cranelift_codegen/machinst/lower.rs
1//! This module implements lowering (instruction selection) from Cranelift IR
2//! to machine instructions with virtual registers. This is *almost* the final
3//! machine code, except for register allocation.
4
5// TODO: separate the IR-query core of `Lower` from the lowering logic built on
6// top of it, e.g. the side-effect/coloring analysis and the scan support.
7
8use crate::entity::SecondaryMap;
9use crate::inst_predicates::{has_lowering_side_effect, is_constant_64bit};
10use crate::ir::pcc::{Fact, FactContext, PccError, PccResult};
11use crate::ir::{
12 ArgumentPurpose, Block, Constant, ConstantData, DataFlowGraph, ExternalName, Function,
13 GlobalValue, GlobalValueData, Immediate, Inst, InstructionData, MemFlags, RelSourceLoc, Type,
14 Value, ValueDef, ValueLabelAssignments, ValueLabelStart,
15};
16use crate::machinst::valueregs::InvalidSentinel;
17use crate::machinst::{
18 writable_value_regs, BackwardsInsnIndex, BlockIndex, BlockLoweringOrder, Callee, InsnIndex,
19 LoweredBlock, MachLabel, Reg, SigSet, VCode, VCodeBuilder, VCodeConstant, VCodeConstantData,
20 VCodeConstants, VCodeInst, ValueRegs, Writable,
21};
22use crate::settings::Flags;
23use crate::{trace, CodegenError, CodegenResult};
24use alloc::vec::Vec;
25use cranelift_control::ControlPlane;
26use rustc_hash::{FxHashMap, FxHashSet};
27use smallvec::{smallvec, SmallVec};
28use std::fmt::Debug;
29
30use super::{VCodeBuildDirection, VRegAllocator};
31
32/// A vector of ValueRegs, used to represent the outputs of an instruction.
33pub type InstOutput = SmallVec<[ValueRegs<Reg>; 2]>;
34
35/// An "instruction color" partitions CLIF instructions by side-effecting ops.
36/// All instructions with the same "color" are guaranteed not to be separated by
37/// any side-effecting op (for this purpose, loads are also considered
38/// side-effecting, to avoid subtle questions w.r.t. the memory model), and
39/// furthermore, it is guaranteed that for any two instructions A and B such
40/// that color(A) == color(B), either A dominates B and B postdominates A, or
41/// vice-versa. (For now, in practice, only ops in the same basic block can ever
42/// have the same color, trivially providing the second condition.) Intuitively,
43/// this means that the ops of the same color must always execute "together", as
44/// part of one atomic contiguous section of the dynamic execution trace, and
45/// they can be freely permuted (modulo true dataflow dependencies) without
46/// affecting program behavior.
47#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
48struct InstColor(u32);
49impl InstColor {
50 fn new(n: u32) -> InstColor {
51 InstColor(n)
52 }
53
54 /// Get an arbitrary index representing this color. The index is unique
55 /// *within a single function compilation*, but indices may be reused across
56 /// functions.
57 pub fn get(self) -> u32 {
58 self.0
59 }
60}
61
62/// A representation of all of the ways in which a value is available, aside
63/// from as a direct register.
64///
65/// - An instruction, if it would be allowed to occur at the current location
66/// instead (see [Lower::get_input_as_source_or_const()] for more details).
67///
68/// - A constant, if the value is known to be a constant.
69#[derive(Clone, Copy, Debug)]
70pub struct NonRegInput {
71 /// An instruction produces this value (as the given output), and its
72 /// computation (and side-effect if applicable) could occur at the
73 /// current instruction's location instead.
74 ///
75 /// If this instruction's operation is merged into the current instruction,
76 /// the backend must call [Lower::sink_inst()].
77 ///
78 /// This enum indicates whether this use of the source instruction
79 /// is unique or not.
80 pub inst: InputSourceInst,
81 /// The value is a known constant.
82 pub constant: Option<u64>,
83}
84
85/// When examining an input to an instruction, this enum provides one
86/// of several options: there is or isn't a single instruction (that
87/// we can see and merge with) that produces that input's value, and
88/// we are or aren't the single user of that instruction.
89#[derive(Clone, Copy, Debug)]
90pub enum InputSourceInst {
91 /// The input in question is the single, unique use of the given
92 /// instruction and output index, and it can be sunk to the
93 /// location of this input.
94 UniqueUse(Inst, usize),
95 /// The input in question is one of multiple uses of the given
96 /// instruction. It can still be sunk to the location of this
97 /// input.
98 Use(Inst, usize),
99 /// We cannot determine which instruction produced the input, or
100 /// it is one of several instructions (e.g., due to a control-flow
101 /// merge and blockparam), or the source instruction cannot be
102 /// allowed to sink to the current location due to side-effects.
103 None,
104}
105
106impl InputSourceInst {
107 /// Get the instruction and output index for this source, whether
108 /// we are its single or one of many users.
