cranelift_codegen/machinst/abi.rs
1//! Implementation of a vanilla ABI, shared between several machines. The
2//! implementation here assumes that arguments will be passed in registers
3//! first, then additional args on the stack; that the stack grows downward,
4//! contains a standard frame (return address and frame pointer), and the
5//! compiler is otherwise free to allocate space below that with its choice of
6//! layout; and that the machine has some notion of caller- and callee-save
7//! registers. Most modern machines, e.g. x86-64 and AArch64, should fit this
8//! mold and thus both of these backends use this shared implementation.
9//!
10//! See the documentation in specific machine backends for the "instantiation"
11//! of this generic ABI, i.e., which registers are caller/callee-save, arguments
12//! and return values, and any other special requirements.
13//!
14//! For now the implementation here assumes a 64-bit machine, but we intend to
15//! make this 32/64-bit-generic shortly.
16//!
17//! # Vanilla ABI
18//!
19//! First, arguments and return values are passed in registers up to a certain
20//! fixed count, after which they overflow onto the stack. Multiple return
21//! values either fit in registers, or are returned in a separate return-value
22//! area on the stack, given by a hidden extra parameter.
23//!
24//! Note that the exact stack layout is up to us. We settled on the
25//! below design based on several requirements. In particular, we need
26//! to be able to generate instructions (or instruction sequences) to
27//! access arguments, stack slots, and spill slots before we know how
28//! many spill slots or clobber-saves there will be, because of our
29//! pass structure. We also prefer positive offsets to negative
30//! offsets because of an asymmetry in some machines' addressing modes
31//! (e.g., on AArch64, positive offsets have a larger possible range
32//! without a long-form sequence to synthesize an arbitrary
33//! offset). We also need clobber-save registers to be "near" the
34//! frame pointer: Windows unwind information requires it to be within
35//! 240 bytes of RBP. Finally, it is not allowed to access memory
36//! below the current SP value.
37//!
38//! We assume that a prologue first pushes the frame pointer (and
39//! return address above that, if the machine does not do that in
40//! hardware). We set FP to point to this two-word frame record. We
41//! store all other frame slots below this two-word frame record, as
42//! well as enough space for arguments to the largest possible
43//! function call. The stack pointer then remains at this position
44//! for the duration of the function, allowing us to address all
45//! frame storage at positive offsets from SP.
46//!
47//! Note that if we ever support dynamic stack-space allocation (for
48//! `alloca`), we will need a way to reference spill slots and stack
49//! slots relative to a dynamic SP, because we will no longer be able
50//! to know a static offset from SP to the slots at any particular
51//! program point. Probably the best solution at that point will be to
52//! revert to using the frame pointer as the reference for all slots,
53//! to allow generating spill/reload and stackslot accesses before we
54//! know how large the clobber-saves will be.
55//!
56//! # Stack Layout
57//!
58//! The stack looks like:
59//!
60//! ```plain
61//! (high address)
62//! | ... |
63//! | caller frames |
64//! | ... |
65//! +===========================+
66//! | ... |
67//! | stack args |
68//! Canonical Frame Address --> | (accessed via FP) |
69//! +---------------------------+
70//! SP at function entry -----> | return address |
71//! +---------------------------+
72//! FP after prologue --------> | FP (pushed by prologue) |
73//! +---------------------------+ -----
74//! | ... | |
75//! | clobbered callee-saves | |
76//! unwind-frame base --------> | (pushed by prologue) | |
77//! +---------------------------+ ----- |
78//! | ... | | |
79//! | spill slots | | |
80//! | (accessed via SP) | fixed active
81//! | ... | frame size
82//! | stack slots | storage |
83//! | (accessed via SP) | size |
84//! | (alloc'd by prologue) | | |
85//! +---------------------------+ ----- |
86//! | [alignment as needed] | |
87//! | ... | |
88//! | args for largest call | |
89//! SP -----------------------> | (alloc'd by prologue) | |
90//! +===========================+ -----
91//!
92//! (low address)
93//! ```
94//!
95//! # Multi-value Returns
96//!
97//! We support multi-value returns by using multiple return-value
98//! registers. In some cases this is an extension of the base system
99//! ABI. See each platform's `abi.rs` implementation for details.
100
101use crate::entity::SecondaryMap;
102use crate::ir::types::*;
103use crate::ir::{ArgumentExtension, ArgumentPurpose, Signature};
104use crate::isa::TargetIsa;
105use crate::settings::ProbestackStrategy;
106use crate::CodegenError;
107use crate::{ir, isa};
108use crate::{machinst::*, trace};
109use regalloc2::{MachineEnv, PReg, PRegSet};
110use rustc_hash::FxHashMap;
111use smallvec::smallvec;
112use std::collections::HashMap;
113use std::marker::PhantomData;
114use std::mem;
115
116/// A small vector of instructions (with some reasonable size); appropriate for
117/// a small fixed sequence implementing one operation.
118pub type SmallInstVec<I> = SmallVec<[I; 4]>;
119
120/// A type used by backends to track argument-binding info in the "args"
121/// pseudoinst. The pseudoinst holds a vec of `ArgPair` structs.
122#[derive(Clone, Debug)]
123pub struct ArgPair {
124 /// The vreg that is defined by this args pseudoinst.
125 pub vreg: Writable<Reg>,
126 /// The preg that the arg arrives in; this constrains the vreg's
127 /// placement at the pseudoinst.
128 pub preg: Reg,
129}
130
131/// A type used by backends to track return register binding info in the "ret"
132/// pseudoinst. The pseudoinst holds a vec of `RetPair` structs.
133#[derive(Clone, Debug)]
134pub struct RetPair {
135 /// The vreg that is returned by this pseudionst.
136 pub vreg: Reg,
137 /// The preg that the arg is returned through; this constrains the vreg's
138 /// placement at the pseudoinst.
139 pub preg: Reg,
140}
141
142/// A location for (part of) an argument or return value. These "storage slots"
143/// are specified for each register-sized part of an argument.
144#[derive(Clone, Copy, Debug, PartialEq, Eq)]
145pub enum ABIArgSlot {
146 /// In a real register.
147 Reg {
148 /// Register that holds this arg.
149 reg: RealReg,
150 /// Value type of this arg.
151 ty: ir::Type,
152 /// Should this arg be zero- or sign-extended?
153 extension: ir::ArgumentExtension,
154 },
155 /// Arguments only: on stack, at given offset from SP at entry.
156 Stack {
157 /// Offset of this arg relative to the base of stack args.
158 offset: i64,
159 /// Value type of this arg.
160 ty: ir::Type,
161 /// Should this arg be zero- or sign-extended?
162 extension: ir::ArgumentExtension,
163 },
164}
165
166impl ABIArgSlot {
167 /// The type of the value that will be stored in this slot.
168 pub fn get_type(&self) -> ir::Type {
169 match self {
170 ABIArgSlot::Reg { ty, .. } => *ty,
171 ABIArgSlot::Stack { ty, .. } => *ty,
172 }
173 }
174}
175
176/// A vector of `ABIArgSlot`s. Inline capacity for one element because basically
177/// 100% of values use one slot. Only `i128`s need multiple slots, and they are
178/// super rare (and never happen with Wasm).
179pub type ABIArgSlotVec = SmallVec<[ABIArgSlot; 1]>;
180
181/// An ABIArg is composed of one or more parts. This allows for a CLIF-level
182/// Value to be passed with its parts in more than one location at the ABI
183/// level. For example, a 128-bit integer may be passed in two 64-bit registers,
184/// or even a 64-bit register and a 64-bit stack slot, on a 64-bit machine. The
185/// number of "parts" should correspond to the number of registers used to store
186/// this type according to the machine backend.
187///
188/// As an invariant, the `purpose` for every part must match. As a further
189/// invariant, a `StructArg` part cannot appear with any other part.
190#[derive(Clone, Debug)]
191pub enum ABIArg {
192 /// Storage slots (registers or stack locations) for each part of the
193 /// argument value. The number of slots must equal the number of register
194 /// parts used to store a value of this type.
195 Slots {
196 /// Slots, one per register part.
197 slots: ABIArgSlotVec,
198 /// Purpose of this arg.
199 purpose: ir::ArgumentPurpose,
200 },
201 /// Structure argument. We reserve stack space for it, but the CLIF-level
202 /// semantics are a little weird: the value passed to the call instruction,
203 /// and received in the corresponding block param, is a *pointer*. On the
204 /// caller side, we memcpy the data from the passed-in pointer to the stack
205 /// area; on the callee side, we compute a pointer to this stack area and
206 /// provide that as the argument's value.
207 StructArg {
208 /// Offset of this arg relative to base of stack args.
209 offset: i64,
210 /// Size of this arg on the stack.
211 size: u64,
212 /// Purpose of this arg.
213 purpose: ir::ArgumentPurpose,
214 },
215 /// Implicit argument. Similar to a StructArg, except that we have the
216 /// target type, not a pointer type, at the CLIF-level. This argument is
217 /// still being passed via reference implicitly.
218 ImplicitPtrArg {
219 /// Register or stack slot holding a pointer to the buffer.
220 pointer: ABIArgSlot,
221 /// Offset of the argument buffer.
222 offset: i64,
223 /// Type of the implicit argument.
224 ty: Type,
225 /// Purpose of this arg.
226 purpose: ir::ArgumentPurpose,
227 },
228}
229
230impl ABIArg {
231 /// Create an ABIArg from one register.
232 pub fn reg(
233 reg: RealReg,
234 ty: ir::Type,
235 extension: ir::ArgumentExtension,
236 purpose: ir::ArgumentPurpose,
237 ) -> ABIArg {
238 ABIArg::Slots {
239 slots: smallvec![ABIArgSlot::Reg { reg, ty, extension }],
240 purpose,
241 }
242 }
243
244 /// Create an ABIArg from one stack slot.
245 pub fn stack(
246 offset: i64,
247 ty: ir::Type,
248 extension: ir::ArgumentExtension,
249 purpose: ir::ArgumentPurpose,
250 ) -> ABIArg {
251 ABIArg::Slots {
252 slots: smallvec![ABIArgSlot::Stack {
253 offset,
254 ty,
255 extension,
256 }],
257 purpose,
258 }
259 }
260}
261
262/// Are we computing information about arguments or return values? Much of the
263/// handling is factored out into common routines; this enum allows us to
264/// distinguish which case we're handling.
265#[derive(Clone, Copy, Debug, PartialEq, Eq)]
266pub enum ArgsOrRets {
267 /// Arguments.
268 Args,
269 /// Return values.
270 Rets,
271}
272
273/// Abstract location for a machine-specific ABI impl to translate into the
274/// appropriate addressing mode.
275#[derive(Clone, Copy, Debug)]
276pub enum StackAMode {
277 /// Offset into the current frame's argument area.
278 IncomingArg(i64, u32),
279 /// Offset within the stack slots in the current frame.
280 Slot(i64),
281 /// Offset into the callee frame's argument area.
282 OutgoingArg(i64),
283}
284
285/// Trait implemented by machine-specific backend to represent ISA flags.
286pub trait IsaFlags: Clone {
287 /// Get a flag indicating whether forward-edge CFI is enabled.
288 fn is_forward_edge_cfi_enabled(&self) -> bool {
289 false
290 }
291}
292
293/// Used as an out-parameter to accumulate a sequence of `ABIArg`s in
294/// `ABIMachineSpec::compute_arg_locs`. Wraps the shared allocation for all
295/// `ABIArg`s in `SigSet` and exposes just the args for the current
296/// `compute_arg_locs` call.
297pub struct ArgsAccumulator<'a> {
298 sig_set_abi_args: &'a mut Vec<ABIArg>,
299 start: usize,
300 non_formal_flag: bool,
301}
302
303impl<'a> ArgsAccumulator<'a> {
304 fn new(sig_set_abi_args: &'a mut Vec<ABIArg>) -> Self {
305 let start = sig_set_abi_args.len();
306 ArgsAccumulator {
307 sig_set_abi_args,
308 start,
309 non_formal_flag: false,
310 }
311 }
312
313 #[inline]
314 pub fn push(&mut self, arg: ABIArg) {
315 debug_assert!(!self.non_formal_flag);
316 self.sig_set_abi_args.push(arg)
317 }
318
319 #[inline]
320 pub fn push_non_formal(&mut self, arg: ABIArg) {
321 self.non_formal_flag = true;
322 self.sig_set_abi_args.push(arg)
323 }
324
325 #[inline]
326 pub fn args(&self) -> &[ABIArg] {
327 &self.sig_set_abi_args[self.start..]
