labels_at_this_branch.into_iter());
873
874 // Post-invariant: this operation is defined to truncate the buffer,
875 // which moves cur_off backward, and to move labels at the end of the
876 // buffer back to the start-of-branch offset.
877 //
878 // latest_branches satisfies all invariants:
879 // - it has no branches past the end of the buffer (branches are in
880 // order, we removed the last one, and we truncated the buffer to just
881 // before the start of that branch)
882 // - no labels were moved to lower offsets than the (new) cur_off, so
883 // the labels_at_this_branch list for any other branch need not change.
884 //
885 // labels_at_tail satisfies all invariants:
886 // - all labels that were at the tail after the truncated branch are
887 // moved backward to just before the branch, which becomes the new tail;
888 // thus every element in the list should remain (ensured by `.extend()`
889 // above).
890 // - all labels that refer to the new tail, which is the start-offset of
891 // the truncated branch, must be present. The `labels_at_this_branch`
892 // list in the truncated branch's record is a complete and precise list
893 // of exactly these labels; we append these to labels_at_tail.
894 // - labels_at_tail_off is at cur_off after truncation occurs, so the
895 // list is valid (not to be lazily cleared).
896 //
897 // The stated operation was performed:
898 // - For each label at the end of the buffer prior to this method, it
899 // now resolves to the new (truncated) end of the buffer: it must have
900 // been in `labels_at_tail` (this list is precise and complete, and
901 // the tail was at the end of the truncated branch on entry), and we
902 // iterate over this list and set `label_offsets` to the new tail.
903 // None of these labels could have been an alias (by invariant), so
904 // `label_offsets` is authoritative for each.
905 // - No other labels will be past the end of the buffer, because of the
906 // requirement that no labels be bound to the middle of branch ranges
907 // (see comments to `add_{cond,uncond}_branch()`).
908 // - The buffer is truncated to just before the last branch, and the
909 // fixup record referring to that last branch is removed.
910 }
911
912 /// Performs various optimizations on branches pointing at the current label.
913 pub fn optimize_branches(&mut self, ctrl_plane: &mut ControlPlane) {
914 if ctrl_plane.get_decision() {
915 return;
916 }
917
918 self.lazily_clear_labels_at_tail();
919 // Invariants valid at this point.
920
921 trace!(
922 "enter optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
923 self.latest_branches,
924 self.labels_at_tail,
925 self.pending_fixup_records
926 );
927
928 // We continue to munch on branches at the tail of the buffer until no
929 // more rules apply. Note that the loop only continues if a branch is
930 // actually truncated (or if labels are redirected away from a branch),
931 // so this always makes progress.
932 while let Some(b) = self.latest_branches.last() {
933 let cur_off = self.cur_offset();
934 trace!("optimize_branches: last branch {:?} at off {}", b, cur_off);
935 // If there has been any code emission since the end of the last branch or
936 // label definition, then there's nothing we can edit (because we
937 // don't move code once placed, only back up and overwrite), so
938 // clear the records and finish.
939 if b.end < cur_off {
940 break;
941 }
942
943 // If the "labels at this branch" list on this branch is
944 // longer than a threshold, don't do any simplification,
945 // and let the branch remain to separate those labels from
946 // the current tail. This avoids quadratic behavior (see
947 // #3468): otherwise, if a long string of "goto next;
948 // next:" patterns are emitted, all of the labels will
949 // coalesce into a long list of aliases for the current
950 // buffer tail. We must track all aliases of the current
951 // tail for correctness, but we are also allowed to skip
952 // optimization (removal) of any branch, so we take the
953 // escape hatch here and let it stand. In effect this
954 // "spreads" the many thousands of labels in the
955 // pathological case among an actual (harmless but
956 // suboptimal) instruction once per N labels.
957 if b.labels_at_this_branch.len() > LABEL_LIST_THRESHOLD {
958 break;
959 }
960
961 // Invariant: we are looking at a branch that ends at the tail of
962 // the buffer.
963
964 // For any branch, conditional or unconditional:
965 // - If the target is a label at the current offset, then remove
966 // the conditional branch, and reset all labels that targeted
967 // the current offset (end of branch) to the truncated
968 // end-of-code.
969 //
970 // Preserves execution semantics: a branch to its own fallthrough
971 // address is equivalent to a no-op; in both cases, nextPC is the
972 // fallthrough.
973 if self.resolve_label_offset(b.target) == cur_off {
974 trace!("branch with target == cur off; truncating");
975 self.truncate_last_branch();
976 continue;
977 }
978
979 // If latest is an unconditional branch:
980 //
981 // - If the branch's target is not its own start address, then for
982 // each label at the start of branch, make the label an alias of the
983 // branch target, and remove the label from the "labels at this
984 // branch" list.
985 //
986 // - Preserves execution semantics: an unconditional branch's
987 // only effect is to set PC to a new PC; this change simply
988 // collapses one step in the step-semantics.
989 //
990 // - Post-invariant: the labels that were bound to the start of
991 // this branch become aliases, so they must not be present in any
992 // labels-at-this-branch list or the labels-at-tail list. The
993 // labels are removed form the latest-branch record's
994 // labels-at-this-branch list, and are never placed in the
995 // labels-at-tail list. Furthermore, it is correct that they are
996 // not in either list, because they are now aliases, and labels
997 // that are aliases remain aliases forever.
998 //
999 // - If there is a prior unconditional branch that ends just before
1000 // this one begins, and this branch has no labels bound to its
1001 // start, then we can truncate this branch, because it is entirely
1002 // unreachable (we have redirected all labels that make it
1003 // reachable otherwise). Do so and continue around the loop.
1004 //
1005 // - Preserves execution semantics: the branch is unreachable,
1006 // because execution can only flow into an instruction from the
1007 // prior instruction's fallthrough or from a branch bound to that
1008 // instruction's start offset. Unconditional branches have no
1009 // fallthrough, so if the prior instruction is an unconditional
1010 // branch, no fallthrough entry can happen. The
1011 // labels-at-this-branch list is complete (by invariant), so if it
1012 // is empty, then the instruction is entirely unreachable. Thus,
1013 // it can be removed.
1014 //
1015 // - Post-invariant: ensured by truncate_last_branch().
1016 //
1017 // - If there is a prior conditional branch whose target label
1018 // resolves to the current offset (branches around the
1019 // unconditional branch), then remove the unconditional branch,
1020 // and make the target of the unconditional the target of the
1021 // conditional instead.
1022 //
1023 // - Preserves execution semantics: previously we had:
1024 //
1025 // L1:
1026 // cond_br L2
1027 // br L3
1028 // L2:
1029 // (end of buffer)
1030 //
1031 // by removing the last branch, we have:
1032 //
1033 // L1:
1034 // cond_br L2
1035 // L2:
1036 // (end of buffer)
1037 //
1038 // we then fix up the records for the conditional branch to
1039 // have:
1040 //
1041 // L1:
1042 // cond_br.inverted L3
1043 // L2:
1044 //
1045 // In the original code, control flow reaches L2 when the
1046 // conditional branch's predicate is true, and L3 otherwise. In
1047 // the optimized code, the same is true.
1048 //
1049 // - Post-invariant: all edits to latest_branches and
1050 // labels_at_tail are performed by `truncate_last_branch()`,
1051 // which maintains the invariants at each step.
1052
1053 if b.is_uncond() {
1054 // Set any label equal to current branch's start as an alias of
1055 // the branch's target, if the target is not the branch itself
1056 // (i.e., an infinite loop).
1057 //
1058 // We cannot perform this aliasing if the target of this branch
1059 // ultimately aliases back here; if so, we need to keep this
1060 // branch, so break out of this loop entirely (and clear the
1061 // latest-branches list below).
1062 //
1063 // Note that this check is what prevents cycles from forming in
1064 // `self.label_aliases`. To see why, consider an arbitrary start
1065 // state:
1066 //
1067 // label_aliases[L1] = L2, label_aliases[L2] = L3, ..., up to
1068 // Ln, which is not aliased.