109 pub fn as_inst(&self) -> Option<(Inst, usize)> {
110 match self {
111 &InputSourceInst::UniqueUse(inst, output_idx)
112 | &InputSourceInst::Use(inst, output_idx) => Some((inst, output_idx)),
113 &InputSourceInst::None => None,
114 }
115 }
116}
117
118/// A machine backend.
119pub trait LowerBackend {
120 /// The machine instruction type.
121 type MInst: VCodeInst;
122
123 /// Lower a single instruction.
124 ///
125 /// For a branch, this function should not generate the actual branch
126 /// instruction. However, it must force any values it needs for the branch
127 /// edge (block-param actuals) into registers, because the actual branch
128 /// generation (`lower_branch()`) happens *after* any possible merged
129 /// out-edge.
130 ///
131 /// Returns `None` if no lowering for the instruction was found.
132 fn lower(&self, ctx: &mut Lower<Self::MInst>, inst: Inst) -> Option<InstOutput>;
133
134 /// Lower a block-terminating group of branches (which together can be seen
135 /// as one N-way branch), given a vcode MachLabel for each target.
136 ///
137 /// Returns `None` if no lowering for the branch was found.
138 fn lower_branch(
139 &self,
140 ctx: &mut Lower<Self::MInst>,
141 inst: Inst,
142 targets: &[MachLabel],
143 ) -> Option<()>;
144
145 /// A bit of a hack: give a fixed register that always holds the result of a
146 /// `get_pinned_reg` instruction, if known. This allows elision of moves
147 /// into the associated vreg, instead using the real reg directly.
148 fn maybe_pinned_reg(&self) -> Option<Reg> {
149 None
150 }
151
152 /// The type of state carried between `check_fact` invocations.
153 type FactFlowState: Default + Clone + Debug;
154
155 /// Check any facts about an instruction, given VCode with facts
156 /// on VRegs. Takes mutable `VCode` so that it can propagate some
157 /// kinds of facts automatically.
158 fn check_fact(
159 &self,
160 _ctx: &FactContext<'_>,
161 _vcode: &mut VCode<Self::MInst>,
162 _inst: InsnIndex,
163 _state: &mut Self::FactFlowState,
164 ) -> PccResult<()> {
165 Err(PccError::UnimplementedBackend)
166 }
167}
168
169/// Machine-independent lowering driver / machine-instruction container. Maintains a correspondence
170/// from original Inst to MachInsts.
171pub struct Lower<'func, I: VCodeInst> {
172 /// The function to lower.
173 f: &'func Function,
174
175 /// Lowered machine instructions.
176 vcode: VCodeBuilder<I>,
177
178 /// VReg allocation context, given to the vcode field at build time to finalize the vcode.
179 vregs: VRegAllocator<I>,
180
181 /// Mapping from `Value` (SSA value in IR) to virtual register.
182 value_regs: SecondaryMap<Value, ValueRegs<Reg>>,
183
184 /// sret registers, if needed.
185 sret_reg: Option<ValueRegs<Reg>>,
186
187 /// Instruction colors at block exits. From this map, we can recover all
188 /// instruction colors by scanning backward from the block end and
189 /// decrementing on any color-changing (side-effecting) instruction.
190 block_end_colors: SecondaryMap<Block, InstColor>,
191
192 /// Instruction colors at side-effecting ops. This is the *entry* color,
193 /// i.e., the version of global state that exists before an instruction
194 /// executes. For each side-effecting instruction, the *exit* color is its
195 /// entry color plus one.
196 side_effect_inst_entry_colors: FxHashMap<Inst, InstColor>,
197
198 /// Current color as we scan during lowering. While we are lowering an
199 /// instruction, this is equal to the color *at entry to* the instruction.
200 cur_scan_entry_color: Option<InstColor>,
201
202 /// Current instruction as we scan during lowering.
203 cur_inst: Option<Inst>,
204
205 /// Instruction constant values, if known.
206 inst_constants: FxHashMap<Inst, u64>,
207
208 /// Use-counts per SSA value, as counted in the input IR. These
209 /// are "coarsened", in the abstract-interpretation sense: we only
210 /// care about "0, 1, many" states, as this is all we need and
211 /// this lets us do an efficient fixpoint analysis.
212 ///
213 /// See doc comment on `ValueUseState` for more details.
214 value_ir_uses: SecondaryMap<Value, ValueUseState>,
215
216 /// Actual uses of each SSA value so far, incremented while lowering.
217 value_lowered_uses: SecondaryMap<Value, u32>,
218
219 /// Effectful instructions that have been sunk; they are not codegen'd at
220 /// their original locations.
221 inst_sunk: FxHashSet<Inst>,
222
223 /// Instructions collected for the CLIF inst in progress, in forward order.
224 ir_insts: Vec<I>,
225
226 /// The register to use for GetPinnedReg, if any, on this architecture.
227 pinned_reg: Option<Reg>,
228
229 /// Compilation flags.
230 flags: Flags,
231}
232
233/// How is a value used in the IR?
234///
235/// This can be seen as a coarsening of an integer count. We only need
236/// distinct states for zero, one, or many.