328 }
329
330 #[inline]
331 pub fn args_mut(&mut self) -> &mut [ABIArg] {
332 &mut self.sig_set_abi_args[self.start..]
333 }
334}
335
336/// Trait implemented by machine-specific backend to provide information about
337/// register assignments and to allow generating the specific instructions for
338/// stack loads/saves, prologues/epilogues, etc.
339pub trait ABIMachineSpec {
340 /// The instruction type.
341 type I: VCodeInst;
342
343 /// The ISA flags type.
344 type F: IsaFlags;
345
346 /// This is the limit for the size of argument and return-value areas on the
347 /// stack. We place a reasonable limit here to avoid integer overflow issues
348 /// with 32-bit arithmetic.
349 const STACK_ARG_RET_SIZE_LIMIT: u32;
350
351 /// Returns the number of bits in a word, that is 32/64 for 32/64-bit architecture.
352 fn word_bits() -> u32;
353
354 /// Returns the number of bytes in a word.
355 fn word_bytes() -> u32 {
356 return Self::word_bits() / 8;
357 }
358
359 /// Returns word-size integer type.
360 fn word_type() -> Type {
361 match Self::word_bits() {
362 32 => I32,
363 64 => I64,
364 _ => unreachable!(),
365 }
366 }
367
368 /// Returns word register class.
369 fn word_reg_class() -> RegClass {
370 RegClass::Int
371 }
372
373 /// Returns required stack alignment in bytes.
374 fn stack_align(call_conv: isa::CallConv) -> u32;
375
376 /// Process a list of parameters or return values and allocate them to registers
377 /// and stack slots.
378 ///
379 /// The argument locations should be pushed onto the given `ArgsAccumulator`
380 /// in order. Any extra arguments added (such as return area pointers)
381 /// should come at the end of the list so that the first N lowered
382 /// parameters align with the N clif parameters.
383 ///
384 /// Returns the stack-space used (rounded up to as alignment requires), and
385 /// if `add_ret_area_ptr` was passed, the index of the extra synthetic arg
386 /// that was added.
387 fn compute_arg_locs(
388 call_conv: isa::CallConv,
389 flags: &settings::Flags,
390 params: &[ir::AbiParam],
391 args_or_rets: ArgsOrRets,
392 add_ret_area_ptr: bool,
393 args: ArgsAccumulator,
394 ) -> CodegenResult<(u32, Option<usize>)>;
395
396 /// Generate a load from the stack.
397 fn gen_load_stack(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I;
398
399 /// Generate a store to the stack.
400 fn gen_store_stack(mem: StackAMode, from_reg: Reg, ty: Type) -> Self::I;
401
402 /// Generate a move.
403 fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Self::I;
404
405 /// Generate an integer-extend operation.
406 fn gen_extend(
407 to_reg: Writable<Reg>,
408 from_reg: Reg,
409 is_signed: bool,
410 from_bits: u8,
411 to_bits: u8,
412 ) -> Self::I;
413
414 /// Generate an "args" pseudo-instruction to capture input args in
415 /// registers.
416 fn gen_args(args: Vec<ArgPair>) -> Self::I;
417
418 /// Generate a "rets" pseudo-instruction that moves vregs to return
419 /// registers.
420 fn gen_rets(rets: Vec<RetPair>) -> Self::I;
421
422 /// Generate an add-with-immediate. Note that even if this uses a scratch
423 /// register, it must satisfy two requirements:
424 ///
425 /// - The add-imm sequence must only clobber caller-save registers that are
426 /// not used for arguments, because it will be placed in the prologue
427 /// before the clobbered callee-save registers are saved.
428 ///
429 /// - The add-imm sequence must work correctly when `from_reg` and/or
430 /// `into_reg` are the register returned by `get_stacklimit_reg()`.
431 fn gen_add_imm(
432 call_conv: isa::CallConv,
433 into_reg: Writable<Reg>,
434 from_reg: Reg,
435 imm: u32,
436 ) -> SmallInstVec<Self::I>;
437
438 /// Generate a sequence that traps with a `TrapCode::StackOverflow` code if
439 /// the stack pointer is less than the given limit register (assuming the
440 /// stack grows downward).
441 fn gen_stack_lower_bound_trap(limit_reg: Reg) -> SmallInstVec<Self::I>;
442
443 /// Generate an instruction to compute an address of a stack slot (FP- or
444 /// SP-based offset).
445 fn gen_get_stack_addr(mem: StackAMode, into_reg: Writable<Reg>) -> Self::I;
446
447 /// Get a fixed register to use to compute a stack limit. This is needed for
448 /// certain sequences generated after the register allocator has already
449 /// run. This must satisfy two requirements:
450 ///
451 /// - It must be a caller-save register that is not used for arguments,
452 /// because it will be clobbered in the prologue before the clobbered
453 /// callee-save registers are saved.
454 ///
455 /// - It must be safe to pass as an argument and/or destination to
456 /// `gen_add_imm()`. This is relevant when an addition with a large
457 /// immediate needs its own temporary; it cannot use the same fixed
458 /// temporary as this one.
459 fn get_stacklimit_reg(call_conv: isa::CallConv) -> Reg;
460
461 /// Generate a load to the given [base+offset] address.
462 fn gen_load_base_offset(into_reg: Writable<Reg>, base: Reg, offset: i32, ty: Type) -> Self::I;
463
464 /// Generate a store from the given [base+offset] address.
465 fn gen_store_base_offset(base: Reg, offset: i32, from_reg: Reg, ty: Type) -> Self::I;
466
467 /// Adjust the stack pointer up or down.
468 fn gen_sp_reg_adjust(amount: i32) -> SmallInstVec<Self::I>;
469
470 /// Compute a FrameLayout structure containing a sorted list of all clobbered
471 /// registers that are callee-saved according to the ABI, as well as the sizes
472 /// of all parts of the stack frame. The result is used to emit the prologue
473 /// and epilogue routines.
474 fn compute_frame_layout(
475 call_conv: isa::CallConv,
476 flags: &settings::Flags,
477 sig: &Signature,
478 regs: &[Writable<RealReg>],
479 is_leaf: bool,
480 incoming_args_size: u32,
481 tail_args_size: u32,
482 fixed_frame_storage_size: u32,
483 outgoing_args_size: u32,
484 ) -> FrameLayout;
485
486 /// Generate the usual frame-setup sequence for this architecture: e.g.,
487 /// `push rbp / mov rbp, rsp` on x86-64, or `stp fp, lr, [sp, #-16]!` on
488 /// AArch64.
489 fn gen_prologue_frame_setup(
490 call_conv: isa::CallConv,
491 flags: &settings::Flags,
492 isa_flags: &Self::F,
493 frame_layout: &FrameLayout,
494 ) -> SmallInstVec<Self::I>;
495
496 /// Generate the usual frame-restore sequence for this architecture.
497 fn gen_epilogue_frame_restore(
498 call_conv: isa::CallConv,
499 flags: &settings::Flags,
500 isa_flags: &Self::F,
501 frame_layout: &FrameLayout,
502 ) -> SmallInstVec<Self::I>;
503
504 /// Generate a return instruction.
505 fn gen_return(
506 call_conv: isa::CallConv,
507 isa_flags: &Self::F,
508 frame_layout: &FrameLayout,
509 ) -> SmallInstVec<Self::I>;
510
511 /// Generate a probestack call.
512 fn gen_probestack(insts: &mut SmallInstVec<Self::I>, frame_size: u32);
513
514 /// Generate a inline stack probe.
515 fn gen_inline_probestack(
516 insts: &mut SmallInstVec<Self::I>,
517 call_conv: isa::CallConv,
518 frame_size: u32,
519 guard_size: u32,
520 );
521
522 /// Generate a clobber-save sequence. The implementation here should return
523 /// a sequence of instructions that "push" or otherwise save to the stack all
524 /// registers written/modified by the function body that are callee-saved.
525 /// The sequence of instructions should adjust the stack pointer downward,
526 /// and should align as necessary according to ABI requirements.
527 fn gen_clobber_save(
528 call_conv: isa::CallConv,
529 flags: &settings::Flags,
530 frame_layout: &FrameLayout,
531 ) -> SmallVec<[Self::I; 16]>;
532
533 /// Generate a clobber-restore sequence. This sequence should perform the
534 /// opposite of the clobber-save sequence generated above, assuming that SP
535 /// going into the sequence is at the same point that it was left when the
536 /// clobber-save sequence finished.
537 fn gen_clobber_restore(
538 call_conv: isa::CallConv,
539 flags: &settings::Flags,
540 frame_layout: &FrameLayout,
541 ) -> SmallVec<[Self::I; 16]>;
542
543 /// Generate a call instruction/sequence. This method is provided one
544 /// temporary register to use to synthesize the called address, if needed.
545 fn gen_call(dest: &CallDest, tmp: Writable<Reg>, info: CallInfo<()>) -> SmallVec<[Self::I; 2]>;
546
547 /// Generate a memcpy invocation. Used to set up struct
548 /// args. Takes `src`, `dst` as read-only inputs and passes a temporary
549 /// allocator.
550 fn gen_memcpy<F: FnMut(Type) -> Writable<Reg>>(
551 call_conv: isa::CallConv,
552 dst: Reg,
553 src: Reg,
554 size: usize,
555 alloc_tmp: F,
556 ) -> SmallVec<[Self::I; 8]>;
557
558 /// Get the number of spillslots required for the given register-class.
559 fn get_number_of_spillslots_for_value(
560 rc: RegClass,
561 target_vector_bytes: u32,
562 isa_flags: &Self::F,
563 ) -> u32;
564
565 /// Get the ABI-dependent MachineEnv for managing register allocation.
566 fn get_machine_env(flags: &settings::Flags, call_conv: isa::CallConv) -> &MachineEnv;
567
568 /// Get all caller-save registers, that is, registers that we expect
569 /// not to be saved across a call to a callee with the given ABI.
570 fn get_regs_clobbered_by_call(call_conv_of_callee: isa::CallConv) -> PRegSet;
571
572 /// Get the needed extension mode, given the mode attached to the argument
573 /// in the signature and the calling convention. The input (the attribute in
574 /// the signature) specifies what extension type should be done *if* the ABI
575 /// requires extension to the full register; this method's return value
576 /// indicates whether the extension actually *will* be done.
577 fn get_ext_mode(
578 call_conv: isa::CallConv,
579 specified: ir::ArgumentExtension,
580 ) -> ir::ArgumentExtension;
581}
582
583/// Out-of-line data for calls, to keep the size of `Inst` down.
584#[derive(Clone, Debug)]
585pub struct CallInfo<T> {
586 /// Receiver of this call
587 pub dest: T,
588 /// Register uses of this call.
589 pub uses: CallArgList,
590 /// Register defs of this call.
591 pub defs: CallRetList,
592 /// Registers clobbered by this call, as per its calling convention.
593 pub clobbers: PRegSet,
594 /// The calling convention of the callee.
595 pub callee_conv: isa::CallConv,
596 /// The calling convention of the caller.
597 pub caller_conv: isa::CallConv,
598 /// The number of bytes that the callee will pop from the stack for the
599 /// caller, if any. (Used for popping stack arguments with the `tail`
600 /// calling convention.)
601 pub callee_pop_size: u32,
602}
603
604impl<T> CallInfo<T> {
605 /// Creates an empty set of info with no clobbers/uses/etc with the
606 /// specified ABI
607 pub fn empty(dest: T, call_conv: isa::CallConv) -> CallInfo<T> {
608 CallInfo {
609 dest,
610 uses: smallvec![],
611 defs: smallvec![],
612 clobbers: PRegSet::empty(),
613 caller_conv: call_conv,
614 callee_conv: call_conv,
615 callee_pop_size: 0,
616 }
617 }
618
619 /// Change the `T` payload on this info to `U`.