1069 //
1070 // We would create a cycle if we assigned label_aliases[Ln]
1071 // = L1. Note that the below assignment is the only write
1072 // to label_aliases.
1073 //
1074 // By our other invariants, we have that Ln (`l` below)
1075 // resolves to the offset `b.start`, because it is in the
1076 // set `b.labels_at_this_branch`.
1077 //
1078 // If L1 were already aliased, through some arbitrarily deep
1079 // chain, to Ln, then it must also resolve to this offset
1080 // `b.start`.
1081 //
1082 // By checking the resolution of `L1` against this offset,
1083 // and aborting this branch-simplification if they are
1084 // equal, we prevent the below assignment from ever creating
1085 // a cycle.
1086 if self.resolve_label_offset(b.target) != b.start {
1087 let redirected = b.labels_at_this_branch.len();
1088 for &l in &b.labels_at_this_branch {
1089 trace!(
1090 " -> label at start of branch {:?} redirected to target {:?}",
1091 l,
1092 b.target
1093 );
1094 self.label_aliases[l.0 as usize] = b.target;
1095 // NOTE: we continue to ensure the invariant that labels
1096 // pointing to tail of buffer are in `labels_at_tail`
1097 // because we already ensured above that the last branch
1098 // cannot have a target of `cur_off`; so we never have
1099 // to put the label into `labels_at_tail` when moving it
1100 // here.
1101 }
1102 // Maintain invariant: all branches have been redirected
1103 // and are no longer pointing at the start of this branch.
1104 let mut_b = self.latest_branches.last_mut().unwrap();
1105 mut_b.labels_at_this_branch.clear();
1106
1107 if redirected > 0 {
1108 trace!(" -> after label redirects, restarting loop");
1109 continue;
1110 }
1111 } else {
1112 break;
1113 }
1114
1115 let b = self.latest_branches.last().unwrap();
1116
1117 // Examine any immediately preceding branch.
1118 if self.latest_branches.len() > 1 {
1119 let prev_b = &self.latest_branches[self.latest_branches.len() - 2];
1120 trace!(" -> more than one branch; prev_b = {:?}", prev_b);
1121 // This uncond is immediately after another uncond; we
1122 // should have already redirected labels to this uncond away
1123 // (but check to be sure); so we can truncate this uncond.
1124 if prev_b.is_uncond()
1125 && prev_b.end == b.start
1126 && b.labels_at_this_branch.is_empty()
1127 {
1128 trace!(" -> uncond follows another uncond; truncating");
1129 self.truncate_last_branch();
1130 continue;
1131 }
1132
1133 // This uncond is immediately after a conditional, and the
1134 // conditional's target is the end of this uncond, and we've
1135 // already redirected labels to this uncond away; so we can
1136 // truncate this uncond, flip the sense of the conditional, and
1137 // set the conditional's target (in `latest_branches` and in
1138 // `fixup_records`) to the uncond's target.
1139 if prev_b.is_cond()
1140 && prev_b.end == b.start
1141 && self.resolve_label_offset(prev_b.target) == cur_off
1142 {
1143 trace!(" -> uncond follows a conditional, and conditional's target resolves to current offset");
1144 // Save the target of the uncond (this becomes the
1145 // target of the cond), and truncate the uncond.
1146 let target = b.target;
1147 let data = prev_b.inverted.clone().unwrap();
1148 self.truncate_last_branch();
1149
1150 // Mutate the code and cond branch.
1151 let off_before_edit = self.cur_offset();
1152 let prev_b = self.latest_branches.last_mut().unwrap();
1153 let not_inverted = SmallVec::from(
1154 &self.data[(prev_b.start as usize)..(prev_b.end as usize)],
1155 );
1156
1157 // Low-level edit: replaces bytes of branch with
1158 // inverted form. cur_off remains the same afterward, so
1159 // we do not need to modify label data structures.
1160 self.data.truncate(prev_b.start as usize);
1161 self.data.extend_from_slice(&data[..]);
1162
1163 // Save the original code as the inversion of the
1164 // inverted branch, in case we later edit this branch
1165 // again.
1166 prev_b.inverted = Some(not_inverted);
1167 self.pending_fixup_records[prev_b.fixup].label = target;
1168 trace!(" -> reassigning target of condbr to {:?}", target);
1169 prev_b.target = target;
1170 debug_assert_eq!(off_before_edit, self.cur_offset());
1171 continue;
1172 }
1173 }
1174 }
1175
1176 // If we couldn't do anything with the last branch, then break.
1177 break;
1178 }
1179
1180 self.purge_latest_branches();
1181
1182 trace!(
1183 "leave optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
1184 self.latest_branches,
1185 self.labels_at_tail,
1186 self.pending_fixup_records
1187 );
1188 }
1189
1190 fn purge_latest_branches(&mut self) {
1191 // All of our branch simplification rules work only if a branch ends at
1192 // the tail of the buffer, with no following code; and branches are in
1193 // order in latest_branches; so if the last entry ends prior to
1194 // cur_offset, then clear all entries.
1195 let cur_off = self.cur_offset();
1196 if let Some(l) = self.latest_branches.last() {
1197 if l.end < cur_off {
1198 trace!("purge_latest_branches: removing branch {:?}", l);
1199 self.latest_branches.clear();
1200 }
1201 }
1202
1203 // Post-invariant: no invariant requires any branch to appear in
1204 // `latest_branches`; it is always optional. The list-clear above thus
1205 // preserves all semantics.
1206 }
1207
1208 /// Emit a trap at some point in the future with the specified code and
1209 /// stack map.
1210 ///
1211 /// This function returns a [`MachLabel`] which will be the future address
1212 /// of the trap. Jumps should refer to this label, likely by using the
1213 /// [`MachBuffer::use_label_at_offset`] method, to get a relocation
1214 /// patched in once the address of the trap is known.
1215 ///
1216 /// This will batch all traps into the end of the function.
1217 pub fn defer_trap(&mut self, code: TrapCode) -> MachLabel {
1218 let label = self.get_label();
1219 self.pending_traps.push(MachLabelTrap {
1220 label,
1221 code,
1222 loc: self.cur_srcloc.map(|(_start, loc)| loc),
1223 });
1224 label
1225 }
1226
1227 /// Is an island needed within the next N bytes?
1228 pub fn island_needed(&self, distance: CodeOffset) -> bool {
1229 let deadline = match self.fixup_records.peek() {
1230 Some(fixup) => fixup.deadline().min(self.pending_fixup_deadline),
1231 None => self.pending_fixup_deadline,
1232 };
1233 deadline < u32::MAX && self.worst_case_end_of_island(distance) > deadline
1234 }
1235
1236 /// Returns the maximal offset that islands can reach if `distance` more
1237 /// bytes are appended.
1238 ///
1239 /// This is used to determine if veneers need insertions since jumps that
1240 /// can't reach past this point must get a veneer of some form.
1241 fn worst_case_end_of_island(&self, distance: CodeOffset) -> CodeOffset {
1242 // Assume that all fixups will require veneers and that the veneers are
1243 // the worst-case size for each platform. This is an over-generalization
1244 // to avoid iterating over the `fixup_records` list or maintaining
1245 // information about it as we go along.
1246 let island_worst_case_size = ((self.fixup_records.len() + self.pending_fixup_records.len())
1247 as u32)
1248 * (I::LabelUse::worst_case_veneer_size())
1249 + self.pending_constants_size
1250 + (self.pending_traps.len() * I::TRAP_OPCODE.len()) as u32;
1251 self.cur_offset()
1252 .saturating_add(distance)
1253 .saturating_add(island_worst_case_size)
1254 }
1255
1256 /// Emit all pending constants and required pending veneers.
1257 ///
1258 /// Should only be called if `island_needed()` returns true, i.e., if we
1259 /// actually reach a deadline. It's not necessarily a problem to do so
1260 /// otherwise but it may result in unnecessary work during emission.
1261 pub fn emit_island(&mut self, distance: CodeOffset, ctrl_plane: &mut ControlPlane) {
1262 self.emit_island_maybe_forced(ForceVeneers::No, distance, ctrl_plane);
1263 }
1264
1265 /// Same as `emit_island`, but an internal API with a `force_veneers`
1266 /// argument to force all veneers to always get emitted for debugging.