237///
238/// This analysis deserves further explanation. The basic idea is that
239/// we want to allow instruction lowering to know whether a value that
240/// an instruction references is *only* referenced by that one use, or
241/// by others as well. This is necessary to know when we might want to
242/// move a side-effect: we cannot, for example, duplicate a load, so
243/// we cannot let instruction lowering match a load as part of a
244/// subpattern and potentially incorporate it.
245///
246/// Note that a lot of subtlety comes into play once we have
247/// *indirect* uses. The classical example of this in our development
248/// history was the x86 compare instruction, which is incorporated
249/// into flags users (e.g. `selectif`, `trueif`, branches) and can
250/// subsequently incorporate loads, or at least we would like it
251/// to. However, danger awaits: the compare might be the only user of
252/// a load, so we might think we can just move the load (and nothing
253/// is duplicated -- success!), except that the compare itself is
254/// codegen'd in multiple places, where it is incorporated as a
255/// subpattern itself.
256///
257/// So we really want a notion of "unique all the way along the
258/// matching path". Rust's `&T` and `&mut T` offer a partial analogy
259/// to the semantics that we want here: we want to know when we've
260/// matched a unique use of an instruction, and that instruction's
261/// unique use of another instruction, etc, just as `&mut T` can only
262/// be obtained by going through a chain of `&mut T`. If one has a
263/// `&T` to a struct containing `&mut T` (one of several uses of an
264/// instruction that itself has a unique use of an instruction), one
265/// can only get a `&T` (one can only get a "I am one of several users
266/// of this instruction" result).
267///
268/// We could track these paths, either dynamically as one "looks up the operand
269/// tree" or precomputed. But the former requires state and means that the
270/// `Lower` API carries that state implicitly, which we'd like to avoid if we
271/// can. And the latter implies O(n^2) storage: it is an all-pairs property (is
272/// inst `i` unique from the point of view of `j`).
273///
274/// To make matters even a little more complex still, a value that is
275/// not uniquely used when initially viewing the IR can *become*
276/// uniquely used, at least as a root allowing further unique uses of
277/// e.g. loads to merge, if no other instruction actually merges
278/// it. To be more concrete, if we have `v1 := load; v2 := op v1; v3
279/// := op v2; v4 := op v2` then `v2` is non-uniquely used, so from the
280/// point of view of lowering `v4` or `v3`, we cannot merge the load
281/// at `v1`. But if we decide just to use the assigned register for
282/// `v2` at both `v3` and `v4`, then we only actually codegen `v2`
283/// once, so it *is* a unique root at that point and we *can* merge
284/// the load.
285///
286/// Note also that the color scheme is not sufficient to give us this
287/// information, for various reasons: reasoning about side-effects
288/// does not tell us about potential duplication of uses through pure
289/// ops.
290///
291/// To keep things simple and avoid error-prone lowering APIs that
292/// would extract more information about whether instruction merging
293/// happens or not (we don't have that info now, and it would be
294/// difficult to refactor to get it and make that refactor 100%
295/// correct), we give up on the above "can become unique if not
296/// actually merged" point. Instead, we compute a
297/// transitive-uniqueness. That is what this enum represents.
298///
299/// There is one final caveat as well to the result of this analysis. Notably,
300/// we define some instructions to be "root" instructions, which means that we
301/// assume they will always be codegen'd at the root of a matching tree, and not
302/// matched. (This comes with the caveat that we actually enforce this property
303/// by making them "opaque" to subtree matching in
304/// `get_value_as_source_or_const`). Because they will always be codegen'd once,
305/// they in some sense "reset" multiplicity: these root instructions can be used
306/// many times, but because their result(s) are only computed once, they only
307/// use their inputs once.
308///
309/// We currently define all multi-result instructions to be "root" instructions,
310/// because it is too complex to reason about matching through them, and they
311/// cause too-coarse-grained approximation of multiplicity otherwise: the
312/// analysis would have to assume (as it used to!) that they are always
313/// multiply-used, simply because they have multiple outputs even if those
314/// outputs are used only once.
315///
316/// In the future we could define other instructions to be "root" instructions
317/// as well, if we make the corresponding change to get_value_as_source_or_const
318/// as well.
319///
320/// To define `ValueUseState` more plainly: a value is `Unused` if no references
321/// exist to it; `Once` if only one other op refers to it, *and* that other op
322/// is `Unused` or `Once`; and `Multiple` otherwise. In other words, `Multiple`
323/// is contagious (except through root instructions): even if an op's result
324/// value is directly used only once in the CLIF, that value is `Multiple` if
325/// the op that uses it is itself used multiple times (hence could be codegen'd
326/// multiple times). In brief, this analysis tells us whether, if every op
327/// merged all of its operand tree, a given op could be codegen'd in more than
328/// one place.
329///
330/// To compute this, we first consider direct uses. At this point
331/// `Unused` answers are correct, `Multiple` answers are correct, but
332/// some `Once`s may change to `Multiple`s. Then we propagate
333/// `Multiple` transitively using a workqueue/fixpoint algorithm.