620 pub fn map<U>(self, f: impl FnOnce(T) -> U) -> CallInfo<U> {
621 CallInfo {
622 dest: f(self.dest),
623 uses: self.uses,
624 defs: self.defs,
625 clobbers: self.clobbers,
626 caller_conv: self.caller_conv,
627 callee_conv: self.callee_conv,
628 callee_pop_size: self.callee_pop_size,
629 }
630 }
631}
632
633/// The id of an ABI signature within the `SigSet`.
634#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
635pub struct Sig(u32);
636cranelift_entity::entity_impl!(Sig);
637
638impl Sig {
639 fn prev(self) -> Option<Sig> {
640 self.0.checked_sub(1).map(Sig)
641 }
642}
643
644/// ABI information shared between body (callee) and caller.
645#[derive(Clone, Debug)]
646pub struct SigData {
647 /// Currently both return values and arguments are stored in a continuous space vector
648 /// in `SigSet::abi_args`.
649 ///
650 /// ```plain
651 /// +----------------------------------------------+
652 /// | return values |
653 /// | ... |
654 /// rets_end --> +----------------------------------------------+
655 /// | arguments |
656 /// | ... |
657 /// args_end --> +----------------------------------------------+
658 ///
659 /// ```
660 ///
661 /// Note we only store two offsets as rets_end == args_start, and rets_start == prev.args_end.
662 ///
663 /// Argument location ending offset (regs or stack slots). Stack offsets are relative to
664 /// SP on entry to function.
665 ///
666 /// This is a index into the `SigSet::abi_args`.
667 args_end: u32,
668
669 /// Return-value location ending offset. Stack offsets are relative to the return-area
670 /// pointer.
671 ///
672 /// This is a index into the `SigSet::abi_args`.
673 rets_end: u32,
674
675 /// Space on stack used to store arguments. We're storing the size in u32 to
676 /// reduce the size of the struct.
677 sized_stack_arg_space: u32,
678
679 /// Space on stack used to store return values. We're storing the size in u32 to
680 /// reduce the size of the struct.
681 sized_stack_ret_space: u32,
682
683 /// Index in `args` of the stack-return-value-area argument.
684 stack_ret_arg: Option<u16>,
685
686 /// Calling convention used.
687 call_conv: isa::CallConv,
688}
689
690impl SigData {
691 /// Get total stack space required for arguments.
692 pub fn sized_stack_arg_space(&self) -> i64 {
693 self.sized_stack_arg_space.into()
694 }
695
696 /// Get total stack space required for return values.
697 pub fn sized_stack_ret_space(&self) -> i64 {
698 self.sized_stack_ret_space.into()
699 }
700
701 /// Get calling convention used.
702 pub fn call_conv(&self) -> isa::CallConv {
703 self.call_conv
704 }
705
706 /// The index of the stack-return-value-area argument, if any.
707 pub fn stack_ret_arg(&self) -> Option<u16> {
708 self.stack_ret_arg
709 }
710}
711
712/// A (mostly) deduplicated set of ABI signatures.
713///
714/// We say "mostly" because we do not dedupe between signatures interned via
715/// `ir::SigRef` (direct and indirect calls; the vast majority of signatures in
716/// this set) vs via `ir::Signature` (the callee itself and libcalls). Doing
717/// this final bit of deduplication would require filling out the
718/// `ir_signature_to_abi_sig`, which is a bunch of allocations (not just the
719/// hash map itself but params and returns vecs in each signature) that we want
720/// to avoid.
721///
722/// In general, prefer using the `ir::SigRef`-taking methods to the
723/// `ir::Signature`-taking methods when you can get away with it, as they don't
724/// require cloning non-copy types that will trigger heap allocations.
725///
726/// This type can be indexed by `Sig` to access its associated `SigData`.
727pub struct SigSet {
728 /// Interned `ir::Signature`s that we already have an ABI signature for.
729 ir_signature_to_abi_sig: FxHashMap<ir::Signature, Sig>,
730
731 /// Interned `ir::SigRef`s that we already have an ABI signature for.
732 ir_sig_ref_to_abi_sig: SecondaryMap<ir::SigRef, Option<Sig>>,
733
734 /// A single, shared allocation for all `ABIArg`s used by all
735 /// `SigData`s. Each `SigData` references its args/rets via indices into
736 /// this allocation.
737 abi_args: Vec<ABIArg>,
738
739 /// The actual ABI signatures, keyed by `Sig`.
740 sigs: PrimaryMap<Sig, SigData>,
741}
742
743impl SigSet {
744 /// Construct a new `SigSet`, interning all of the signatures used by the
745 /// given function.
746 pub fn new<M>(func: &ir::Function, flags: &settings::Flags) -> CodegenResult<Self>
747 where
748 M: ABIMachineSpec,
749 {
750 let arg_estimate = func.dfg.signatures.len() * 6;
751
752 let mut sigs = SigSet {
753 ir_signature_to_abi_sig: FxHashMap::default(),
754 ir_sig_ref_to_abi_sig: SecondaryMap::with_capacity(func.dfg.signatures.len()),
755 abi_args: Vec::with_capacity(arg_estimate),
756 sigs: PrimaryMap::with_capacity(1 + func.dfg.signatures.len()),
757 };
758
759 sigs.make_abi_sig_from_ir_signature::<M>(func.signature.clone(), flags)?;
760 for sig_ref in func.dfg.signatures.keys() {
761 sigs.make_abi_sig_from_ir_sig_ref::<M>(sig_ref, &func.dfg, flags)?;
762 }
763
764 Ok(sigs)
765 }
766
767 /// Have we already interned an ABI signature for the given `ir::Signature`?
768 pub fn have_abi_sig_for_signature(&self, signature: &ir::Signature) -> bool {
769 self.ir_signature_to_abi_sig.contains_key(signature)
770 }
771
772 /// Construct and intern an ABI signature for the given `ir::Signature`.
773 pub fn make_abi_sig_from_ir_signature<M>(
774 &mut self,
775 signature: ir::Signature,
776 flags: &settings::Flags,
777 ) -> CodegenResult<Sig>
778 where
779 M: ABIMachineSpec,
780 {
781 // Because the `HashMap` entry API requires taking ownership of the
782 // lookup key -- and we want to avoid unnecessary clones of
783 // `ir::Signature`s, even at the cost of duplicate lookups -- we can't
784 // have a single, get-or-create-style method for interning
785 // `ir::Signature`s into ABI signatures. So at least (debug) assert that
786 // we aren't creating duplicate ABI signatures for the same
787 // `ir::Signature`.
788 debug_assert!(!self.have_abi_sig_for_signature(&signature));
789
790 let sig_data = self.from_func_sig::<M>(&signature, flags)?;
791 let sig = self.sigs.push(sig_data);
792 self.ir_signature_to_abi_sig.insert(signature, sig);
793 Ok(sig)
794 }
795
796 fn make_abi_sig_from_ir_sig_ref<M>(
797 &mut self,
798 sig_ref: ir::SigRef,
799 dfg: &ir::DataFlowGraph,
800 flags: &settings::Flags,
801 ) -> CodegenResult<Sig>
802 where
803 M: ABIMachineSpec,
804 {
805 if let Some(sig) = self.ir_sig_ref_to_abi_sig[sig_ref] {
806 return Ok(sig);
807 }
808 let signature = &dfg.signatures[sig_ref];
809 let sig_data = self.from_func_sig::<M>(signature, flags)?;
810 let sig = self.sigs.push(sig_data);
811 self.ir_sig_ref_to_abi_sig[sig_ref] = Some(sig);
812 Ok(sig)
813 }
814
815 /// Get the already-interned ABI signature id for the given `ir::SigRef`.
816 pub fn abi_sig_for_sig_ref(&self, sig_ref: ir::SigRef) -> Sig {
817 self.ir_sig_ref_to_abi_sig[sig_ref]
818 .expect("must call `make_abi_sig_from_ir_sig_ref` before `get_abi_sig_for_sig_ref`")
819 }
820
821 /// Get the already-interned ABI signature id for the given `ir::Signature`.
822 pub fn abi_sig_for_signature(&self, signature: &ir::Signature) -> Sig {
823 self.ir_signature_to_abi_sig
824 .get(signature)
825 .copied()
826 .expect("must call `make_abi_sig_from_ir_signature` before `get_abi_sig_for_signature`")
827 }
828
829 pub fn from_func_sig<M: ABIMachineSpec>(
830 &mut self,
831 sig: &ir::Signature,
832 flags: &settings::Flags,
833 ) -> CodegenResult<SigData> {
834 // Keep in sync with ensure_struct_return_ptr_is_returned
835 if sig.uses_special_return(ArgumentPurpose::StructReturn) {
836 panic!("Explicit StructReturn return value not allowed: {sig:?}")
837 }
838 let tmp;
839 let returns = if let Some(struct_ret_index) =
840 sig.special_param_index(ArgumentPurpose::StructReturn)
841 {
842 if !sig.returns.is_empty() {
843 panic!("No return values are allowed when using StructReturn: {sig:?}");
844 }
845 tmp = [sig.params[struct_ret_index]];
846 &tmp
847 } else {
848 sig.returns.as_slice()
849 };
850
851 // Compute args and retvals from signature. Handle retvals first,
852 // because we may need to add a return-area arg to the args.
853
854 // NOTE: We rely on the order of the args (rets -> args) inserted to compute the offsets in
855 // `SigSet::args()` and `SigSet::rets()`. Therefore, we cannot change the two
856 // compute_arg_locs order.
857 let (sized_stack_ret_space, _) = M::compute_arg_locs(
858 sig.call_conv,
859 flags,
860 &returns,
861 ArgsOrRets::Rets,
862 /* extra ret-area ptr = */ false,
863 ArgsAccumulator::new(&mut self.abi_args),
864 )?;
865 if !flags.enable_multi_ret_implicit_sret() {
866 assert_eq!(sized_stack_ret_space, 0);
867 }
868 let rets_end = u32::try_from(self.abi_args.len()).unwrap();
869
870 // To avoid overflow issues, limit the return size to something reasonable.
871 if sized_stack_ret_space > M::STACK_ARG_RET_SIZE_LIMIT {
872 return Err(CodegenError::ImplLimitExceeded);
873 }
874
875 let need_stack_return_area = sized_stack_ret_space > 0;
876 if need_stack_return_area {
877 assert!(!sig.uses_special_param(ir::ArgumentPurpose::StructReturn));
878 }
879
880 let (sized_stack_arg_space, stack_ret_arg) = M::compute_arg_locs(
881 sig.call_conv,
882 flags,
883 &sig.params,
884 ArgsOrRets::Args,
885 need_stack_return_area,
886 ArgsAccumulator::new(&mut self.abi_args),
887 )?;
888 let args_end = u32::try_from(self.abi_args.len()).unwrap();
889
890 // To avoid overflow issues, limit the arg size to something reasonable.
891 if sized_stack_arg_space > M::STACK_ARG_RET_SIZE_LIMIT {
892 return Err(CodegenError::ImplLimitExceeded);
893 }
894
895 trace!(
896 "ABISig: sig {:?} => args end = {} rets end = {}
897 arg stack = {} ret stack = {} stack_ret_arg = {:?}",
898 sig,
899 args_end,
900 rets_end,
901 sized_stack_arg_space,
902 sized_stack_ret_space,
903 need_stack_return_area,
904 );
905
906 let stack_ret_arg = stack_ret_arg.map(|s| u16::try_from(s).unwrap());
907 Ok(SigData {
908 args_end,
909 rets_end,
910 sized_stack_arg_space,
911 sized_stack_ret_space,
912 stack_ret_arg,
913 call_conv: sig.call_conv,
914 })
915 }
916
917 /// Get this signature's ABI arguments.
918 pub fn args(&self, sig: Sig) -> &[ABIArg] {
919 let sig_data = &self.sigs[sig];
920 // Please see comments in `SigSet::from_func_sig` of how we store the offsets.
921 let start = usize::try_from(sig_data.rets_end).unwrap();
922 let end = usize::try_from(sig_data.args_end).unwrap();
923 &self.abi_args[start..end]
924 }
925
926 /// Get information specifying how to pass the implicit pointer
927 /// to the return-value area on the stack, if required.