1267 fn emit_island_maybe_forced(
1268 &mut self,
1269 force_veneers: ForceVeneers,
1270 distance: CodeOffset,
1271 ctrl_plane: &mut ControlPlane,
1272 ) {
1273 // We're going to purge fixups, so no latest-branch editing can happen
1274 // anymore.
1275 self.latest_branches.clear();
1276
1277 // End the current location tracking since anything emitted during this
1278 // function shouldn't be attributed to whatever the current source
1279 // location is.
1280 //
1281 // Note that the current source location, if it's set right now, will be
1282 // restored at the end of this island emission.
1283 let cur_loc = self.cur_srcloc.map(|(_, loc)| loc);
1284 if cur_loc.is_some() {
1285 self.end_srcloc();
1286 }
1287
1288 let forced_threshold = self.worst_case_end_of_island(distance);
1289
1290 // First flush out all traps/constants so we have more labels in case
1291 // fixups are applied against these labels.
1292 //
1293 // Note that traps are placed first since this typically happens at the
1294 // end of the function and for disassemblers we try to keep all the code
1295 // contiguously together.
1296 for MachLabelTrap { label, code, loc } in mem::take(&mut self.pending_traps) {
1297 // If this trap has source information associated with it then
1298 // emit this information for the trap instruction going out now too.
1299 if let Some(loc) = loc {
1300 self.start_srcloc(loc);
1301 }
1302 self.align_to(I::LabelUse::ALIGN);
1303 self.bind_label(label, ctrl_plane);
1304 self.add_trap(code);
1305 self.put_data(I::TRAP_OPCODE);
1306 if loc.is_some() {
1307 self.end_srcloc();
1308 }
1309 }
1310
1311 for constant in mem::take(&mut self.pending_constants) {
1312 let MachBufferConstant { align, size, .. } = self.constants[constant];
1313 let label = self.constants[constant].upcoming_label.take().unwrap();
1314 self.align_to(align);
1315 self.bind_label(label, ctrl_plane);
1316 self.used_constants.push((constant, self.cur_offset()));
1317 self.get_appended_space(size);
1318 }
1319
1320 // Either handle all pending fixups because they're ready or move them
1321 // onto the `BinaryHeap` tracking all pending fixups if they aren't
1322 // ready.
1323 assert!(self.latest_branches.is_empty());
1324 for fixup in mem::take(&mut self.pending_fixup_records) {
1325 if self.should_apply_fixup(&fixup, forced_threshold) {
1326 self.handle_fixup(fixup, force_veneers, forced_threshold);
1327 } else {
1328 self.fixup_records.push(fixup);
1329 }
1330 }
1331 self.pending_fixup_deadline = u32::MAX;
1332 while let Some(fixup) = self.fixup_records.peek() {
1333 trace!("emit_island: fixup {:?}", fixup);
1334
1335 // If this fixup shouldn't be applied, that means its label isn't
1336 // defined yet and there'll be remaining space to apply a veneer if
1337 // necessary in the future after this island. In that situation
1338 // because `fixup_records` is sorted by deadline this loop can
1339 // exit.
1340 if !self.should_apply_fixup(fixup, forced_threshold) {
1341 break;
1342 }
1343
1344 let fixup = self.fixup_records.pop().unwrap();
1345 self.handle_fixup(fixup, force_veneers, forced_threshold);
1346 }
1347
1348 if let Some(loc) = cur_loc {
1349 self.start_srcloc(loc);
1350 }
1351 }
1352
1353 fn should_apply_fixup(&self, fixup: &MachLabelFixup<I>, forced_threshold: CodeOffset) -> bool {
1354 let label_offset = self.resolve_label_offset(fixup.label);
1355 label_offset != UNKNOWN_LABEL_OFFSET || fixup.deadline() < forced_threshold
1356 }
1357
1358 fn handle_fixup(
1359 &mut self,
1360 fixup: MachLabelFixup<I>,
1361 force_veneers: ForceVeneers,
1362 forced_threshold: CodeOffset,
1363 ) {
1364 let MachLabelFixup {
1365 label,
1366 offset,
1367 kind,
1368 } = fixup;
1369 let start = offset as usize;
1370 let end = (offset + kind.patch_size()) as usize;
1371 let label_offset = self.resolve_label_offset(label);
1372
1373 if label_offset != UNKNOWN_LABEL_OFFSET {
1374 // If the offset of the label for this fixup is known then
1375 // we're going to do something here-and-now. We're either going
1376 // to patch the original offset because it's an in-bounds jump,
1377 // or we're going to generate a veneer, patch the fixup to jump
1378 // to the veneer, and then keep going.
1379 //
1380 // If the label comes after the original fixup, then we should
1381 // be guaranteed that the jump is in-bounds. Otherwise there's
1382 // a bug somewhere because this method wasn't called soon
1383 // enough. All forward-jumps are tracked and should get veneers
1384 // before their deadline comes and they're unable to jump
1385 // further.
1386 //
1387 // Otherwise if the label is before the fixup, then that's a
1388 // backwards jump. If it's past the maximum negative range
1389 // then we'll emit a veneer that to jump forward to which can
1390 // then jump backwards.
1391 let veneer_required = if label_offset >= offset {
1392 assert!((label_offset - offset) <= kind.max_pos_range());
1393 false
1394 } else {
1395 (offset - label_offset) > kind.max_neg_range()
1396 };
1397 trace!(
1398 " -> label_offset = {}, known, required = {} (pos {} neg {})",
1399 label_offset,
1400 veneer_required,
1401 kind.max_pos_range(),
1402 kind.max_neg_range()
1403 );
1404
1405 if (force_veneers == ForceVeneers::Yes && kind.supports_veneer()) || veneer_required {
1406 self.emit_veneer(label, offset, kind);
1407 } else {
1408 let slice = &mut self.data[start..end];
1409 trace!("patching in-range! slice = {slice:?}; offset = {offset:#x}; label_offset = {label_offset:#x}");
1410 kind.patch(slice, offset, label_offset);
1411 }
1412 } else {
1413 // If the offset of this label is not known at this time then
1414 // that means that a veneer is required because after this
1415 // island the target can't be in range of the original target.
1416 assert!(forced_threshold - offset > kind.max_pos_range());
1417 self.emit_veneer(label, offset, kind);
1418 }
1419 }
1420
1421 /// Emits a "veneer" the `kind` code at `offset` to jump to `label`.
1422 ///
1423 /// This will generate extra machine code, using `kind`, to get a
1424 /// larger-jump-kind than `kind` allows. The code at `offset` is then
1425 /// patched to jump to our new code, and then the new code is enqueued for
1426 /// a fixup to get processed at some later time.
1427 fn emit_veneer(&mut self, label: MachLabel, offset: CodeOffset, kind: I::LabelUse) {
1428 // If this `kind` doesn't support a veneer then that's a bug in the
1429 // backend because we need to implement support for such a veneer.
1430 assert!(
1431 kind.supports_veneer(),
1432 "jump beyond the range of {kind:?} but a veneer isn't supported",
1433 );
1434
1435 // Allocate space for a veneer in the island.
1436 self.align_to(I::LabelUse::ALIGN);
1437 let veneer_offset = self.cur_offset();
1438 trace!("making a veneer at {}", veneer_offset);
1439 let start = offset as usize;
1440 let end = (offset + kind.patch_size()) as usize;
1441 let slice = &mut self.data[start..end];
1442 // Patch the original label use to refer to the veneer.
1443 trace!(
1444 "patching original at offset {} to veneer offset {}",
1445 offset,
1446 veneer_offset
1447 );
1448 kind.patch(slice, offset, veneer_offset);
1449 // Generate the veneer.