334#[derive(Clone, Copy, Debug, PartialEq, Eq)]
335enum ValueUseState {
336 /// Not used at all.
337 Unused,
338 /// Used exactly once.
339 Once,
340 /// Used multiple times.
341 Multiple,
342}
343
344impl ValueUseState {
345 /// Add one use.
346 fn inc(&mut self) {
347 let new = match self {
348 Self::Unused => Self::Once,
349 Self::Once | Self::Multiple => Self::Multiple,
350 };
351 *self = new;
352 }
353}
354
355/// Notion of "relocation distance". This gives an estimate of how far away a symbol will be from a
356/// reference.
357#[derive(Clone, Copy, Debug, PartialEq, Eq)]
358pub enum RelocDistance {
359 /// Target of relocation is "nearby". The threshold for this is fuzzy but should be interpreted
360 /// as approximately "within the compiled output of one module"; e.g., within AArch64's +/-
361 /// 128MB offset. If unsure, use `Far` instead.
362 Near,
363 /// Target of relocation could be anywhere in the address space.
364 Far,
365}
366
367impl<'func, I: VCodeInst> Lower<'func, I> {
368 /// Prepare a new lowering context for the given IR function.
369 pub fn new(
370 f: &'func Function,
371 abi: Callee<I::ABIMachineSpec>,
372 emit_info: I::Info,
373 block_order: BlockLoweringOrder,
374 sigs: SigSet,
375 flags: Flags,
376 ) -> CodegenResult<Self> {
377 let constants = VCodeConstants::with_capacity(f.dfg.constants.len());
378 let vcode = VCodeBuilder::new(
379 sigs,
380 abi,
381 emit_info,
382 block_order,
383 constants,
384 VCodeBuildDirection::Backward,
385 );
386
387 // We usually need two VRegs per instruction result, plus extras for
388 // various temporaries, but two per Value is a good starting point.
389 let mut vregs = VRegAllocator::with_capacity(f.dfg.num_values() * 2);
390
391 let mut value_regs = SecondaryMap::with_default(ValueRegs::invalid());
392
393 // Assign a vreg to each block param and each inst result.
394 for bb in f.layout.blocks() {
395 for ¶m in f.dfg.block_params(bb) {
396 let ty = f.dfg.value_type(param);
397 if value_regs[param].is_invalid() {
398 let regs = vregs.alloc_with_maybe_fact(ty, f.dfg.facts[param].clone())?;
399 value_regs[param] = regs;
400 trace!("bb {} param {}: regs {:?}", bb, param, regs);
401 }
402 }
403 for inst in f.layout.block_insts(bb) {
404 for &result in f.dfg.inst_results(inst) {
405 let ty = f.dfg.value_type(result);
406 if value_regs[result].is_invalid() && !ty.is_invalid() {
407 let regs = vregs.alloc_with_maybe_fact(ty, f.dfg.facts[result].clone())?;
408 value_regs[result] = regs;
409 trace!(
410 "bb {} inst {} ({:?}): result {} regs {:?}",
411 bb,
412 inst,
413 f.dfg.insts[inst],
414 result,
415 regs,
416 );
417 }
418 }
419 }
420 }
421
422 // Find the sret register, if it's used.
423 let mut sret_param = None;
424 for ret in vcode.abi().signature().returns.iter() {
425 if ret.purpose == ArgumentPurpose::StructReturn {
426 let entry_bb = f.stencil.layout.entry_block().unwrap();
427 for (¶m, sig_param) in f
428 .dfg
429 .block_params(entry_bb)
430 .iter()
431 .zip(vcode.abi().signature().params.iter())
432 {
433 if sig_param.purpose == ArgumentPurpose::StructReturn {
434 assert!(sret_param.is_none());
435 sret_param = Some(param);
436 }
437 }
438
439 assert!(sret_param.is_some());
440 }
441 }
442
443 let sret_reg = sret_param.map(|param| {
444 let regs = value_regs[param];
445 assert!(regs.len() == 1);
446 regs
447 });
448
449 // Compute instruction colors, find constant instructions, and find instructions with
450 // side-effects, in one combined pass.
451 let mut cur_color = 0;
452 let mut block_end_colors = SecondaryMap::with_default(InstColor::new(0));
453 let mut side_effect_inst_entry_colors = FxHashMap::default();
454 let mut inst_constants = FxHashMap::default();
455 for bb in f.layout.blocks() {
456 cur_color += 1;
457 for inst in f.layout.block_insts(bb) {
458 let side_effect = has_lowering_side_effect(f, inst);
459
460 trace!("bb {} inst {} has color {}", bb, inst, cur_color);
461 if side_effect {
462 side_effect_inst_entry_colors.insert(inst, InstColor::new(cur_color));
463 trace!(" -> side-effecting; incrementing color for next inst");
464 cur_color += 1;
465 }
466
467 // Determine if this is a constant; if so, add to the table.