928 pub fn get_ret_arg(&self, sig: Sig) -> Option<ABIArg> {
929 let sig_data = &self.sigs[sig];
930 if let Some(i) = sig_data.stack_ret_arg {
931 Some(self.args(sig)[usize::from(i)].clone())
932 } else {
933 None
934 }
935 }
936
937 /// Get information specifying how to pass one argument.
938 pub fn get_arg(&self, sig: Sig, idx: usize) -> ABIArg {
939 self.args(sig)[idx].clone()
940 }
941
942 /// Get this signature's ABI returns.
943 pub fn rets(&self, sig: Sig) -> &[ABIArg] {
944 let sig_data = &self.sigs[sig];
945 // Please see comments in `SigSet::from_func_sig` of how we store the offsets.
946 let start = usize::try_from(sig.prev().map_or(0, |prev| self.sigs[prev].args_end)).unwrap();
947 let end = usize::try_from(sig_data.rets_end).unwrap();
948 &self.abi_args[start..end]
949 }
950
951 /// Get information specifying how to pass one return value.
952 pub fn get_ret(&self, sig: Sig, idx: usize) -> ABIArg {
953 self.rets(sig)[idx].clone()
954 }
955
956 /// Get the number of arguments expected.
957 pub fn num_args(&self, sig: Sig) -> usize {
958 let len = self.args(sig).len();
959 if self.sigs[sig].stack_ret_arg.is_some() {
960 len - 1
961 } else {
962 len
963 }
964 }
965
966 /// Get the number of return values expected.
967 pub fn num_rets(&self, sig: Sig) -> usize {
968 self.rets(sig).len()
969 }
970}
971
972// NB: we do _not_ implement `IndexMut` because these signatures are
973// deduplicated and shared!
974impl std::ops::Index<Sig> for SigSet {
975 type Output = SigData;
976
977 fn index(&self, sig: Sig) -> &Self::Output {
978 &self.sigs[sig]
979 }
980}
981
982/// Structure describing the layout of a function's stack frame.
983#[derive(Clone, Debug, Default)]
984pub struct FrameLayout {
985 /// N.B. The areas whose sizes are given in this structure fully
986 /// cover the current function's stack frame, from high to low
987 /// stack addresses in the sequence below. Each size contains
988 /// any alignment padding that may be required by the ABI.
989
990 /// Size of incoming arguments on the stack. This is not technically
991 /// part of this function's frame, but code in the function will still
992 /// need to access it. Depending on the ABI, we may need to set up a
993 /// frame pointer to do so; we also may need to pop this area from the
994 /// stack upon return.
995 pub incoming_args_size: u32,
996
997 /// The size of the incoming argument area, taking into account any
998 /// potential increase in size required for tail calls present in the
999 /// function. In the case that no tail calls are present, this value
1000 /// will be the same as [`Self::incoming_args_size`].
1001 pub tail_args_size: u32,
1002
1003 /// Size of the "setup area", typically holding the return address
1004 /// and/or the saved frame pointer. This may be written either during
1005 /// the call itself (e.g. a pushed return address) or by code emitted
1006 /// from gen_prologue_frame_setup. In any case, after that code has
1007 /// completed execution, the stack pointer is expected to point to the
1008 /// bottom of this area. The same holds at the start of code emitted
1009 /// by gen_epilogue_frame_restore.
1010 pub setup_area_size: u32,
1011
1012 /// Size of the area used to save callee-saved clobbered registers.
1013 /// This area is accessed by code emitted from gen_clobber_save and
1014 /// gen_clobber_restore.
1015 pub clobber_size: u32,
1016
1017 /// Storage allocated for the fixed part of the stack frame.
1018 /// This contains stack slots and spill slots.
1019 pub fixed_frame_storage_size: u32,
1020
1021 /// Stack size to be reserved for outgoing arguments, if used by
1022 /// the current ABI, or 0 otherwise. After gen_clobber_save and
1023 /// before gen_clobber_restore, the stack pointer points to the
1024 /// bottom of this area.
1025 pub outgoing_args_size: u32,
1026
1027 /// Sorted list of callee-saved registers that are clobbered
1028 /// according to the ABI. These registers will be saved and
1029 /// restored by gen_clobber_save and gen_clobber_restore.
1030 pub clobbered_callee_saves: Vec<Writable<RealReg>>,
1031}
1032
1033impl FrameLayout {
1034 /// Split the clobbered callee-save registers into integer-class and
1035 /// float-class groups.
1036 ///
1037 /// This method does not currently support vector-class callee-save
1038 /// registers because no current backend has them.
1039 pub fn clobbered_callee_saves_by_class(&self) -> (&[Writable<RealReg>], &[Writable<RealReg>]) {
1040 let (ints, floats) = self.clobbered_callee_saves.split_at(
1041 self.clobbered_callee_saves
1042 .partition_point(|r| r.to_reg().class() == RegClass::Int),
1043 );
1044 debug_assert!(floats.iter().all(|r| r.to_reg().class() == RegClass::Float));
1045 (ints, floats)
1046 }
1047
1048 /// The size of FP to SP while the frame is active (not during prologue
1049 /// setup or epilogue tear down).
1050 pub fn active_size(&self) -> u32 {
1051 self.outgoing_args_size + self.fixed_frame_storage_size + self.clobber_size
1052 }
1053
1054 /// Get the offset from the SP to the sized stack slots area.
1055 pub fn sp_to_sized_stack_slots(&self) -> u32 {
1056 self.outgoing_args_size
1057 }
1058}
1059
1060/// ABI object for a function body.
1061pub struct Callee<M: ABIMachineSpec> {
1062 /// CLIF-level signature, possibly normalized.
1063 ir_sig: ir::Signature,
1064 /// Signature: arg and retval regs.
1065 sig: Sig,
1066 /// Defined dynamic types.
1067 dynamic_type_sizes: HashMap<Type, u32>,
1068 /// Offsets to each dynamic stackslot.
1069 dynamic_stackslots: PrimaryMap<DynamicStackSlot, u32>,
1070 /// Offsets to each sized stackslot.
1071 sized_stackslots: PrimaryMap<StackSlot, u32>,
1072 /// Total stack size of all stackslots
1073 stackslots_size: u32,
1074 /// Stack size to be reserved for outgoing arguments.
1075 outgoing_args_size: u32,
1076 /// Initially the number of bytes originating in the callers frame where stack arguments will
1077 /// live. After lowering this number may be larger than the size expected by the function being
1078 /// compiled, as tail calls potentially require more space for stack arguments.
1079 tail_args_size: u32,
1080 /// Register-argument defs, to be provided to the `args`
1081 /// pseudo-inst, and pregs to constrain them to.
1082 reg_args: Vec<ArgPair>,
1083 /// Finalized frame layout for this function.
1084 frame_layout: Option<FrameLayout>,
1085 /// The register holding the return-area pointer, if needed.
1086 ret_area_ptr: Option<Reg>,
1087 /// Calling convention this function expects.
1088 call_conv: isa::CallConv,
1089 /// The settings controlling this function's compilation.
1090 flags: settings::Flags,
1091 /// The ISA-specific flag values controlling this function's compilation.
1092 isa_flags: M::F,
1093 /// Whether or not this function is a "leaf", meaning it calls no other
1094 /// functions
1095 is_leaf: bool,
1096 /// If this function has a stack limit specified, then `Reg` is where the
1097 /// stack limit will be located after the instructions specified have been
1098 /// executed.
1099 ///
1100 /// Note that this is intended for insertion into the prologue, if
1101 /// present. Also note that because the instructions here execute in the
1102 /// prologue this happens after legalization/register allocation/etc so we
1103 /// need to be extremely careful with each instruction. The instructions are
1104 /// manually register-allocated and carefully only use caller-saved
1105 /// registers and keep nothing live after this sequence of instructions.
1106 stack_limit: Option<(Reg, SmallInstVec<M::I>)>,
1107
1108 _mach: PhantomData<M>,
1109}
1110
1111fn get_special_purpose_param_register(
1112 f: &ir::Function,
1113 sigs: &SigSet,
1114 sig: Sig,
1115 purpose: ir::ArgumentPurpose,
1116) -> Option<Reg> {
1117 let idx = f.signature.special_param_index(purpose)?;
1118 match &sigs.args(sig)[idx] {
1119 &ABIArg::Slots { ref slots, .. } => match &slots[0] {
1120 &ABIArgSlot::Reg { reg, .. } => Some(reg.into()),
1121 _ => None,
1122 },
1123 _ => None,
1124 }
1125}
1126
1127fn checked_round_up(val: u32, mask: u32) -> Option<u32> {
1128 Some(val.checked_add(mask)? & !mask)
1129}
1130
1131impl<M: ABIMachineSpec> Callee<M> {
1132 /// Create a new body ABI instance.
1133 pub fn new(
1134 f: &ir::Function,
1135 isa: &dyn TargetIsa,
1136 isa_flags: &M::F,
1137 sigs: &SigSet,
1138 ) -> CodegenResult<Self> {
1139 trace!("ABI: func signature {:?}", f.signature);
1140
1141 let flags = isa.flags().clone();
1142 let sig = sigs.abi_sig_for_signature(&f.signature);
1143
1144 let call_conv = f.signature.call_conv;
1145 // Only these calling conventions are supported.
1146 debug_assert!(
1147 call_conv == isa::CallConv::SystemV
1148 || call_conv == isa::CallConv::Tail
1149 || call_conv == isa::CallConv::Fast
1150 || call_conv == isa::CallConv::Cold
1151 || call_conv == isa::CallConv::WindowsFastcall
1152 || call_conv == isa::CallConv::AppleAarch64
1153 || call_conv == isa::CallConv::Winch,
1154 "Unsupported calling convention: {call_conv:?}"
1155 );
1156
1157 // Compute sized stackslot locations and total stackslot size.
1158 let mut end_offset: u32 = 0;
1159 let mut sized_stackslots = PrimaryMap::new();
1160
1161 for (stackslot, data) in f.sized_stack_slots.iter() {
1162 // We start our computation possibly unaligned where the previous
1163 // stackslot left off.
1164 let unaligned_start_offset = end_offset;
1165
1166 // The start of the stackslot must be aligned.
1167 //
1168 // We always at least machine-word-align slots, but also
1169 // satisfy the user's requested alignment.
1170 debug_assert!(data.align_shift < 32);
1171 let align = std::cmp::max(M::word_bytes(), 1u32 << data.align_shift);
1172 let mask = align - 1;
1173 let start_offset = checked_round_up(unaligned_start_offset, mask)
1174 .ok_or(CodegenError::ImplLimitExceeded)?;
1175
1176 // The end offset is the the start offset increased by the size
1177 end_offset = start_offset
1178 .checked_add(data.size)
1179 .ok_or(CodegenError::ImplLimitExceeded)?;
1180
1181 debug_assert_eq!(stackslot.as_u32() as usize, sized_stackslots.len());
1182 sized_stackslots.push(start_offset);
1183 }
1184
1185 // Compute dynamic stackslot locations and total stackslot size.
1186 let mut dynamic_stackslots = PrimaryMap::new();
1187 for (stackslot, data) in f.dynamic_stack_slots.iter() {
1188 debug_assert_eq!(stackslot.as_u32() as usize, dynamic_stackslots.len());
1189
1190 // This computation is similar to the stackslots above
1191 let unaligned_start_offset = end_offset;
1192
1193 let mask = M::word_bytes() - 1;
1194 let start_offset = checked_round_up(unaligned_start_offset, mask)
1195 .ok_or(CodegenError::ImplLimitExceeded)?;
1196
1197 let ty = f.get_concrete_dynamic_ty(data.dyn_ty).ok_or_else(|| {
1198 CodegenError::Unsupported(format!("invalid dynamic vector type: {}", data.dyn_ty))
1199 })?;
1200
1201 end_offset = start_offset
1202 .checked_add(isa.dynamic_vector_bytes(ty))
1203 .ok_or(CodegenError::ImplLimitExceeded)?;
1204
1205 dynamic_stackslots.push(start_offset);
1206 }
1207
1208 // The size of the stackslots needs to be word aligned
1209 let stackslots_size = checked_round_up(end_offset, M::word_bytes() - 1)
1210 .ok_or(CodegenError::ImplLimitExceeded)?;
1211
1212 let mut dynamic_type_sizes = HashMap::with_capacity(f.dfg.dynamic_types.len());
1213 for (dyn_ty, _data) in f.dfg.dynamic_types.iter() {
1214 let ty = f
1215 .get_concrete_dynamic_ty(dyn_ty)
1216 .unwrap_or_else(|| panic!("invalid dynamic vector type: {dyn_ty}"));
1217 let size = isa.dynamic_vector_bytes(ty);
1218 dynamic_type_sizes.insert(ty, size);
1219 }
1220
1221 // Figure out what instructions, if any, will be needed to check the
1222 // stack limit. This can either be specified as a special-purpose
1223 // argument or as a global value which often calculates the stack limit
1224 // from the arguments.