1450 let veneer_slice = self.get_appended_space(kind.veneer_size() as usize);
1451 let (veneer_fixup_off, veneer_label_use) =
1452 kind.generate_veneer(veneer_slice, veneer_offset);
1453 trace!(
1454 "generated veneer; fixup offset {}, label_use {:?}",
1455 veneer_fixup_off,
1456 veneer_label_use
1457 );
1458 // Register a new use of `label` with our new veneer fixup and
1459 // offset. This'll recalculate deadlines accordingly and
1460 // enqueue this fixup to get processed at some later
1461 // time.
1462 self.use_label_at_offset(veneer_fixup_off, label, veneer_label_use);
1463 }
1464
1465 fn finish_emission_maybe_forcing_veneers(
1466 &mut self,
1467 force_veneers: ForceVeneers,
1468 ctrl_plane: &mut ControlPlane,
1469 ) {
1470 while !self.pending_constants.is_empty()
1471 || !self.pending_traps.is_empty()
1472 || !self.fixup_records.is_empty()
1473 || !self.pending_fixup_records.is_empty()
1474 {
1475 // `emit_island()` will emit any pending veneers and constants, and
1476 // as a side-effect, will also take care of any fixups with resolved
1477 // labels eagerly.
1478 self.emit_island_maybe_forced(force_veneers, u32::MAX, ctrl_plane);
1479 }
1480
1481 // Ensure that all labels have been fixed up after the last island is emitted. This is a
1482 // full (release-mode) assert because an unresolved label means the emitted code is
1483 // incorrect.
1484 assert!(self.fixup_records.is_empty());
1485 assert!(self.pending_fixup_records.is_empty());
1486 }
1487
1488 /// Finish any deferred emissions and/or fixups.
1489 pub fn finish(
1490 mut self,
1491 constants: &VCodeConstants,
1492 ctrl_plane: &mut ControlPlane,
1493 ) -> MachBufferFinalized<Stencil> {
1494 let _tt = timing::vcode_emit_finish();
1495
1496 self.finish_emission_maybe_forcing_veneers(ForceVeneers::No, ctrl_plane);
1497
1498 let alignment = self.finish_constants(constants);
1499
1500 // Resolve all labels to their offsets.
1501 let finalized_relocs = self
1502 .relocs
1503 .iter()
1504 .map(|reloc| FinalizedMachReloc {
1505 offset: reloc.offset,
1506 kind: reloc.kind,
1507 addend: reloc.addend,
1508 target: match &reloc.target {
1509 RelocTarget::ExternalName(name) => {
1510 FinalizedRelocTarget::ExternalName(name.clone())
1511 }
1512 RelocTarget::Label(label) => {
1513 FinalizedRelocTarget::Func(self.resolve_label_offset(*label))
1514 }
1515 },
1516 })
1517 .collect();
1518
1519 let mut srclocs = self.srclocs;
1520 srclocs.sort_by_key(|entry| entry.start);
1521
1522 MachBufferFinalized {
1523 data: self.data,
1524 relocs: finalized_relocs,
1525 traps: self.traps,
1526 call_sites: self.call_sites,
1527 srclocs,
1528 user_stack_maps: self.user_stack_maps,
1529 unwind_info: self.unwind_info,
1530 alignment,
1531 }
1532 }
1533
1534 /// Add an external relocation at the given offset.
1535 pub fn add_reloc_at_offset<T: Into<RelocTarget> + Clone>(
1536 &mut self,
1537 offset: CodeOffset,
1538 kind: Reloc,
1539 target: &T,
1540 addend: Addend,
1541 ) {
1542 let target: RelocTarget = target.clone().into();
1543 // FIXME(#3277): This should use `I::LabelUse::from_reloc` to optionally
1544 // generate a label-use statement to track whether an island is possibly
1545 // needed to escape this function to actually get to the external name.
1546 // This is most likely to come up on AArch64 where calls between
1547 // functions use a 26-bit signed offset which gives +/- 64MB. This means
1548 // that if a function is 128MB in size and there's a call in the middle
1549 // it's impossible to reach the actual target. Also, while it's
1550 // technically possible to jump to the start of a function and then jump
1551 // further, island insertion below always inserts islands after
1552 // previously appended code so for Cranelift's own implementation this
1553 // is also a problem for 64MB functions on AArch64 which start with a
1554 // call instruction, those won't be able to escape.
1555 //
1556 // Ideally what needs to happen here is that a `LabelUse` is
1557 // transparently generated (or call-sites of this function are audited
1558 // to generate a `LabelUse` instead) and tracked internally. The actual
1559 // relocation would then change over time if and when a veneer is
1560 // inserted, where the relocation here would be patched by this
1561 // `MachBuffer` to jump to the veneer. The problem, though, is that all
1562 // this still needs to end up, in the case of a singular function,
1563 // generating a final relocation pointing either to this particular
1564 // relocation or to the veneer inserted. Additionally
1565 // `MachBuffer` needs the concept of a label which will never be
1566 // resolved, so `emit_island` doesn't trip over not actually ever
1567 // knowning what some labels are. Currently the loop in
1568 // `finish_emission_maybe_forcing_veneers` would otherwise infinitely
1569 // loop.
1570 //
1571 // For now this means that because relocs aren't tracked at all that
1572 // AArch64 functions have a rough size limits of 64MB. For now that's
1573 // somewhat reasonable and the failure mode is a panic in `MachBuffer`
1574 // when a relocation can't otherwise be resolved later, so it shouldn't
1575 // actually result in any memory unsafety or anything like that.
1576 self.relocs.push(MachReloc {
1577 offset,
1578 kind,
1579 target,
1580 addend,
1581 });
1582 }
1583
1584 /// Add an external relocation at the current offset.
1585 pub fn add_reloc<T: Into<RelocTarget> + Clone>(
1586 &mut self,
1587 kind: Reloc,
1588 target: &T,
1589 addend: Addend,
1590 ) {
1591 self.add_reloc_at_offset(self.data.len() as CodeOffset, kind, target, addend);
1592 }
1593
1594 /// Add a trap record at the current offset.
1595 pub fn add_trap(&mut self, code: TrapCode) {
1596 self.traps.push(MachTrap {
1597 offset: self.data.len() as CodeOffset,
1598 code,
1599 });
1600 }
1601
1602 /// Add a call-site record at the current offset.
1603 pub fn add_call_site(&mut self) {
1604 self.call_sites.push(MachCallSite {
1605 ret_addr: self.data.len() as CodeOffset,
1606 });
1607 }
1608
1609 /// Add an unwind record at the current offset.
1610 pub fn add_unwind(&mut self, unwind: UnwindInst) {
1611 self.unwind_info.push((self.cur_offset(), unwind));
1612 }
1613
1614 /// Set the `SourceLoc` for code from this offset until the offset at the
1615 /// next call to `end_srcloc()`.
1616 /// Returns the current [CodeOffset] and [RelSourceLoc].
1617 pub fn start_srcloc(&mut self, loc: RelSourceLoc) -> (CodeOffset, RelSourceLoc) {
1618 let cur = (self.cur_offset(), loc);
1619 self.cur_srcloc = Some(cur);
1620 cur
1621 }
1622
1623 /// Mark the end of the `SourceLoc` segment started at the last
1624 /// `start_srcloc()` call.
1625 pub fn end_srcloc(&mut self) {
1626 let (start, loc) = self
1627 .cur_srcloc
1628 .take()
1629 .expect("end_srcloc() called without start_srcloc()");
1630 let end = self.cur_offset();
1631 // Skip zero-length extends.
1632 debug_assert!(end >= start);
1633 if end > start {
1634 self.srclocs.push(MachSrcLoc { start, end, loc });
1635 }
1636 }
1637
1638 /// Push a user stack map onto this buffer.
1639 ///
1640 /// The stack map is associated with the given `return_addr` code
1641 /// offset. This must be the PC for the instruction just *after* this stack
1642 /// map's associated instruction. For example in the sequence `call $foo;
1643 /// add r8, rax`, the `return_addr` must be the offset of the start of the
1644 /// `add` instruction.
1645 ///
1646 /// Stack maps must be pushed in sorted `return_addr` order.