468 if let Some(c) = is_constant_64bit(f, inst) {
469 trace!(" -> constant: {}", c);
470 inst_constants.insert(inst, c);
471 }
472 }
473
474 block_end_colors[bb] = InstColor::new(cur_color);
475 }
476
477 let value_ir_uses = compute_use_states(f, sret_param);
478
479 Ok(Lower {
480 f,
481 vcode,
482 vregs,
483 value_regs,
484 sret_reg,
485 block_end_colors,
486 side_effect_inst_entry_colors,
487 inst_constants,
488 value_ir_uses,
489 value_lowered_uses: SecondaryMap::default(),
490 inst_sunk: FxHashSet::default(),
491 cur_scan_entry_color: None,
492 cur_inst: None,
493 ir_insts: vec![],
494 pinned_reg: None,
495 flags,
496 })
497 }
498
499 pub fn sigs(&self) -> &SigSet {
500 self.vcode.sigs()
501 }
502
503 pub fn sigs_mut(&mut self) -> &mut SigSet {
504 self.vcode.sigs_mut()
505 }
506
507 fn gen_arg_setup(&mut self) {
508 if let Some(entry_bb) = self.f.layout.entry_block() {
509 trace!(
510 "gen_arg_setup: entry BB {} args are:\n{:?}",
511 entry_bb,
512 self.f.dfg.block_params(entry_bb)
513 );
514
515 for (i, param) in self.f.dfg.block_params(entry_bb).iter().enumerate() {
516 if self.value_ir_uses[*param] == ValueUseState::Unused {
517 continue;
518 }
519 let regs = writable_value_regs(self.value_regs[*param]);
520 for insn in self
521 .vcode
522 .vcode
523 .abi
524 .gen_copy_arg_to_regs(&self.vcode.vcode.sigs, i, regs, &mut self.vregs)
525 .into_iter()
526 {
527 self.emit(insn);
528 }
529 }
530 if let Some(insn) = self
531 .vcode
532 .vcode
533 .abi
534 .gen_retval_area_setup(&self.vcode.vcode.sigs, &mut self.vregs)
535 {
536 self.emit(insn);
537 }
538
539 // The `args` instruction below must come first. Finish
540 // the current "IR inst" (with a default source location,
541 // as for other special instructions inserted during
542 // lowering) and continue the scan backward.
543 self.finish_ir_inst(Default::default());
544
545 if let Some(insn) = self.vcode.vcode.abi.take_args() {
546 self.emit(insn);
547 }
548 }
549 }
550
551 /// Generate the return instruction.
552 pub fn gen_return(&mut self, rets: Vec<ValueRegs<Reg>>) {
553 let mut out_rets = vec![];
554
555 let mut rets = rets.into_iter();
556 for (i, ret) in self
557 .abi()
558 .signature()
559 .returns
560 .clone()
561 .into_iter()
562 .enumerate()
563 {
564 let regs = if ret.purpose == ArgumentPurpose::StructReturn {
565 self.sret_reg.unwrap()
566 } else {
567 rets.next().unwrap()
568 };
569
570 let (regs, insns) = self.vcode.abi().gen_copy_regs_to_retval(
571 self.vcode.sigs(),
572 i,
573 regs,
574 &mut self.vregs,
575 );
576 out_rets.extend(regs);
577 for insn in insns {
578 self.emit(insn);
579 }
580 }
581
582 // Hack: generate a virtual instruction that uses vmctx in
583 // order to keep it alive for the duration of the function,
584 // for the benefit of debuginfo.
585 if self.f.dfg.values_labels.is_some() {
586 if let Some(vmctx_val) = self.f.special_param(ArgumentPurpose::VMContext) {
587 if self.value_ir_uses[vmctx_val] != ValueUseState::Unused {
588 let vmctx_reg = self.value_regs[vmctx_val].only_reg().unwrap();
589 self.emit(I::gen_dummy_use(vmctx_reg));
590 }
591 }
592 }
593
594 let inst = self.abi().gen_rets(out_rets);
595 self.emit(inst);
596 }
597
598 /// Has this instruction been sunk to a use-site (i.e., away from its
599 /// original location)?
600 fn is_inst_sunk(&self, inst: Inst) -> bool {
601 self.inst_sunk.contains(&inst)
602 }
603
604 // Is any result of this instruction needed?
605 fn is_any_inst_result_needed(&self, inst: Inst) -> bool {
606 self.f
607 .dfg
608 .inst_results(inst)
609 .iter()
610 .any(|&result| self.value_lowered_uses[result] > 0)
611 }
612
613 fn lower_clif_block<B: LowerBackend<MInst = I>>(
614 &mut self,
615 backend: &B,
616 block: Block,
617 ctrl_plane: &mut ControlPlane,
618 ) -> CodegenResult<()> {
619 self.cur_scan_entry_color = Some(self.block_end_colors[block]);
620 // Lowering loop:
621 // - For each non-branch instruction, in reverse order:
622 // - If side-effecting (load, store, branch/call/return,
623 // possible trap), or if used outside of this block, or if
624 // demanded by another inst, then lower.