1225 let stack_limit = f
1226 .stack_limit
1227 .map(|gv| gen_stack_limit::<M>(f, sigs, sig, gv));
1228
1229 let tail_args_size = sigs[sig].sized_stack_arg_space;
1230
1231 Ok(Self {
1232 ir_sig: ensure_struct_return_ptr_is_returned(&f.signature),
1233 sig,
1234 dynamic_stackslots,
1235 dynamic_type_sizes,
1236 sized_stackslots,
1237 stackslots_size,
1238 outgoing_args_size: 0,
1239 tail_args_size,
1240 reg_args: vec![],
1241 frame_layout: None,
1242 ret_area_ptr: None,
1243 call_conv,
1244 flags,
1245 isa_flags: isa_flags.clone(),
1246 is_leaf: f.is_leaf(),
1247 stack_limit,
1248 _mach: PhantomData,
1249 })
1250 }
1251
1252 /// Inserts instructions necessary for checking the stack limit into the
1253 /// prologue.
1254 ///
1255 /// This function will generate instructions necessary for perform a stack
1256 /// check at the header of a function. The stack check is intended to trap
1257 /// if the stack pointer goes below a particular threshold, preventing stack
1258 /// overflow in wasm or other code. The `stack_limit` argument here is the
1259 /// register which holds the threshold below which we're supposed to trap.
1260 /// This function is known to allocate `stack_size` bytes and we'll push
1261 /// instructions onto `insts`.
1262 ///
1263 /// Note that the instructions generated here are special because this is
1264 /// happening so late in the pipeline (e.g. after register allocation). This
1265 /// means that we need to do manual register allocation here and also be
1266 /// careful to not clobber any callee-saved or argument registers. For now
1267 /// this routine makes do with the `spilltmp_reg` as one temporary
1268 /// register, and a second register of `tmp2` which is caller-saved. This
1269 /// should be fine for us since no spills should happen in this sequence of
1270 /// instructions, so our register won't get accidentally clobbered.
1271 ///
1272 /// No values can be live after the prologue, but in this case that's ok
1273 /// because we just need to perform a stack check before progressing with
1274 /// the rest of the function.
1275 fn insert_stack_check(
1276 &self,
1277 stack_limit: Reg,
1278 stack_size: u32,
1279 insts: &mut SmallInstVec<M::I>,
1280 ) {
1281 // With no explicit stack allocated we can just emit the simple check of
1282 // the stack registers against the stack limit register, and trap if
1283 // it's out of bounds.
1284 if stack_size == 0 {
1285 insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
1286 return;
1287 }
1288
1289 // Note that the 32k stack size here is pretty special. See the
1290 // documentation in x86/abi.rs for why this is here. The general idea is
1291 // that we're protecting against overflow in the addition that happens
1292 // below.
1293 if stack_size >= 32 * 1024 {
1294 insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
1295 }
1296
1297 // Add the `stack_size` to `stack_limit`, placing the result in
1298 // `scratch`.
1299 //
1300 // Note though that `stack_limit`'s register may be the same as
1301 // `scratch`. If our stack size doesn't fit into an immediate this
1302 // means we need a second scratch register for loading the stack size
1303 // into a register.
1304 let scratch = Writable::from_reg(M::get_stacklimit_reg(self.call_conv));
1305 insts.extend(M::gen_add_imm(self.call_conv, scratch, stack_limit, stack_size).into_iter());
1306 insts.extend(M::gen_stack_lower_bound_trap(scratch.to_reg()));
1307 }
1308}
1309
1310/// Generates the instructions necessary for the `gv` to be materialized into a
1311/// register.
1312///
1313/// This function will return a register that will contain the result of
1314/// evaluating `gv`. It will also return any instructions necessary to calculate
1315/// the value of the register.
1316///
1317/// Note that global values are typically lowered to instructions via the
1318/// standard legalization pass. Unfortunately though prologue generation happens
1319/// so late in the pipeline that we can't use these legalization passes to
1320/// generate the instructions for `gv`. As a result we duplicate some lowering
1321/// of `gv` here and support only some global values. This is similar to what
1322/// the x86 backend does for now, and hopefully this can be somewhat cleaned up
1323/// in the future too!
1324///
1325/// Also note that this function will make use of `writable_spilltmp_reg()` as a
1326/// temporary register to store values in if necessary. Currently after we write
1327/// to this register there's guaranteed to be no spilled values between where
1328/// it's used, because we're not participating in register allocation anyway!
1329fn gen_stack_limit<M: ABIMachineSpec>(
1330 f: &ir::Function,
1331 sigs: &SigSet,
1332 sig: Sig,
1333 gv: ir::GlobalValue,
1334) -> (Reg, SmallInstVec<M::I>) {
1335 let mut insts = smallvec![];
1336 let reg = generate_gv::<M>(f, sigs, sig, gv, &mut insts);
1337 return (reg, insts);
1338}
1339
1340fn generate_gv<M: ABIMachineSpec>(
1341 f: &ir::Function,
1342 sigs: &SigSet,
1343 sig: Sig,
1344 gv: ir::GlobalValue,
1345 insts: &mut SmallInstVec<M::I>,
1346) -> Reg {
1347 match f.global_values[gv] {
1348 // Return the direct register the vmcontext is in
1349 ir::GlobalValueData::VMContext => {
1350 get_special_purpose_param_register(f, sigs, sig, ir::ArgumentPurpose::VMContext)
1351 .expect("no vmcontext parameter found")
1352 }
1353 // Load our base value into a register, then load from that register
1354 // in to a temporary register.
1355 ir::GlobalValueData::Load {
1356 base,
1357 offset,
1358 global_type: _,
1359 flags: _,
1360 } => {
1361 let base = generate_gv::<M>(f, sigs, sig, base, insts);
1362 let into_reg = Writable::from_reg(M::get_stacklimit_reg(f.stencil.signature.call_conv));
1363 insts.push(M::gen_load_base_offset(
1364 into_reg,
1365 base,
1366 offset.into(),
1367 M::word_type(),
1368 ));
1369 return into_reg.to_reg();
1370 }
1371 ref other => panic!("global value for stack limit not supported: {other}"),
1372 }
1373}
1374
1375/// Returns true if the signature needs to be legalized.
1376fn missing_struct_return(sig: &ir::Signature) -> bool {
1377 sig.uses_special_param(ArgumentPurpose::StructReturn)
1378 && !sig.uses_special_return(ArgumentPurpose::StructReturn)
1379}
1380
1381fn ensure_struct_return_ptr_is_returned(sig: &ir::Signature) -> ir::Signature {
1382 // Keep in sync with Callee::new
1383 let mut sig = sig.clone();
1384 if sig.uses_special_return(ArgumentPurpose::StructReturn) {
1385 panic!("Explicit StructReturn return value not allowed: {sig:?}")
1386 }
1387 if let Some(struct_ret_index) = sig.special_param_index(ArgumentPurpose::StructReturn) {
1388 if !sig.returns.is_empty() {
1389 panic!("No return values are allowed when using StructReturn: {sig:?}");
1390 }
1391 sig.returns.insert(0, sig.params[struct_ret_index]);
1392 }
1393 sig
1394}
1395
1396/// ### Pre-Regalloc Functions
1397///
1398/// These methods of `Callee` may only be called before regalloc.
1399impl<M: ABIMachineSpec> Callee<M> {
1400 /// Access the (possibly legalized) signature.
1401 pub fn signature(&self) -> &ir::Signature {
1402 debug_assert!(
1403 !missing_struct_return(&self.ir_sig),
1404 "`Callee::ir_sig` is always legalized"
1405 );
1406 &self.ir_sig
1407 }
1408
1409 /// Initialize. This is called after the Callee is constructed because it
1410 /// may allocate a temp vreg, which can only be allocated once the lowering
1411 /// context exists.
1412 pub fn init_retval_area(
1413 &mut self,
1414 sigs: &SigSet,
1415 vregs: &mut VRegAllocator<M::I>,
1416 ) -> CodegenResult<()> {
1417 if sigs[self.sig].stack_ret_arg.is_some() {
1418 let ret_area_ptr = vregs.alloc(M::word_type())?;
1419 self.ret_area_ptr = Some(ret_area_ptr.only_reg().unwrap());
1420 }
1421 Ok(())
1422 }
1423
1424 /// Get the return area pointer register, if any.
1425 pub fn ret_area_ptr(&self) -> Option<Reg> {
1426 self.ret_area_ptr
1427 }
1428
1429 /// Accumulate outgoing arguments.
1430 ///
1431 /// This ensures that at least `size` bytes are allocated in the prologue to
1432 /// be available for use in function calls to hold arguments and/or return
1433 /// values. If this function is called multiple times, the maximum of all
1434 /// `size` values will be available.
1435 pub fn accumulate_outgoing_args_size(&mut self, size: u32) {
1436 if size > self.outgoing_args_size {
1437 self.outgoing_args_size = size;
1438 }
1439 }
1440
1441 /// Accumulate the incoming argument area size requirements for a tail call,
1442 /// as it could be larger than the incoming arguments of the function
1443 /// currently being compiled.
1444 pub fn accumulate_tail_args_size(&mut self, size: u32) {
1445 if size > self.tail_args_size {
1446 self.tail_args_size = size;
1447 }
1448 }
1449
1450 pub fn is_forward_edge_cfi_enabled(&self) -> bool {
1451 self.isa_flags.is_forward_edge_cfi_enabled()
1452 }
1453
1454 /// Get the calling convention implemented by this ABI object.
1455 pub fn call_conv(&self, sigs: &SigSet) -> isa::CallConv {
1456 sigs[self.sig].call_conv
1457 }
1458
1459 /// Get the ABI-dependent MachineEnv for managing register allocation.
1460 pub fn machine_env(&self, sigs: &SigSet) -> &MachineEnv {
1461 M::get_machine_env(&self.flags, self.call_conv(sigs))
1462 }
1463
1464 /// The offsets of all sized stack slots (not spill slots) for debuginfo purposes.
1465 pub fn sized_stackslot_offsets(&self) -> &PrimaryMap<StackSlot, u32> {
1466 &self.sized_stackslots
1467 }
1468
1469 /// The offsets of all dynamic stack slots (not spill slots) for debuginfo purposes.
1470 pub fn dynamic_stackslot_offsets(&self) -> &PrimaryMap<DynamicStackSlot, u32> {
1471 &self.dynamic_stackslots
1472 }
1473
1474 /// Generate an instruction which copies an argument to a destination
1475 /// register.
1476 pub fn gen_copy_arg_to_regs(
1477 &mut self,
1478 sigs: &SigSet,
1479 idx: usize,
1480 into_regs: ValueRegs<Writable<Reg>>,
1481 vregs: &mut VRegAllocator<M::I>,
1482 ) -> SmallInstVec<M::I> {
1483 let mut insts = smallvec![];
1484 let mut copy_arg_slot_to_reg = |slot: &ABIArgSlot, into_reg: &Writable<Reg>| {
1485 match slot {
1486 &ABIArgSlot::Reg { reg, .. } => {
1487 // Add a preg -> def pair to the eventual `args`
1488 // instruction. Extension mode doesn't matter
1489 // (we're copying out, not in; we ignore high bits
1490 // by convention).
1491 let arg = ArgPair {
1492 vreg: *into_reg,
1493 preg: reg.into(),
1494 };
1495 self.reg_args.push(arg);
1496 }
1497 &ABIArgSlot::Stack {
1498 offset,
1499 ty,
1500 extension,
1501 ..
1502 } => {
1503 // However, we have to respect the extension mode for stack
1504 // slots, or else we grab the wrong bytes on big-endian.