1647 pub fn push_user_stack_map(
1648 &mut self,
1649 emit_state: &I::State,
1650 return_addr: CodeOffset,
1651 mut stack_map: ir::UserStackMap,
1652 ) {
1653 let span = emit_state.frame_layout().active_size();
1654 trace!("Adding user stack map @ {return_addr:#x} spanning {span} bytes: {stack_map:?}");
1655
1656 debug_assert!(
1657 self.user_stack_maps
1658 .last()
1659 .map_or(true, |(prev_addr, _, _)| *prev_addr < return_addr),
1660 "pushed stack maps out of order: {} is not less than {}",
1661 self.user_stack_maps.last().unwrap().0,
1662 return_addr,
1663 );
1664
1665 stack_map.finalize(emit_state.frame_layout().sp_to_sized_stack_slots());
1666 self.user_stack_maps.push((return_addr, span, stack_map));
1667 }
1668}
1669
1670impl<I: VCodeInst> Extend<u8> for MachBuffer<I> {
1671 fn extend<T: IntoIterator<Item = u8>>(&mut self, iter: T) {
1672 for b in iter {
1673 self.put1(b);
1674 }
1675 }
1676}
1677
1678impl<T: CompilePhase> MachBufferFinalized<T> {
1679 /// Get a list of source location mapping tuples in sorted-by-start-offset order.
1680 pub fn get_srclocs_sorted(&self) -> &[T::MachSrcLocType] {
1681 &self.srclocs[..]
1682 }
1683
1684 /// Get the total required size for the code.
1685 pub fn total_size(&self) -> CodeOffset {
1686 self.data.len() as CodeOffset
1687 }
1688
1689 /// Return the code in this mach buffer as a hex string for testing purposes.
1690 pub fn stringify_code_bytes(&self) -> String {
1691 // This is pretty lame, but whatever ..
1692 use std::fmt::Write;
1693 let mut s = String::with_capacity(self.data.len() * 2);
1694 for b in &self.data {
1695 write!(&mut s, "{b:02X}").unwrap();
1696 }
1697 s
1698 }
1699
1700 /// Get the code bytes.
1701 pub fn data(&self) -> &[u8] {
1702 // N.B.: we emit every section into the .text section as far as
1703 // the `CodeSink` is concerned; we do not bother to segregate
1704 // the contents into the actual program text, the jumptable and the
1705 // rodata (constant pool). This allows us to generate code assuming
1706 // that these will not be relocated relative to each other, and avoids
1707 // having to designate each section as belonging in one of the three
1708 // fixed categories defined by `CodeSink`. If this becomes a problem
1709 // later (e.g. because of memory permissions or similar), we can
1710 // add this designation and segregate the output; take care, however,
1711 // to add the appropriate relocations in this case.
1712
1713 &self.data[..]
1714 }
1715
1716 /// Get the list of external relocations for this code.
1717 pub fn relocs(&self) -> &[FinalizedMachReloc] {
1718 &self.relocs[..]
1719 }
1720
1721 /// Get the list of trap records for this code.
1722 pub fn traps(&self) -> &[MachTrap] {
1723 &self.traps[..]
1724 }
1725
1726 /// Get the user stack map metadata for this code.
1727 pub fn user_stack_maps(&self) -> &[(CodeOffset, u32, ir::UserStackMap)] {
1728 &self.user_stack_maps
1729 }
1730
1731 /// Take this buffer's user strack map metadata.
1732 pub fn take_user_stack_maps(&mut self) -> SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]> {
1733 mem::take(&mut self.user_stack_maps)
1734 }
1735
1736 /// Get the list of call sites for this code.
1737 pub fn call_sites(&self) -> &[MachCallSite] {
1738 &self.call_sites[..]
1739 }
1740}
1741
1742/// Metadata about a constant.
1743struct MachBufferConstant {
1744 /// A label which has not yet been bound which can be used for this
1745 /// constant.
1746 ///
1747 /// This is lazily created when a label is requested for a constant and is
1748 /// cleared when a constant is emitted.
1749 upcoming_label: Option<MachLabel>,
1750 /// Required alignment.
1751 align: CodeOffset,
1752 /// The byte size of this constant.
1753 size: usize,
1754}
1755
1756/// A trap that is deferred to the next time an island is emitted for either
1757/// traps, constants, or fixups.
1758struct MachLabelTrap {
1759 /// This label will refer to the trap's offset.
1760 label: MachLabel,
1761 /// The code associated with this trap.
1762 code: TrapCode,
1763 /// An optional source location to assign for this trap.
1764 loc: Option<RelSourceLoc>,
1765}
1766
1767/// A fixup to perform on the buffer once code is emitted. Fixups always refer
1768/// to labels and patch the code based on label offsets. Hence, they are like
1769/// relocations, but internal to one buffer.
1770#[derive(Debug)]
1771struct MachLabelFixup<I: VCodeInst> {
1772 /// The label whose offset controls this fixup.
1773 label: MachLabel,
1774 /// The offset to fix up / patch to refer to this label.
1775 offset: CodeOffset,
1776 /// The kind of fixup. This is architecture-specific; each architecture may have,
1777 /// e.g., several types of branch instructions, each with differently-sized
1778 /// offset fields and different places within the instruction to place the
1779 /// bits.
1780 kind: I::LabelUse,
1781}
1782
1783impl<I: VCodeInst> MachLabelFixup<I> {
1784 fn deadline(&self) -> CodeOffset {
1785 self.offset.saturating_add(self.kind.max_pos_range())
1786 }
1787}
1788
1789impl<I: VCodeInst> PartialEq for MachLabelFixup<I> {
1790 fn eq(&self, other: &Self) -> bool {
1791 self.deadline() == other.deadline()
1792 }
1793}
1794
1795impl<I: VCodeInst> Eq for MachLabelFixup<I> {}
1796
1797impl<I: VCodeInst> PartialOrd for MachLabelFixup<I> {
1798 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1799 Some(self.cmp(other))
1800 }
1801}
1802
1803impl<I: VCodeInst> Ord for MachLabelFixup<I> {
1804 fn cmp(&self, other: &Self) -> Ordering {
1805 other.deadline().cmp(&self.deadline())
1806 }
1807}
1808
1809/// A relocation resulting from a compilation.
1810#[derive(Clone, Debug, PartialEq)]
1811#[cfg_attr(
1812 feature = "enable-serde",
1813 derive(serde_derive::Serialize, serde_derive::Deserialize)
1814)]
1815pub struct MachRelocBase<T> {
1816 /// The offset at which the relocation applies, *relative to the
1817 /// containing section*.
1818 pub offset: CodeOffset,
1819 /// The kind of relocation.
1820 pub kind: Reloc,
1821 /// The external symbol / name to which this relocation refers.
1822 pub target: T,
1823 /// The addend to add to the symbol value.
1824 pub addend: i64,
1825}
1826
1827type MachReloc = MachRelocBase<RelocTarget>;
1828
1829/// A relocation resulting from a compilation.
1830pub type FinalizedMachReloc = MachRelocBase<FinalizedRelocTarget>;
1831
1832/// A Relocation target
1833#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1834pub enum RelocTarget {
1835 /// Points to an [ExternalName] outside the current function.
1836 ExternalName(ExternalName),
1837 /// Points to a [MachLabel] inside this function.
1838 /// This is different from [MachLabelFixup] in that both the relocation and the
1839 /// label will be emitted and are only resolved at link time.
1840 ///
1841 /// There is no reason to prefer this over [MachLabelFixup] unless the ABI requires it.
1842 Label(MachLabel),
1843}
1844
1845impl From<ExternalName> for RelocTarget {
1846 fn from(name: ExternalName) -> Self {
1847 Self::ExternalName(name)
1848 }
1849}
1850
1851impl From<MachLabel> for RelocTarget {
1852 fn from(label: MachLabel) -> Self {
1853 Self::Label(label)
1854 }
1855}
1856
1857/// A Relocation target
1858#[derive(Debug, Clone, PartialEq, Eq, Hash)]
1859#[cfg_attr(
1860 feature = "enable-serde",
1861 derive(serde_derive::Serialize, serde_derive::Deserialize)
1862)]
1863pub enum FinalizedRelocTarget {
1864 /// Points to an [ExternalName] outside the current function.