625 //
626 // That's it! Lowering of side-effecting ops will force all *needed*
627 // (live) non-side-effecting ops to be lowered at the right places, via
628 // the `use_input_reg()` callback on the `Lower` (that's us). That's
629 // because `use_input_reg()` sets the eager/demand bit for any insts
630 // whose result registers are used.
631 //
632 // We set the VCodeBuilder to "backward" mode, so we emit
633 // blocks in reverse order wrt the BlockIndex sequence, and
634 // emit instructions in reverse order within blocks. Because
635 // the machine backend calls `ctx.emit()` in forward order, we
636 // collect per-IR-inst lowered instructions in `ir_insts`,
637 // then reverse these and append to the VCode at the end of
638 // each IR instruction.
639 for inst in self.f.layout.block_insts(block).rev() {
640 let data = &self.f.dfg.insts[inst];
641 let has_side_effect = has_lowering_side_effect(self.f, inst);
642 // If inst has been sunk to another location, skip it.
643 if self.is_inst_sunk(inst) {
644 continue;
645 }
646 // Are any outputs used at least once?
647 let value_needed = self.is_any_inst_result_needed(inst);
648 trace!(
649 "lower_clif_block: block {} inst {} ({:?}) is_branch {} side_effect {} value_needed {}",
650 block,
651 inst,
652 data,
653 data.opcode().is_branch(),
654 has_side_effect,
655 value_needed,
656 );
657
658 // Update scan state to color prior to this inst (as we are scanning
659 // backward).
660 self.cur_inst = Some(inst);
661 if has_side_effect {
662 let entry_color = *self
663 .side_effect_inst_entry_colors
664 .get(&inst)
665 .expect("every side-effecting inst should have a color-map entry");
666 self.cur_scan_entry_color = Some(entry_color);
667 }
668
669 // Skip lowering branches; these are handled separately
670 // (see `lower_clif_branches()` below).
671 if self.f.dfg.insts[inst].opcode().is_branch() {
672 continue;
673 }
674
675 // Normal instruction: codegen if the instruction is side-effecting
676 // or any of its outputs is used.
677 if has_side_effect || value_needed {
678 trace!("lowering: inst {}: {}", inst, self.f.dfg.display_inst(inst));
679 let temp_regs = match backend.lower(self, inst) {
680 Some(regs) => regs,
681 None => {
682 let ty = if self.num_outputs(inst) > 0 {
683 Some(self.output_ty(inst, 0))
684 } else {
685 None
686 };
687 return Err(CodegenError::Unsupported(format!(
688 "should be implemented in ISLE: inst = `{}`, type = `{:?}`",
689 self.f.dfg.display_inst(inst),
690 ty
691 )));
692 }
693 };
694
695 // The ISLE generated code emits its own registers to define the
696 // instruction's lowered values in. However, other instructions
697 // that use this SSA value will be lowered assuming that the value
698 // is generated into a pre-assigned, different, register.
699 //
700 // To connect the two, we set up "aliases" in the VCodeBuilder
701 // that apply when it is building the Operand table for the
702 // regalloc to use. These aliases effectively rewrite any use of
703 // the pre-assigned register to the register that was returned by
704 // the ISLE lowering logic.
705 let results = self.f.dfg.inst_results(inst);
706 debug_assert_eq!(temp_regs.len(), results.len());
707 for (regs, &result) in temp_regs.iter().zip(results) {
708 let dsts = self.value_regs[result];
709 let mut regs = regs.regs().iter();
710 for &dst in dsts.regs().iter() {
711 let temp = regs.next().copied().unwrap_or(Reg::invalid_sentinel());
712 trace!("set vreg alias: {result:?} = {dst:?}, lowering = {temp:?}");
713 self.vregs.set_vreg_alias(dst, temp);
714 }
715 }
716 }
717
718 let start = self.vcode.vcode.num_insts();
719 let loc = self.srcloc(inst);
720 self.finish_ir_inst(loc);
721
722 // If the instruction had a user stack map, forward it from the CLIF
723 // to the vcode.
724 if let Some(entries) = self.f.dfg.user_stack_map_entries(inst) {
725 let end = self.vcode.vcode.num_insts();
726 debug_assert!(end > start);
727 debug_assert_eq!(
728 (start..end)
729 .filter(|i| self.vcode.vcode[InsnIndex::new(*i)].is_safepoint())
730 .count(),
731 1
732 );
733 for i in start..end {
734 let iix = InsnIndex::new(i);
735 if self.vcode.vcode[iix].is_safepoint() {
736 trace!(
737 "Adding user stack map from clif\n\n\
738 {inst:?} `{}`\n\n\
739 to vcode\n\n\
740 {iix:?} `{}`",
741 self.f.dfg.display_inst(inst),
742 &self.vcode.vcode[iix].pretty_print_inst(&mut Default::default()),
743 );
744 self.vcode
745 .add_user_stack_map(BackwardsInsnIndex::new(iix.index()), entries);
746 break;
747 }
748 }
749 }
750
751 // maybe insert random instruction
752 if ctrl_plane.get_decision() {
753 if ctrl_plane.get_decision() {
754 let imm: u64 = ctrl_plane.get_arbitrary();
755 let reg = self.alloc_tmp(crate::ir::types::I64).regs()[0];
756 I::gen_imm_u64(imm, reg).map(|inst| self.emit(inst));
757 } else {
758 let imm: f64 = ctrl_plane.get_arbitrary();
759 let tmp = self.alloc_tmp(crate::ir::types::I64).regs()[0];
760 let reg = self.alloc_tmp(crate::ir::types::F64).regs()[0];
761 for inst in I::gen_imm_f64(imm, tmp, reg) {
762 self.emit(inst);
763 }
764 }
765 }
766
767 // Emit value-label markers if needed, to later recover
768 // debug mappings. This must happen before the instruction
769 // (so after we emit, in bottom-to-top pass).