1505 let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
1506 let ty =
1507 if ext != ArgumentExtension::None && M::word_bits() > ty_bits(ty) as u32 {
1508 M::word_type()
1509 } else {
1510 ty
1511 };
1512 insts.push(M::gen_load_stack(
1513 StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
1514 *into_reg,
1515 ty,
1516 ));
1517 }
1518 }
1519 };
1520
1521 match &sigs.args(self.sig)[idx] {
1522 &ABIArg::Slots { ref slots, .. } => {
1523 assert_eq!(into_regs.len(), slots.len());
1524 for (slot, into_reg) in slots.iter().zip(into_regs.regs().iter()) {
1525 copy_arg_slot_to_reg(&slot, &into_reg);
1526 }
1527 }
1528 &ABIArg::StructArg { offset, .. } => {
1529 let into_reg = into_regs.only_reg().unwrap();
1530 // Buffer address is implicitly defined by the ABI.
1531 insts.push(M::gen_get_stack_addr(
1532 StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
1533 into_reg,
1534 ));
1535 }
1536 &ABIArg::ImplicitPtrArg { pointer, ty, .. } => {
1537 let into_reg = into_regs.only_reg().unwrap();
1538 // We need to dereference the pointer.
1539 let base = match &pointer {
1540 &ABIArgSlot::Reg { reg, ty, .. } => {
1541 let tmp = vregs.alloc_with_deferred_error(ty).only_reg().unwrap();
1542 self.reg_args.push(ArgPair {
1543 vreg: Writable::from_reg(tmp),
1544 preg: reg.into(),
1545 });
1546 tmp
1547 }
1548 &ABIArgSlot::Stack { offset, ty, .. } => {
1549 let addr_reg = writable_value_regs(vregs.alloc_with_deferred_error(ty))
1550 .only_reg()
1551 .unwrap();
1552 insts.push(M::gen_load_stack(
1553 StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
1554 addr_reg,
1555 ty,
1556 ));
1557 addr_reg.to_reg()
1558 }
1559 };
1560 insts.push(M::gen_load_base_offset(into_reg, base, 0, ty));
1561 }
1562 }
1563 insts
1564 }
1565
1566 /// Generate an instruction which copies a source register to a return value slot.
1567 pub fn gen_copy_regs_to_retval(
1568 &self,
1569 sigs: &SigSet,
1570 idx: usize,
1571 from_regs: ValueRegs<Reg>,
1572 vregs: &mut VRegAllocator<M::I>,
1573 ) -> (SmallVec<[RetPair; 2]>, SmallInstVec<M::I>) {
1574 let mut reg_pairs = smallvec![];
1575 let mut ret = smallvec![];
1576 let word_bits = M::word_bits() as u8;
1577 match &sigs.rets(self.sig)[idx] {
1578 &ABIArg::Slots { ref slots, .. } => {
1579 assert_eq!(from_regs.len(), slots.len());
1580 for (slot, &from_reg) in slots.iter().zip(from_regs.regs().iter()) {
1581 match slot {
1582 &ABIArgSlot::Reg {
1583 reg, ty, extension, ..
1584 } => {
1585 let from_bits = ty_bits(ty) as u8;
1586 let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
1587 let vreg = match (ext, from_bits) {
1588 (ir::ArgumentExtension::Uext, n)
1589 | (ir::ArgumentExtension::Sext, n)
1590 if n < word_bits =>
1591 {
1592 let signed = ext == ir::ArgumentExtension::Sext;
1593 let dst =
1594 writable_value_regs(vregs.alloc_with_deferred_error(ty))
1595 .only_reg()
1596 .unwrap();
1597 ret.push(M::gen_extend(
1598 dst, from_reg, signed, from_bits,
1599 /* to_bits = */ word_bits,
1600 ));
1601 dst.to_reg()
1602 }
1603 _ => {
1604 // No move needed, regalloc2 will emit it using the constraint
1605 // added by the RetPair.
1606 from_reg
1607 }
1608 };
1609 reg_pairs.push(RetPair {
1610 vreg,
1611 preg: Reg::from(reg),
1612 });
1613 }
1614 &ABIArgSlot::Stack {
1615 offset,
1616 ty,
1617 extension,
1618 ..
1619 } => {
1620 let mut ty = ty;
1621 let from_bits = ty_bits(ty) as u8;
1622 // A machine ABI implementation should ensure that stack frames
1623 // have "reasonable" size. All current ABIs for machinst
1624 // backends (aarch64 and x64) enforce a 128MB limit.
1625 let off = i32::try_from(offset).expect(
1626 "Argument stack offset greater than 2GB; should hit impl limit first",
1627 );
1628 let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
1629 // Trash the from_reg; it should be its last use.
1630 match (ext, from_bits) {
1631 (ir::ArgumentExtension::Uext, n)
1632 | (ir::ArgumentExtension::Sext, n)
1633 if n < word_bits =>
1634 {
1635 assert_eq!(M::word_reg_class(), from_reg.class());
1636 let signed = ext == ir::ArgumentExtension::Sext;
1637 let dst =
1638 writable_value_regs(vregs.alloc_with_deferred_error(ty))
1639 .only_reg()
1640 .unwrap();
1641 ret.push(M::gen_extend(
1642 dst, from_reg, signed, from_bits,
1643 /* to_bits = */ word_bits,
1644 ));
1645 // Store the extended version.
1646 ty = M::word_type();
1647 }
1648 _ => {}
1649 };
1650 ret.push(M::gen_store_base_offset(
1651 self.ret_area_ptr.unwrap(),
1652 off,
1653 from_reg,
1654 ty,
1655 ));
1656 }
1657 }
1658 }
1659 }
1660 ABIArg::StructArg { .. } => {
1661 panic!("StructArg in return position is unsupported");
1662 }
1663 ABIArg::ImplicitPtrArg { .. } => {
1664 panic!("ImplicitPtrArg in return position is unsupported");
1665 }
1666 }
1667 (reg_pairs, ret)
1668 }
1669
1670 /// Generate any setup instruction needed to save values to the
1671 /// return-value area. This is usually used when were are multiple return
1672 /// values or an otherwise large return value that must be passed on the
1673 /// stack; typically the ABI specifies an extra hidden argument that is a
1674 /// pointer to that memory.
1675 pub fn gen_retval_area_setup(
1676 &mut self,
1677 sigs: &SigSet,
1678 vregs: &mut VRegAllocator<M::I>,
1679 ) -> Option<M::I> {
1680 if let Some(i) = sigs[self.sig].stack_ret_arg {
1681 let ret_area_ptr = Writable::from_reg(self.ret_area_ptr.unwrap());
1682 let insts =
1683 self.gen_copy_arg_to_regs(sigs, i.into(), ValueRegs::one(ret_area_ptr), vregs);
1684 insts.into_iter().next().map(|inst| {
1685 trace!(
1686 "gen_retval_area_setup: inst {:?}; ptr reg is {:?}",
1687 inst,
1688 ret_area_ptr.to_reg()
1689 );
1690 inst
1691 })
1692 } else {
1693 trace!("gen_retval_area_setup: not needed");
1694 None
1695 }
1696 }
1697
1698 /// Generate a return instruction.
1699 pub fn gen_rets(&self, rets: Vec<RetPair>) -> M::I {
1700 M::gen_rets(rets)
1701 }
1702
1703 /// Produce an instruction that computes a sized stackslot address.
1704 pub fn sized_stackslot_addr(
1705 &self,
1706 slot: StackSlot,
1707 offset: u32,
1708 into_reg: Writable<Reg>,
1709 ) -> M::I {
1710 // Offset from beginning of stackslot area.
1711 let stack_off = self.sized_stackslots[slot] as i64;
1712 let sp_off: i64 = stack_off + (offset as i64);
1713 M::gen_get_stack_addr(StackAMode::Slot(sp_off), into_reg)
1714 }
1715
1716 /// Produce an instruction that computes a dynamic stackslot address.
1717 pub fn dynamic_stackslot_addr(&self, slot: DynamicStackSlot, into_reg: Writable<Reg>) -> M::I {
1718 let stack_off = self.dynamic_stackslots[slot] as i64;
1719 M::gen_get_stack_addr(StackAMode::Slot(stack_off), into_reg)
1720 }
1721
1722 /// Get an `args` pseudo-inst, if any, that should appear at the
1723 /// very top of the function body prior to regalloc.
1724 pub fn take_args(&mut self) -> Option<M::I> {
1725 if self.reg_args.len() > 0 {
1726 // Very first instruction is an `args` pseudo-inst that
1727 // establishes live-ranges for in-register arguments and
1728 // constrains them at the start of the function to the
1729 // locations defined by the ABI.
1730 Some(M::gen_args(std::mem::take(&mut self.reg_args)))
1731 } else {
1732 None
1733 }
1734 }
1735}
1736
1737/// ### Post-Regalloc Functions
1738///
1739/// These methods of `Callee` may only be called after
1740/// regalloc.
1741impl<M: ABIMachineSpec> Callee<M> {
1742 /// Compute the final frame layout, post-regalloc.
1743 ///
1744 /// This must be called before gen_prologue or gen_epilogue.
1745 pub fn compute_frame_layout(
1746 &mut self,
1747 sigs: &SigSet,
1748 spillslots: usize,
1749 clobbered: Vec<Writable<RealReg>>,
1750 ) {
1751 let bytes = M::word_bytes();
1752 let total_stacksize = self.stackslots_size + bytes * spillslots as u32;
1753 let mask = M::stack_align(self.call_conv) - 1;
1754 let total_stacksize = (total_stacksize + mask) & !mask; // 16-align the stack.
1755 self.frame_layout = Some(M::compute_frame_layout(
1756 self.call_conv,
1757 &self.flags,
1758 self.signature(),
1759 &clobbered,
1760 self.is_leaf,
1761 self.stack_args_size(sigs),
1762 self.tail_args_size,
1763 total_stacksize,
1764 self.outgoing_args_size,
1765 ));
1766 }
1767
1768 /// Generate a prologue, post-regalloc.
1769 ///
1770 /// This should include any stack frame or other setup necessary to use the
1771 /// other methods (`load_arg`, `store_retval`, and spillslot accesses.)
1772 pub fn gen_prologue(&self) -> SmallInstVec<M::I> {
1773 let frame_layout = self.frame_layout();
1774 let mut insts = smallvec![];
1775
1776 // Set up frame.
1777 insts.extend(M::gen_prologue_frame_setup(
1778 self.call_conv,
1779 &self.flags,
1780 &self.isa_flags,
1781 &frame_layout,
1782 ));
1783
1784 // The stack limit check needs to cover all the stack adjustments we
1785 // might make, up to the next stack limit check in any function we
1786 // call. Since this happens after frame setup, the current function's
1787 // setup area needs to be accounted for in the caller's stack limit
1788 // check, but we need to account for any setup area that our callees
1789 // might need. Note that s390x may also use the outgoing args area for
1790 // backtrace support even in leaf functions, so that should be accounted
1791 // for unconditionally.
1792 let total_stacksize = (frame_layout.tail_args_size - frame_layout.incoming_args_size)
1793 + frame_layout.clobber_size
1794 + frame_layout.fixed_frame_storage_size
1795 + frame_layout.outgoing_args_size
1796 + if self.is_leaf {
1797 0
1798 } else {
1799 frame_layout.setup_area_size
1800 };
1801
1802 // Leaf functions with zero stack don't need a stack check if one's
1803 // specified, otherwise always insert the stack check.
1804 if total_stacksize > 0 || !self.is_leaf {
1805 if let Some((reg, stack_limit_load)) = &self.stack_limit {
1806 insts.extend(stack_limit_load.clone());
1807 self.insert_stack_check(*reg, total_stacksize, &mut insts);
1808 }
1809
1810 if self.flags.enable_probestack() {
1811 let guard_size = 1 << self.flags.probestack_size_log2();
1812 match self.flags.probestack_strategy() {
1813 ProbestackStrategy::Inline => M::gen_inline_probestack(
1814 &mut insts,
1815 self.call_conv,
1816 total_stacksize,
1817 guard_size,
1818 ),
1819 ProbestackStrategy::Outline => {
1820 if total_stacksize >= guard_size {
1821 M::gen_probestack(&mut insts, total_stacksize);
1822 }
1823 }
1824 }
1825 }
1826 }
1827
1828 // Save clobbered registers.