1865 ExternalName(ExternalName),
1866 /// Points to a [CodeOffset] from the start of the current function.
1867 Func(CodeOffset),
1868}
1869
1870impl FinalizedRelocTarget {
1871 /// Returns a display for the current [FinalizedRelocTarget], with extra context to prettify the
1872 /// output.
1873 pub fn display<'a>(&'a self, params: Option<&'a FunctionParameters>) -> String {
1874 match self {
1875 FinalizedRelocTarget::ExternalName(name) => format!("{}", name.display(params)),
1876 FinalizedRelocTarget::Func(offset) => format!("func+{offset}"),
1877 }
1878 }
1879}
1880
1881/// A trap record resulting from a compilation.
1882#[derive(Clone, Debug, PartialEq)]
1883#[cfg_attr(
1884 feature = "enable-serde",
1885 derive(serde_derive::Serialize, serde_derive::Deserialize)
1886)]
1887pub struct MachTrap {
1888 /// The offset at which the trap instruction occurs, *relative to the
1889 /// containing section*.
1890 pub offset: CodeOffset,
1891 /// The trap code.
1892 pub code: TrapCode,
1893}
1894
1895/// A call site record resulting from a compilation.
1896#[derive(Clone, Debug, PartialEq)]
1897#[cfg_attr(
1898 feature = "enable-serde",
1899 derive(serde_derive::Serialize, serde_derive::Deserialize)
1900)]
1901pub struct MachCallSite {
1902 /// The offset of the call's return address, *relative to the containing section*.
1903 pub ret_addr: CodeOffset,
1904}
1905
1906/// A source-location mapping resulting from a compilation.
1907#[derive(PartialEq, Debug, Clone)]
1908#[cfg_attr(
1909 feature = "enable-serde",
1910 derive(serde_derive::Serialize, serde_derive::Deserialize)
1911)]
1912pub struct MachSrcLoc<T: CompilePhase> {
1913 /// The start of the region of code corresponding to a source location.
1914 /// This is relative to the start of the function, not to the start of the
1915 /// section.
1916 pub start: CodeOffset,
1917 /// The end of the region of code corresponding to a source location.
1918 /// This is relative to the start of the section, not to the start of the
1919 /// section.
1920 pub end: CodeOffset,
1921 /// The source location.
1922 pub loc: T::SourceLocType,
1923}
1924
1925impl MachSrcLoc<Stencil> {
1926 fn apply_base_srcloc(self, base_srcloc: SourceLoc) -> MachSrcLoc<Final> {
1927 MachSrcLoc {
1928 start: self.start,
1929 end: self.end,
1930 loc: self.loc.expand(base_srcloc),
1931 }
1932 }
1933}
1934
1935/// Record of branch instruction in the buffer, to facilitate editing.
1936#[derive(Clone, Debug)]
1937struct MachBranch {
1938 start: CodeOffset,
1939 end: CodeOffset,
1940 target: MachLabel,
1941 fixup: usize,
1942 inverted: Option<SmallVec<[u8; 8]>>,
1943 /// All labels pointing to the start of this branch. For correctness, this
1944 /// *must* be complete (i.e., must contain all labels whose resolved offsets
1945 /// are at the start of this branch): we rely on being able to redirect all
1946 /// labels that could jump to this branch before removing it, if it is
1947 /// otherwise unreachable.
1948 labels_at_this_branch: SmallVec<[MachLabel; 4]>,
1949}
1950
1951impl MachBranch {
1952 fn is_cond(&self) -> bool {
1953 self.inverted.is_some()
1954 }
1955 fn is_uncond(&self) -> bool {
1956 self.inverted.is_none()
1957 }
1958}
1959
1960/// Implementation of the `TextSectionBuilder` trait backed by `MachBuffer`.
1961///
1962/// Note that `MachBuffer` was primarily written for intra-function references
1963/// of jumps between basic blocks, but it's also quite usable for entire text
1964/// sections and resolving references between functions themselves. This
1965/// builder interprets "blocks" as labeled functions for the purposes of
1966/// resolving labels internally in the buffer.
1967pub struct MachTextSectionBuilder<I: VCodeInst> {
1968 buf: MachBuffer<I>,
1969 next_func: usize,
1970 force_veneers: ForceVeneers,
1971}
1972
1973impl<I: VCodeInst> MachTextSectionBuilder<I> {
1974 /// Creates a new text section builder which will have `num_funcs` functions
1975 /// pushed into it.
1976 pub fn new(num_funcs: usize) -> MachTextSectionBuilder<I> {
1977 let mut buf = MachBuffer::new();
1978 buf.reserve_labels_for_blocks(num_funcs);
1979 MachTextSectionBuilder {
1980 buf,
1981 next_func: 0,
1982 force_veneers: ForceVeneers::No,
1983 }
1984 }
1985}
1986
1987impl<I: VCodeInst> TextSectionBuilder for MachTextSectionBuilder<I> {
1988 fn append(
1989 &mut self,
1990 labeled: bool,
1991 func: &[u8],
1992 align: u32,
1993 ctrl_plane: &mut ControlPlane,
1994 ) -> u64 {
1995 // Conditionally emit an island if it's necessary to resolve jumps
1996 // between functions which are too far away.
1997 let size = func.len() as u32;
1998 if self.force_veneers == ForceVeneers::Yes || self.buf.island_needed(size) {
1999 self.buf
2000 .emit_island_maybe_forced(self.force_veneers, size, ctrl_plane);
2001 }
2002
2003 self.buf.align_to(align);
2004 let pos = self.buf.cur_offset();
2005 if labeled {
2006 self.buf.bind_label(
2007 MachLabel::from_block(BlockIndex::new(self.next_func)),
2008 ctrl_plane,
2009 );
2010 self.next_func += 1;
2011 }
2012 self.buf.put_data(func);
2013 u64::from(pos)
2014 }
2015
2016 fn resolve_reloc(&mut self, offset: u64, reloc: Reloc, addend: Addend, target: usize) -> bool {
2017 crate::trace!(
2018 "Resolving relocation @ {offset:#x} + {addend:#x} to target {target} of kind {reloc:?}"
2019 );
2020 let label = MachLabel::from_block(BlockIndex::new(target));
2021 let offset = u32::try_from(offset).unwrap();
2022 match I::LabelUse::from_reloc(reloc, addend) {
2023 Some(label_use) => {
2024 self.buf.use_label_at_offset(offset, label, label_use);
2025 true
2026 }
2027 None => false,
2028 }
2029 }
2030
2031 fn force_veneers(&mut self) {
2032 self.force_veneers = ForceVeneers::Yes;
2033 }
2034
2035 fn write(&mut self, offset: u64, data: &[u8]) {
2036 self.buf.data[offset.try_into().unwrap()..][..data.len()].copy_from_slice(data);
2037 }
2038
2039 fn finish(&mut self, ctrl_plane: &mut ControlPlane) -> Vec<u8> {
2040 // Double-check all functions were pushed.
2041 assert_eq!(self.next_func, self.buf.label_offsets.len());
2042
2043 // Finish up any veneers, if necessary.
2044 self.buf
2045 .finish_emission_maybe_forcing_veneers(self.force_veneers, ctrl_plane);
2046
2047 // We don't need the data any more, so return it to the caller.
2048 mem::take(&mut self.buf.data).into_vec()
2049 }
2050}
2051
2052// We use an actual instruction definition to do tests, so we depend on the `arm64` feature here.