770 self.emit_value_label_markers_for_inst(inst);
771 }
772
773 // Add the block params to this block.
774 self.add_block_params(block)?;
775
776 self.cur_scan_entry_color = None;
777 Ok(())
778 }
779
780 fn add_block_params(&mut self, block: Block) -> CodegenResult<()> {
781 for ¶m in self.f.dfg.block_params(block) {
782 for ® in self.value_regs[param].regs() {
783 let vreg = reg.to_virtual_reg().unwrap();
784 self.vcode.add_block_param(vreg);
785 }
786 }
787 Ok(())
788 }
789
790 fn get_value_labels<'a>(&'a self, val: Value, depth: usize) -> Option<&'a [ValueLabelStart]> {
791 if let Some(ref values_labels) = self.f.dfg.values_labels {
792 debug_assert!(self.f.dfg.value_is_real(val));
793 trace!(
794 "get_value_labels: val {} -> {:?}",
795 val,
796 values_labels.get(&val)
797 );
798 match values_labels.get(&val) {
799 Some(&ValueLabelAssignments::Starts(ref list)) => Some(&list[..]),
800 Some(&ValueLabelAssignments::Alias { value, .. }) if depth < 10 => {
801 self.get_value_labels(value, depth + 1)
802 }
803 _ => None,
804 }
805 } else {
806 None
807 }
808 }
809
810 fn emit_value_label_marks_for_value(&mut self, val: Value) {
811 let regs = self.value_regs[val];
812 if regs.len() > 1 {
813 return;
814 }
815 let reg = regs.only_reg().unwrap();
816
817 if let Some(label_starts) = self.get_value_labels(val, 0) {
818 let labels = label_starts
819 .iter()
820 .map(|&ValueLabelStart { label, .. }| label)
821 .collect::<FxHashSet<_>>();
822 for label in labels {
823 trace!(
824 "value labeling: defines val {:?} -> reg {:?} -> label {:?}",
825 val,
826 reg,
827 label,
828 );
829 self.vcode.add_value_label(reg, label);
830 }
831 }
832 }
833
834 fn emit_value_label_markers_for_inst(&mut self, inst: Inst) {
835 if self.f.dfg.values_labels.is_none() {
836 return;
837 }
838
839 trace!(
840 "value labeling: srcloc {}: inst {}",
841 self.srcloc(inst),
842 inst
843 );
844 for &val in self.f.dfg.inst_results(inst) {
845 self.emit_value_label_marks_for_value(val);
846 }
847 }
848
849 fn emit_value_label_markers_for_block_args(&mut self, block: Block) {
850 if self.f.dfg.values_labels.is_none() {
851 return;
852 }
853
854 trace!("value labeling: block {}", block);
855 for &arg in self.f.dfg.block_params(block) {
856 self.emit_value_label_marks_for_value(arg);
857 }
858 self.finish_ir_inst(Default::default());
859 }
860
861 fn finish_ir_inst(&mut self, loc: RelSourceLoc) {
862 // The VCodeBuilder builds in reverse order (and reverses at
863 // the end), but `ir_insts` is in forward order, so reverse
864 // it.
865 for inst in self.ir_insts.drain(..).rev() {
866 self.vcode.push(inst, loc);
867 }
868 }
869
870 fn finish_bb(&mut self) {
871 self.vcode.end_bb();
872 }
873
874 fn lower_clif_branches<B: LowerBackend<MInst = I>>(
875 &mut self,
876 backend: &B,
877 // Lowered block index:
878 bindex: BlockIndex,
879 // Original CLIF block:
880 block: Block,
881 branch: Inst,
882 targets: &[MachLabel],
883 ) -> CodegenResult<()> {
884 trace!(
885 "lower_clif_branches: block {} branch {:?} targets {:?}",
886 block,
887 branch,
888 targets,
889 );
890 // When considering code-motion opportunities, consider the current
891 // program point to be this branch.
892 self.cur_inst = Some(branch);
893
894 // Lower the branch in ISLE.
895 backend
896 .lower_branch(self, branch, targets)
897 .unwrap_or_else(|| {
898 panic!(
899 "should be implemented in ISLE: branch = `{}`",
900 self.f.dfg.display_inst(branch),
901 )
902 });
903 let loc = self.srcloc(branch);
904 self.finish_ir_inst(loc);
905 // Add block param outputs for current block.