1829 insts.extend(M::gen_clobber_save(
1830 self.call_conv,
1831 &self.flags,
1832 &frame_layout,
1833 ));
1834
1835 insts
1836 }
1837
1838 /// Generate an epilogue, post-regalloc.
1839 ///
1840 /// Note that this must generate the actual return instruction (rather than
1841 /// emitting this in the lowering logic), because the epilogue code comes
1842 /// before the return and the two are likely closely related.
1843 pub fn gen_epilogue(&self) -> SmallInstVec<M::I> {
1844 let frame_layout = self.frame_layout();
1845 let mut insts = smallvec![];
1846
1847 // Restore clobbered registers.
1848 insts.extend(M::gen_clobber_restore(
1849 self.call_conv,
1850 &self.flags,
1851 &frame_layout,
1852 ));
1853
1854 // Tear down frame.
1855 insts.extend(M::gen_epilogue_frame_restore(
1856 self.call_conv,
1857 &self.flags,
1858 &self.isa_flags,
1859 &frame_layout,
1860 ));
1861
1862 // And return.
1863 insts.extend(M::gen_return(
1864 self.call_conv,
1865 &self.isa_flags,
1866 &frame_layout,
1867 ));
1868
1869 trace!("Epilogue: {:?}", insts);
1870 insts
1871 }
1872
1873 /// Return a reference to the computed frame layout information. This
1874 /// function will panic if it's called before [`Self::compute_frame_layout`].
1875 pub fn frame_layout(&self) -> &FrameLayout {
1876 self.frame_layout
1877 .as_ref()
1878 .expect("frame layout not computed before prologue generation")
1879 }
1880
1881 /// Returns the full frame size for the given function, after prologue
1882 /// emission has run. This comprises the spill slots and stack-storage
1883 /// slots as well as storage for clobbered callee-save registers, but
1884 /// not arguments arguments pushed at callsites within this function,
1885 /// or other ephemeral pushes.
1886 pub fn frame_size(&self) -> u32 {
1887 let frame_layout = self.frame_layout();
1888 frame_layout.clobber_size + frame_layout.fixed_frame_storage_size
1889 }
1890
1891 /// Returns offset from the slot base in the current frame to the caller's SP.
1892 pub fn slot_base_to_caller_sp_offset(&self) -> u32 {
1893 let frame_layout = self.frame_layout();
1894 frame_layout.clobber_size
1895 + frame_layout.fixed_frame_storage_size
1896 + frame_layout.setup_area_size
1897 }
1898
1899 /// Returns the size of arguments expected on the stack.
1900 pub fn stack_args_size(&self, sigs: &SigSet) -> u32 {
1901 sigs[self.sig].sized_stack_arg_space
1902 }
1903
1904 /// Get the spill-slot size.
1905 pub fn get_spillslot_size(&self, rc: RegClass) -> u32 {
1906 let max = if self.dynamic_type_sizes.len() == 0 {
1907 16
1908 } else {
1909 *self
1910 .dynamic_type_sizes
1911 .iter()
1912 .max_by(|x, y| x.1.cmp(&y.1))
1913 .map(|(_k, v)| v)
1914 .unwrap()
1915 };
1916 M::get_number_of_spillslots_for_value(rc, max, &self.isa_flags)
1917 }
1918
1919 /// Get the spill slot offset relative to the fixed allocation area start.
1920 pub fn get_spillslot_offset(&self, slot: SpillSlot) -> i64 {
1921 // Offset from beginning of spillslot area.
1922 let islot = slot.index() as i64;
1923 let spill_off = islot * M::word_bytes() as i64;
1924 let sp_off = self.stackslots_size as i64 + spill_off;
1925
1926 sp_off
1927 }
1928
1929 /// Generate a spill.
1930 pub fn gen_spill(&self, to_slot: SpillSlot, from_reg: RealReg) -> M::I {
1931 let ty = M::I::canonical_type_for_rc(from_reg.class());
1932 debug_assert_eq!(<M>::I::rc_for_type(ty).unwrap().1, &[ty]);
1933
1934 let sp_off = self.get_spillslot_offset(to_slot);
1935 trace!("gen_spill: {from_reg:?} into slot {to_slot:?} at offset {sp_off}");
1936
1937 let from = StackAMode::Slot(sp_off);
1938 <M>::gen_store_stack(from, Reg::from(from_reg), ty)
1939 }
1940
1941 /// Generate a reload (fill).
1942 pub fn gen_reload(&self, to_reg: Writable<RealReg>, from_slot: SpillSlot) -> M::I {
1943 let ty = M::I::canonical_type_for_rc(to_reg.to_reg().class());
1944 debug_assert_eq!(<M>::I::rc_for_type(ty).unwrap().1, &[ty]);
1945
1946 let sp_off = self.get_spillslot_offset(from_slot);
1947 trace!("gen_reload: {to_reg:?} from slot {from_slot:?} at offset {sp_off}");
1948
1949 let from = StackAMode::Slot(sp_off);
1950 <M>::gen_load_stack(from, to_reg.map(Reg::from), ty)
1951 }
1952}
1953
1954/// An input argument to a call instruction: the vreg that is used,
1955/// and the preg it is constrained to (per the ABI).
1956#[derive(Clone, Debug)]
1957pub struct CallArgPair {
1958 /// The virtual register to use for the argument.
1959 pub vreg: Reg,
1960 /// The real register into which the arg goes.
1961 pub preg: Reg,
1962}
1963
1964/// An output return value from a call instruction: the vreg that is
1965/// defined, and the preg it is constrained to (per the ABI).
1966#[derive(Clone, Debug)]
1967pub struct CallRetPair {
1968 /// The virtual register to define from this return value.
1969 pub vreg: Writable<Reg>,
1970 /// The real register from which the return value is read.
1971 pub preg: Reg,
1972}
1973
1974pub type CallArgList = SmallVec<[CallArgPair; 8]>;
1975pub type CallRetList = SmallVec<[CallRetPair; 8]>;
1976
1977pub enum IsTailCall {
1978 Yes,
1979 No,
1980}
1981
1982/// ABI object for a callsite.
1983pub struct CallSite<M: ABIMachineSpec> {
1984 /// The called function's signature.
1985 sig: Sig,
1986 /// All register uses for the callsite, i.e., function args, with
1987 /// VReg and the physical register it is constrained to.
1988 uses: CallArgList,
1989 /// All defs for the callsite, i.e., return values.
1990 defs: CallRetList,
1991 /// Call destination.
1992 dest: CallDest,
1993 is_tail_call: IsTailCall,
1994 /// Caller's calling convention.
1995 caller_conv: isa::CallConv,
1996 /// The settings controlling this compilation.
1997 flags: settings::Flags,
1998
1999 _mach: PhantomData<M>,
2000}
2001
2002/// Destination for a call.
2003#[derive(Debug, Clone)]
2004pub enum CallDest {
2005 /// Call to an ExtName (named function symbol).
2006 ExtName(ir::ExternalName, RelocDistance),
2007 /// Indirect call to a function pointer in a register.
2008 Reg(Reg),
2009}
2010
2011impl<M: ABIMachineSpec> CallSite<M> {
2012 /// Create a callsite ABI object for a call directly to the specified function.
2013 pub fn from_func(
2014 sigs: &SigSet,
2015 sig_ref: ir::SigRef,
2016 extname: &ir::ExternalName,
2017 is_tail_call: IsTailCall,
2018 dist: RelocDistance,
2019 caller_conv: isa::CallConv,
2020 flags: settings::Flags,
2021 ) -> CallSite<M> {
2022 let sig = sigs.abi_sig_for_sig_ref(sig_ref);
2023 CallSite {
2024 sig,
2025 uses: smallvec![],
2026 defs: smallvec![],
2027 dest: CallDest::ExtName(extname.clone(), dist),
2028 is_tail_call,
2029 caller_conv,
2030 flags,
2031 _mach: PhantomData,
2032 }
2033 }
2034
2035 /// Create a callsite ABI object for a call directly to the specified
2036 /// libcall.
2037 pub fn from_libcall(
2038 sigs: &SigSet,
2039 sig: &ir::Signature,
2040 extname: &ir::ExternalName,
2041 dist: RelocDistance,
2042 caller_conv: isa::CallConv,
2043 flags: settings::Flags,
2044 ) -> CallSite<M> {
2045 let sig = sigs.abi_sig_for_signature(sig);
2046 CallSite {
2047 sig,
2048 uses: smallvec![],
2049 defs: smallvec![],
2050 dest: CallDest::ExtName(extname.clone(), dist),
2051 is_tail_call: IsTailCall::No,
2052 caller_conv,
2053 flags,
2054 _mach: PhantomData,
2055 }
2056 }
2057
2058 /// Create a callsite ABI object for a call to a function pointer with the
2059 /// given signature.
2060 pub fn from_ptr(
2061 sigs: &SigSet,
2062 sig_ref: ir::SigRef,
2063 ptr: Reg,
2064 is_tail_call: IsTailCall,
2065 caller_conv: isa::CallConv,
2066 flags: settings::Flags,
2067 ) -> CallSite<M> {
2068 let sig = sigs.abi_sig_for_sig_ref(sig_ref);
2069 CallSite {
2070 sig,
2071 uses: smallvec![],
2072 defs: smallvec![],
2073 dest: CallDest::Reg(ptr),
2074 is_tail_call,
2075 caller_conv,
2076 flags,
2077 _mach: PhantomData,
2078 }
2079 }
2080
2081 pub(crate) fn dest(&self) -> &CallDest {
2082 &self.dest
2083 }
2084
2085 pub(crate) fn take_uses(self) -> CallArgList {
2086 self.uses
2087 }
2088
2089 pub(crate) fn sig<'a>(&self, sigs: &'a SigSet) -> &'a SigData {
2090 &sigs[self.sig]
2091 }
2092
2093 pub(crate) fn is_tail_call(&self) -> bool {
2094 matches!(self.is_tail_call, IsTailCall::Yes)
2095 }
2096}
2097
2098impl<M: ABIMachineSpec> CallSite<M> {
2099 /// Get the number of arguments expected.
2100 pub fn num_args(&self, sigs: &SigSet) -> usize {
2101 sigs.num_args(self.sig)
2102 }
2103
2104 /// Get the number of return values expected.
2105 pub fn num_rets(&self, sigs: &SigSet) -> usize {
2106 sigs.num_rets(self.sig)
2107 }
2108
2109 /// Emit a copy of a large argument into its associated stack buffer, if
2110 /// any. We must be careful to perform all these copies (as necessary)
2111 /// before setting up the argument registers, since we may have to invoke
2112 /// memcpy(), which could clobber any registers already set up. The
2113 /// back-end should call this routine for all arguments before calling
2114 /// `gen_arg` for all arguments.
2115 pub fn emit_copy_regs_to_buffer(
2116 &self,
2117 ctx: &mut Lower<M::I>,
2118 idx: usize,
2119 from_regs: ValueRegs<Reg>,
2120 ) {
2121 match &ctx.sigs().args(self.sig)[idx] {
2122 &ABIArg::Slots { .. } | &ABIArg::ImplicitPtrArg { .. } => {}
2123 &ABIArg::StructArg { offset, size, .. } => {
2124 let src_ptr = from_regs.only_reg().unwrap();
2125 let dst_ptr = ctx.alloc_tmp(M::word_type()).only_reg().unwrap();
2126 ctx.emit(M::gen_get_stack_addr(
2127 StackAMode::OutgoingArg(offset),
2128 dst_ptr,
2129 ));
2130 // Emit a memcpy from `src_ptr` to `dst_ptr` of `size` bytes.
2131 // N.B.: because we process StructArg params *first*, this is
2132 // safe w.r.t. clobbers: we have not yet filled in any other
2133 // arg regs.
2134 let memcpy_call_conv =
2135 isa::CallConv::for_libcall(&self.flags, ctx.sigs()[self.sig].call_conv);
2136 for insn in M::gen_memcpy(
2137 memcpy_call_conv,
2138 dst_ptr.to_reg(),
2139 src_ptr,
2140 size as usize,
2141 |ty| ctx.alloc_tmp(ty).only_reg().unwrap(),
2142 )
2143 .into_iter()
2144 {
2145 ctx.emit(insn);
2146 }
2147 }
2148 }
2149 }
2150
2151 /// Add a constraint for an argument value from a source register.