2053#[cfg(all(test, feature = "arm64"))]
2054mod test {
2055 use cranelift_entity::EntityRef as _;
2056
2057 use super::*;
2058 use crate::ir::UserExternalNameRef;
2059 use crate::isa::aarch64::inst::{xreg, OperandSize};
2060 use crate::isa::aarch64::inst::{BranchTarget, CondBrKind, EmitInfo, Inst};
2061 use crate::machinst::{MachInstEmit, MachInstEmitState};
2062 use crate::settings;
2063
2064 fn label(n: u32) -> MachLabel {
2065 MachLabel::from_block(BlockIndex::new(n as usize))
2066 }
2067 fn target(n: u32) -> BranchTarget {
2068 BranchTarget::Label(label(n))
2069 }
2070
2071 #[test]
2072 fn test_elide_jump_to_next() {
2073 let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2074 let mut buf = MachBuffer::new();
2075 let mut state = <Inst as MachInstEmit>::State::default();
2076 let constants = Default::default();
2077
2078 buf.reserve_labels_for_blocks(2);
2079 buf.bind_label(label(0), state.ctrl_plane_mut());
2080 let inst = Inst::Jump { dest: target(1) };
2081 inst.emit(&mut buf, &info, &mut state);
2082 buf.bind_label(label(1), state.ctrl_plane_mut());
2083 let buf = buf.finish(&constants, state.ctrl_plane_mut());
2084 assert_eq!(0, buf.total_size());
2085 }
2086
2087 #[test]
2088 fn test_elide_trivial_jump_blocks() {
2089 let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2090 let mut buf = MachBuffer::new();
2091 let mut state = <Inst as MachInstEmit>::State::default();
2092 let constants = Default::default();
2093
2094 buf.reserve_labels_for_blocks(4);
2095
2096 buf.bind_label(label(0), state.ctrl_plane_mut());
2097 let inst = Inst::CondBr {
2098 kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2099 taken: target(1),
2100 not_taken: target(2),
2101 };
2102 inst.emit(&mut buf, &info, &mut state);
2103
2104 buf.bind_label(label(1), state.ctrl_plane_mut());
2105 let inst = Inst::Jump { dest: target(3) };
2106 inst.emit(&mut buf, &info, &mut state);
2107
2108 buf.bind_label(label(2), state.ctrl_plane_mut());
2109 let inst = Inst::Jump { dest: target(3) };
2110 inst.emit(&mut buf, &info, &mut state);
2111
2112 buf.bind_label(label(3), state.ctrl_plane_mut());
2113
2114 let buf = buf.finish(&constants, state.ctrl_plane_mut());
2115 assert_eq!(0, buf.total_size());
2116 }
2117
2118 #[test]
2119 fn test_flip_cond() {
2120 let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2121 let mut buf = MachBuffer::new();
2122 let mut state = <Inst as MachInstEmit>::State::default();
2123 let constants = Default::default();
2124
2125 buf.reserve_labels_for_blocks(4);
2126
2127 buf.bind_label(label(0), state.ctrl_plane_mut());
2128 let inst = Inst::CondBr {
2129 kind: CondBrKind::Zero(xreg(0), OperandSize::Size64),
2130 taken: target(1),
2131 not_taken: target(2),
2132 };
2133 inst.emit(&mut buf, &info, &mut state);
2134
2135 buf.bind_label(label(1), state.ctrl_plane_mut());
2136 let inst = Inst::Nop4;
2137 inst.emit(&mut buf, &info, &mut state);
2138
2139 buf.bind_label(label(2), state.ctrl_plane_mut());
2140 let inst = Inst::Udf {
2141 trap_code: TrapCode::STACK_OVERFLOW,
2142 };
2143 inst.emit(&mut buf, &info, &mut state);
2144
2145 buf.bind_label(label(3), state.ctrl_plane_mut());
2146
2147 let buf = buf.finish(&constants, state.ctrl_plane_mut());
2148
2149 let mut buf2 = MachBuffer::new();
2150 let mut state = Default::default();
2151 let inst = Inst::TrapIf {
2152 kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2153 trap_code: TrapCode::STACK_OVERFLOW,
2154 };
2155 inst.emit(&mut buf2, &info, &mut state);
2156 let inst = Inst::Nop4;
2157 inst.emit(&mut buf2, &info, &mut state);
2158
2159 let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
2160
2161 assert_eq!(buf.data, buf2.data);
2162 }
2163
2164 #[test]
2165 fn test_island() {
2166 let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2167 let mut buf = MachBuffer::new();
2168 let mut state = <Inst as MachInstEmit>::State::default();
2169 let constants = Default::default();
2170
2171 buf.reserve_labels_for_blocks(4);
2172
2173 buf.bind_label(label(0), state.ctrl_plane_mut());
2174 let inst = Inst::CondBr {
2175 kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2176 taken: target(2),
2177 not_taken: target(3),
2178 };
2179 inst.emit(&mut buf, &info, &mut state);
2180
2181 buf.bind_label(label(1), state.ctrl_plane_mut());
2182 while buf.cur_offset() < 2000000 {
2183 if buf.island_needed(0) {
2184 buf.emit_island(0, state.ctrl_plane_mut());
2185 }
2186 let inst = Inst::Nop4;
2187 inst.emit(&mut buf, &info, &mut state);
2188 }
2189
2190 buf.bind_label(label(2), state.ctrl_plane_mut());
2191 let inst = Inst::Nop4;
2192 inst.emit(&mut buf, &info, &mut state);
2193
2194 buf.bind_label(label(3), state.ctrl_plane_mut());
2195 let inst = Inst::Nop4;
2196 inst.emit(&mut buf, &info, &mut state);
2197
2198 let buf = buf.finish(&constants, state.ctrl_plane_mut());
2199
2200 assert_eq!(2000000 + 8, buf.total_size());
2201
2202 let mut buf2 = MachBuffer::new();
2203 let mut state = Default::default();
2204 let inst = Inst::CondBr {
2205 kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2206
2207 // This conditionally taken branch has a 19-bit constant, shifted
2208 // to the left by two, giving us a 21-bit range in total. Half of
2209 // this range positive so the we should be around 1 << 20 bytes
2210 // away for our jump target.
2211 //
2212 // There are two pending fixups by the time we reach this point,
2213 // one for this 19-bit jump and one for the unconditional 26-bit
2214 // jump below. A 19-bit veneer is 4 bytes large and the 26-bit
2215 // veneer is 20 bytes large, which means that pessimistically
2216 // assuming we'll need two veneers. Currently each veneer is
2217 // pessimistically assumed to be the maximal size which means we
2218 // need 40 bytes of extra space, meaning that the actual island
2219 // should come 40-bytes before the deadline.
2220 taken: BranchTarget::ResolvedOffset((1 << 20) - 20 - 20),
2221
2222 // This branch is in-range so no veneers should be needed, it should
2223 // go directly to the target.