2152 /// For large arguments with associated stack buffer, this may
2153 /// load the address of the buffer into the argument register, if
2154 /// required by the ABI.
2155 pub fn gen_arg(&mut self, ctx: &mut Lower<M::I>, idx: usize, from_regs: ValueRegs<Reg>) {
2156 let stack_arg_space = ctx.sigs()[self.sig].sized_stack_arg_space;
2157 let stack_arg = if self.is_tail_call() {
2158 StackAMode::IncomingArg
2159 } else {
2160 |offset, _| StackAMode::OutgoingArg(offset)
2161 };
2162 let word_rc = M::word_reg_class();
2163 let word_bits = M::word_bits() as usize;
2164
2165 match ctx.sigs().args(self.sig)[idx].clone() {
2166 ABIArg::Slots { ref slots, .. } => {
2167 assert_eq!(from_regs.len(), slots.len());
2168 for (slot, from_reg) in slots.iter().zip(from_regs.regs().iter()) {
2169 match slot {
2170 &ABIArgSlot::Reg {
2171 reg, ty, extension, ..
2172 } => {
2173 let ext = M::get_ext_mode(ctx.sigs()[self.sig].call_conv, extension);
2174 let vreg =
2175 if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
2176 assert_eq!(word_rc, reg.class());
2177 let signed = match ext {
2178 ir::ArgumentExtension::Uext => false,
2179 ir::ArgumentExtension::Sext => true,
2180 _ => unreachable!(),
2181 };
2182 let extend_result =
2183 ctx.alloc_tmp(M::word_type()).only_reg().unwrap();
2184 ctx.emit(M::gen_extend(
2185 extend_result,
2186 *from_reg,
2187 signed,
2188 ty_bits(ty) as u8,
2189 word_bits as u8,
2190 ));
2191 extend_result.to_reg()
2192 } else {
2193 *from_reg
2194 };
2195
2196 let preg = reg.into();
2197 self.uses.push(CallArgPair { vreg, preg });
2198 }
2199 &ABIArgSlot::Stack {
2200 offset,
2201 ty,
2202 extension,
2203 ..
2204 } => {
2205 let ext = M::get_ext_mode(ctx.sigs()[self.sig].call_conv, extension);
2206 let (data, ty) =
2207 if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
2208 assert_eq!(word_rc, from_reg.class());
2209 let signed = match ext {
2210 ir::ArgumentExtension::Uext => false,
2211 ir::ArgumentExtension::Sext => true,
2212 _ => unreachable!(),
2213 };
2214 let extend_result =
2215 ctx.alloc_tmp(M::word_type()).only_reg().unwrap();
2216 ctx.emit(M::gen_extend(
2217 extend_result,
2218 *from_reg,
2219 signed,
2220 ty_bits(ty) as u8,
2221 word_bits as u8,
2222 ));
2223 // Store the extended version.
2224 (extend_result.to_reg(), M::word_type())
2225 } else {
2226 (*from_reg, ty)
2227 };
2228 ctx.emit(M::gen_store_stack(
2229 stack_arg(offset, stack_arg_space),
2230 data,
2231 ty,
2232 ));
2233 }
2234 }
2235 }
2236 }
2237 ABIArg::StructArg { .. } => {
2238 // Only supported via ISLE.
2239 }
2240 ABIArg::ImplicitPtrArg {
2241 offset,
2242 pointer,
2243 ty,
2244 purpose: _,
2245 } => {
2246 assert_eq!(from_regs.len(), 1);
2247 let vreg = from_regs.regs()[0];
2248 let amode = StackAMode::OutgoingArg(offset);
2249 let tmp = ctx.alloc_tmp(M::word_type()).only_reg().unwrap();
2250 ctx.emit(M::gen_get_stack_addr(amode, tmp));
2251 let tmp = tmp.to_reg();
2252 ctx.emit(M::gen_store_base_offset(tmp, 0, vreg, ty));
2253 match pointer {
2254 ABIArgSlot::Reg { reg, .. } => self.uses.push(CallArgPair {
2255 vreg: tmp,
2256 preg: reg.into(),
2257 }),
2258 ABIArgSlot::Stack { offset, .. } => ctx.emit(M::gen_store_stack(
2259 stack_arg(offset, stack_arg_space),
2260 tmp,
2261 M::word_type(),
2262 )),
2263 }
2264 }
2265 }
2266 }
2267
2268 /// Call `gen_arg` for each non-hidden argument and emit all instructions
2269 /// generated.
2270 pub fn emit_args(&mut self, ctx: &mut Lower<M::I>, (inputs, off): isle::ValueSlice) {
2271 let num_args = self.num_args(ctx.sigs());
2272 assert_eq!(inputs.len(&ctx.dfg().value_lists) - off, num_args);
2273
2274 let mut arg_value_regs: SmallVec<[_; 16]> = smallvec![];
2275 for i in 0..num_args {
2276 let input = inputs.get(off + i, &ctx.dfg().value_lists).unwrap();
2277 arg_value_regs.push(ctx.put_value_in_regs(input));
2278 }
2279 for (i, arg_regs) in arg_value_regs.iter().enumerate() {
2280 self.emit_copy_regs_to_buffer(ctx, i, *arg_regs);
2281 }
2282 for (i, value_regs) in arg_value_regs.iter().enumerate() {
2283 self.gen_arg(ctx, i, *value_regs);
2284 }
2285 }
2286
2287 /// Emit the code to forward a stack-return pointer argument through a tail
2288 /// call.
2289 pub fn emit_stack_ret_arg_for_tail_call(&mut self, ctx: &mut Lower<M::I>) {
2290 if let Some(i) = ctx.sigs()[self.sig].stack_ret_arg() {
2291 let ret_area_ptr = ctx.abi().ret_area_ptr.expect(
2292 "if the tail callee has a return pointer, then the tail caller \
2293 must as well",
2294 );
2295 self.gen_arg(ctx, i.into(), ValueRegs::one(ret_area_ptr));
2296 }
2297 }
2298
2299 /// Define a return value after the call returns.
2300 pub fn gen_retval(
2301 &mut self,
2302 ctx: &mut Lower<M::I>,
2303 idx: usize,
2304 ) -> (SmallInstVec<M::I>, ValueRegs<Reg>) {
2305 let mut insts = smallvec![];
2306 let mut into_regs: SmallVec<[Reg; 2]> = smallvec![];
2307 let ret = ctx.sigs().rets(self.sig)[idx].clone();
2308 match ret {
2309 ABIArg::Slots { ref slots, .. } => {
2310 for slot in slots {
2311 match slot {
2312 // Extension mode doesn't matter because we're copying out, not in,
2313 // and we ignore high bits in our own registers by convention.
2314 &ABIArgSlot::Reg { reg, ty, .. } => {
2315 let into_reg = ctx.alloc_tmp(ty).only_reg().unwrap();
2316 self.defs.push(CallRetPair {
2317 vreg: into_reg,
2318 preg: reg.into(),
2319 });
2320 into_regs.push(into_reg.to_reg());
2321 }
2322 &ABIArgSlot::Stack { offset, ty, .. } => {
2323 let into_reg = ctx.alloc_tmp(ty).only_reg().unwrap();
2324 let sig_data = &ctx.sigs()[self.sig];
2325 // The outgoing argument area must always be restored after a call,
2326 // ensuring that the return values will be in a consistent place after
2327 // any call.
2328 let ret_area_base = sig_data.sized_stack_arg_space();
2329 insts.push(M::gen_load_stack(
2330 StackAMode::OutgoingArg(offset + ret_area_base),
2331 into_reg,
2332 ty,
2333 ));
2334 into_regs.push(into_reg.to_reg());
2335 }
2336 }
2337 }
2338 }
2339 ABIArg::StructArg { .. } => {
2340 panic!("StructArg not supported in return position");
2341 }
2342 ABIArg::ImplicitPtrArg { .. } => {
2343 panic!("ImplicitPtrArg not supported in return position");
2344 }
2345 }
2346
2347 let value_regs = match *into_regs {
2348 [a] => ValueRegs::one(a),
2349 [a, b] => ValueRegs::two(a, b),
2350 _ => panic!("Expected to see one or two slots only from {ret:?}"),
2351 };
2352 (insts, value_regs)
2353 }
2354
2355 /// Emit the call itself.
2356 ///
2357 /// The returned instruction should have proper use- and def-sets according
2358 /// to the argument registers, return-value registers, and clobbered
2359 /// registers for this function signature in this ABI.
2360 ///
2361 /// (Arg registers are uses, and retval registers are defs. Clobbered
2362 /// registers are also logically defs, but should never be read; their
2363 /// values are "defined" (to the regalloc) but "undefined" in every other
2364 /// sense.)
2365 ///
2366 /// This function should only be called once, as it is allowed to re-use
2367 /// parts of the `CallSite` object in emitting instructions.
2368 pub fn emit_call(&mut self, ctx: &mut Lower<M::I>) {
2369 let word_type = M::word_type();
2370 if let Some(i) = ctx.sigs()[self.sig].stack_ret_arg {
2371 let rd = ctx.alloc_tmp(word_type).only_reg().unwrap();
2372 let ret_area_base = ctx.sigs()[self.sig].sized_stack_arg_space();
2373 ctx.emit(M::gen_get_stack_addr(
2374 StackAMode::OutgoingArg(ret_area_base),
2375 rd,
2376 ));
2377 self.gen_arg(ctx, i.into(), ValueRegs::one(rd.to_reg()));
2378 }
2379
2380 let uses = mem::take(&mut self.uses);
2381 let defs = mem::take(&mut self.defs);
2382 let clobbers = {
2383 // Get clobbers: all caller-saves. These may include return value
2384 // regs, which we will remove from the clobber set below.
2385 let mut clobbers = <M>::get_regs_clobbered_by_call(ctx.sigs()[self.sig].call_conv);
2386
2387 // Remove retval regs from clobbers.
2388 for def in &defs {
2389 clobbers.remove(PReg::from(def.preg.to_real_reg().unwrap()));
2390 }
2391
2392 clobbers
2393 };
2394
2395 let sig = &ctx.sigs()[self.sig];
2396 let callee_pop_size = if sig.call_conv() == isa::CallConv::Tail {
2397 // The tail calling convention has callees pop stack arguments.
2398 sig.sized_stack_arg_space
2399 } else {
2400 0
2401 };
2402
2403 let call_conv = sig.call_conv;
2404 let ret_space = sig.sized_stack_ret_space;
2405 let arg_space = sig.sized_stack_arg_space;
2406
2407 ctx.abi_mut()
2408 .accumulate_outgoing_args_size(ret_space + arg_space);
2409
2410 let tmp = ctx.alloc_tmp(word_type).only_reg().unwrap();
2411
2412 // Any adjustment to SP to account for required outgoing arguments/stack return values must
2413 // be done inside of the call pseudo-op, to ensure that SP is always in a consistent
2414 // state for all other instructions. For example, if a tail-call abi function is called
2415 // here, the reclamation of the outgoing argument area must be done inside of the call
2416 // pseudo-op's emission to ensure that SP is consistent at all other points in the lowered
2417 // function. (Except the prologue and epilogue, but those are fairly special parts of the
2418 // function that establish the SP invariants that are relied on elsewhere and are generated
2419 // after the register allocator has run and thus cannot have register allocator-inserted
2420 // references to SP offsets.)
2421 for inst in M::gen_call(
2422 &self.dest,
2423 tmp,
2424 CallInfo {
2425 dest: (),
2426 uses,
2427 defs,
2428 clobbers,
2429 callee_conv: call_conv,
2430 caller_conv: self.caller_conv,
2431 callee_pop_size,
2432 },
2433 )
2434 .into_iter()
2435 {
2436 ctx.emit(inst);
2437 }
2438 }
2439}
2440
2441#[cfg(test)]
2442mod tests {
2443 use super::SigData;
2444
2445 #[test]
2446 fn sig_data_size() {
2447 // The size of `SigData` is performance sensitive, so make sure
2448 // we don't regress it unintentionally.
2449 assert_eq!(std::mem::size_of::<SigData>(), 24);
2450 }
2451}