2224 not_taken: BranchTarget::ResolvedOffset(2000000 + 4 - 4),
2225 };
2226 inst.emit(&mut buf2, &info, &mut state);
2227
2228 let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
2229
2230 assert_eq!(&buf.data[0..8], &buf2.data[..]);
2231 }
2232
2233 #[test]
2234 fn test_island_backward() {
2235 let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2236 let mut buf = MachBuffer::new();
2237 let mut state = <Inst as MachInstEmit>::State::default();
2238 let constants = Default::default();
2239
2240 buf.reserve_labels_for_blocks(4);
2241
2242 buf.bind_label(label(0), state.ctrl_plane_mut());
2243 let inst = Inst::Nop4;
2244 inst.emit(&mut buf, &info, &mut state);
2245
2246 buf.bind_label(label(1), state.ctrl_plane_mut());
2247 let inst = Inst::Nop4;
2248 inst.emit(&mut buf, &info, &mut state);
2249
2250 buf.bind_label(label(2), state.ctrl_plane_mut());
2251 while buf.cur_offset() < 2000000 {
2252 let inst = Inst::Nop4;
2253 inst.emit(&mut buf, &info, &mut state);
2254 }
2255
2256 buf.bind_label(label(3), state.ctrl_plane_mut());
2257 let inst = Inst::CondBr {
2258 kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2259 taken: target(0),
2260 not_taken: target(1),
2261 };
2262 inst.emit(&mut buf, &info, &mut state);
2263
2264 let buf = buf.finish(&constants, state.ctrl_plane_mut());
2265
2266 assert_eq!(2000000 + 12, buf.total_size());
2267
2268 let mut buf2 = MachBuffer::new();
2269 let mut state = Default::default();
2270 let inst = Inst::CondBr {
2271 kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2272 taken: BranchTarget::ResolvedOffset(8),
2273 not_taken: BranchTarget::ResolvedOffset(4 - (2000000 + 4)),
2274 };
2275 inst.emit(&mut buf2, &info, &mut state);
2276 let inst = Inst::Jump {
2277 dest: BranchTarget::ResolvedOffset(-(2000000 + 8)),
2278 };
2279 inst.emit(&mut buf2, &info, &mut state);
2280
2281 let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
2282
2283 assert_eq!(&buf.data[2000000..], &buf2.data[..]);
2284 }
2285
2286 #[test]
2287 fn test_multiple_redirect() {
2288 // label0:
2289 // cbz x0, label1
2290 // b label2
2291 // label1:
2292 // b label3
2293 // label2:
2294 // nop
2295 // nop
2296 // b label0
2297 // label3:
2298 // b label4
2299 // label4:
2300 // b label5
2301 // label5:
2302 // b label7
2303 // label6:
2304 // nop
2305 // label7:
2306 // ret
2307 //
2308 // -- should become:
2309 //
2310 // label0:
2311 // cbz x0, label7
2312 // label2:
2313 // nop
2314 // nop
2315 // b label0
2316 // label6:
2317 // nop
2318 // label7:
2319 // ret
2320
2321 let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2322 let mut buf = MachBuffer::new();
2323 let mut state = <Inst as MachInstEmit>::State::default();
2324 let constants = Default::default();
2325
2326 buf.reserve_labels_for_blocks(8);
2327
2328 buf.bind_label(label(0), state.ctrl_plane_mut());
2329 let inst = Inst::CondBr {
2330 kind: CondBrKind::Zero(xreg(0), OperandSize::Size64),
2331 taken: target(1),
2332 not_taken: target(2),
2333 };
2334 inst.emit(&mut buf, &info, &mut state);
2335
2336 buf.bind_label(label(1), state.ctrl_plane_mut());
2337 let inst = Inst::Jump { dest: target(3) };
2338 inst.emit(&mut buf, &info, &mut state);
2339
2340 buf.bind_label(label(2), state.ctrl_plane_mut());
2341 let inst = Inst::Nop4;
2342 inst.emit(&mut buf, &info, &mut state);
2343 inst.emit(&mut buf, &info, &mut state);
2344 let inst = Inst::Jump { dest: target(0) };
2345 inst.emit(&mut buf, &info, &mut state);
2346
2347 buf.bind_label(label(3), state.ctrl_plane_mut());
2348 let inst = Inst::Jump { dest: target(4) };
2349 inst.emit(&mut buf, &info, &mut state);
2350
2351 buf.bind_label(label(4), state.ctrl_plane_mut());
2352 let inst = Inst::Jump { dest: target(5) };
2353 inst.emit(&mut buf, &info, &mut state);
2354
2355 buf.bind_label(label(5), state.ctrl_plane_mut());
2356 let inst = Inst::Jump { dest: target(7) };
2357 inst.emit(&mut buf, &info, &mut state);
2358
2359 buf.bind_label(label(6), state.ctrl_plane_mut());
2360 let inst = Inst::Nop4;
2361 inst.emit(&mut buf, &info, &mut state);
2362
2363 buf.bind_label(label(7), state.ctrl_plane_mut());
2364 let inst = Inst::Ret {};
2365 inst.emit(&mut buf, &info, &mut state);
2366
2367 let buf = buf.finish(&constants, state.ctrl_plane_mut());
2368
2369 let golden_data = vec![
2370 0xa0, 0x00, 0x00, 0xb4, // cbz x0, 0x14
2371 0x1f, 0x20, 0x03, 0xd5, // nop
2372 0x1f, 0x20, 0x03, 0xd5, // nop
2373 0xfd, 0xff, 0xff, 0x17, // b 0
2374 0x1f, 0x20, 0x03, 0xd5, // nop
2375 0xc0, 0x03, 0x5f, 0xd6, // ret
2376 ];
2377
2378 assert_eq!(&golden_data[..], &buf.data[..]);
2379 }
2380
2381 #[test]
2382 fn test_handle_branch_cycle() {
2383 // label0:
2384 // b label1
2385 // label1:
2386 // b label2
2387 // label2:
2388 // b label3
2389 // label3:
2390 // b label4
2391 // label4:
2392 // b label1 // note: not label0 (to make it interesting).
2393 //
2394 // -- should become:
2395 //
2396 // label0, label1, ..., label4:
2397 // b label0
2398 let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2399 let mut buf = MachBuffer::new();
2400 let mut state = <Inst as MachInstEmit>::State::default();
2401 let constants = Default::default();
2402
2403 buf.reserve_labels_for_blocks(5);
2404
2405 buf.bind_label(label(0), state.ctrl_plane_mut());
2406 let inst = Inst::Jump { dest: target(1) };
2407 inst.emit(&mut buf, &info, &mut state);
2408
2409 buf.bind_label(label(1), state.ctrl_plane_mut());
2410 let inst = Inst::Jump { dest: target(2) };
2411 inst.emit(&mut buf, &info, &mut state);
2412
2413 buf.bind_label(label(2), state.ctrl_plane_mut());
2414 let inst = Inst::Jump { dest: target(3) };
2415 inst.emit(&mut buf, &info, &mut state);
2416
2417 buf.bind_label(label(3), state.ctrl_plane_mut());
2418 let inst = Inst::Jump { dest: target(4) };
2419 inst.emit(&mut buf, &info, &mut state);
2420
2421 buf.bind_label(label(4), state.ctrl_plane_mut());
2422 let inst = Inst::Jump { dest: target(1) };
2423 inst.emit(&mut buf, &info, &mut state);
2424
2425 let buf = buf.finish(&constants, state.ctrl_plane_mut());
2426
2427 let golden_data = vec![
2428 0x00, 0x00, 0x00, 0x14, // b 0
2429 ];
2430
2431 assert_eq!(&golden_data[..], &buf.data[..]);
2432 }
2433
2434 #[test]
2435 fn metadata_records() {
2436 let mut buf = MachBuffer::<Inst>::new();
2437 let ctrl_plane = &mut Default::default();
2438 let constants = Default::default();
2439
2440 buf.reserve_labels_for_blocks(1);
2441
2442 buf.bind_label(label(0), ctrl_plane);
2443 buf.put1(1);
2444 buf.add_trap(TrapCode::HEAP_OUT_OF_BOUNDS);
2445 buf.put1(2);
2446 buf.add_trap(TrapCode::INTEGER_OVERFLOW);
2447 buf.add_trap(TrapCode::INTEGER_DIVISION_BY_ZERO);
2448 buf.add_call_site();
2449 buf.add_reloc(
2450 Reloc::Abs4,
2451 &ExternalName::User(UserExternalNameRef::new(0)),
2452 0,
2453 );
2454 buf.put1(3);
2455 buf.add_reloc(
2456 Reloc::Abs8,
2457 &ExternalName::User(UserExternalNameRef::new(1)),
2458 1,
2459 );
2460 buf.put1(4);
2461
2462 let buf = buf.finish(&constants, ctrl_plane);
2463
2464 assert_eq!(buf.data(), &[1, 2, 3, 4]);
2465 assert_eq!(
2466 buf.traps()
2467 .iter()
2468 .map(|trap| (trap.offset, trap.code))
2469 .collect::<Vec<_>>(),
2470 vec![
2471 (1, TrapCode::HEAP_OUT_OF_BOUNDS),
2472 (2, TrapCode::INTEGER_OVERFLOW),
2473 (2, TrapCode::INTEGER_DIVISION_BY_ZERO)
2474 ]
2475 );
2476 assert_eq!(
2477 buf.call_sites()
2478 .iter()
2479 .map(|call_site| call_site.ret_addr)
2480 .collect::<Vec<_>>(),
2481 vec![2]
2482 );
2483 assert_eq!(
2484 buf.relocs()
2485 .iter()
2486 .map(|reloc| (reloc.offset, reloc.kind))
2487 .collect::<Vec<_>>(),
2488 vec![(2, Reloc::Abs4), (3, Reloc::Abs8)]
2489 );
2490 }
2491}