906 self.lower_branch_blockparam_args(bindex);
907 Ok(())
908 }
909
910 fn lower_branch_blockparam_args(&mut self, block: BlockIndex) {
911 // TODO: why not make `block_order` public?
912 for succ_idx in 0..self.vcode.block_order().succ_indices(block).1.len() {
913 // Avoid immutable borrow by explicitly indexing.
914 let (opt_inst, succs) = self.vcode.block_order().succ_indices(block);
915 let inst = opt_inst.expect("lower_branch_blockparam_args called on a critical edge!");
916 let succ = succs[succ_idx];
917
918 // The use of `succ_idx` to index `branch_destination` is valid on the assumption that
919 // the traversal order defined in `visit_block_succs` mirrors the order returned by
920 // `branch_destination`. If that assumption is violated, the branch targets returned
921 // here will not match the clif.
922 let branches = self.f.dfg.insts[inst].branch_destination(&self.f.dfg.jump_tables);
923 let branch_args = branches[succ_idx].args_slice(&self.f.dfg.value_lists);
924
925 let mut branch_arg_vregs: SmallVec<[Reg; 16]> = smallvec![];
926 for &arg in branch_args {
927 debug_assert!(self.f.dfg.value_is_real(arg));
928 let regs = self.put_value_in_regs(arg);
929 branch_arg_vregs.extend_from_slice(regs.regs());
930 }
931 self.vcode.add_succ(succ, &branch_arg_vregs[..]);
932 }
933 }
934
935 fn collect_branches_and_targets(
936 &self,
937 bindex: BlockIndex,
938 _bb: Block,
939 targets: &mut SmallVec<[MachLabel; 2]>,
940 ) -> Option<Inst> {
941 targets.clear();
942 let (opt_inst, succs) = self.vcode.block_order().succ_indices(bindex);
943 targets.extend(succs.iter().map(|succ| MachLabel::from_block(*succ)));
944 opt_inst
945 }
946
947 /// Lower the function.
948 pub fn lower<B: LowerBackend<MInst = I>>(
949 mut self,
950 backend: &B,
951 ctrl_plane: &mut ControlPlane,
952 ) -> CodegenResult<VCode<I>> {
953 trace!("about to lower function: {:?}", self.f);
954
955 self.vcode.init_retval_area(&mut self.vregs)?;
956
957 // Get the pinned reg here (we only parameterize this function on `B`,
958 // not the whole `Lower` impl).
959 self.pinned_reg = backend.maybe_pinned_reg();
960
961 self.vcode.set_entry(BlockIndex::new(0));
962
963 // Reused vectors for branch lowering.
964 let mut targets: SmallVec<[MachLabel; 2]> = SmallVec::new();
965
966 // get a copy of the lowered order; we hold this separately because we
967 // need a mut ref to the vcode to mutate it below.
968 let lowered_order: SmallVec<[LoweredBlock; 64]> = self
969 .vcode
970 .block_order()
971 .lowered_order()
972 .iter()
973 .cloned()
974 .collect();
975
976 // Main lowering loop over lowered blocks.
977 for (bindex, lb) in lowered_order.iter().enumerate().rev() {
978 let bindex = BlockIndex::new(bindex);
979
980 // Lower the block body in reverse order (see comment in
981 // `lower_clif_block()` for rationale).
982
983 // End branches.
984 if let Some(bb) = lb.orig_block() {
985 if let Some(branch) = self.collect_branches_and_targets(bindex, bb, &mut targets) {
986 self.lower_clif_branches(backend, bindex, bb, branch, &targets)?;
987 self.finish_ir_inst(self.srcloc(branch));
988 }
989 } else {
990 // If no orig block, this must be a pure edge block;
991 // get the successor and emit a jump. Add block params
992 // according to the one successor, and pass them
993 // through; note that the successor must have an
994 // original block.
995 let (_, succs) = self.vcode.block_order().succ_indices(bindex);
996 let succ = succs[0];
997
998 let orig_succ = lowered_order[succ.index()];
999 let orig_succ = orig_succ
1000 .orig_block()
1001 .expect("Edge block succ must be body block");
1002
1003 let mut branch_arg_vregs: SmallVec<[Reg; 16]> = smallvec![];
1004 for ty in self.f.dfg.block_param_types(orig_succ) {
1005 let regs = self.vregs.alloc(ty)?;
1006 for ® in regs.regs() {
1007 branch_arg_vregs.push(reg);
1008 let vreg = reg.to_virtual_reg().unwrap();
1009 self.vcode.add_block_param(vreg);
1010 }
1011 }
1012 self.vcode.add_succ(succ, &branch_arg_vregs[..]);
1013
1014 self.emit(I::gen_jump(MachLabel::from_block(succ)));
1015 self.finish_ir_inst(Default::default());
1016 }
1017
1018 // Original block body.
1019 if let Some(bb) = lb.orig_block() {
1020 self.lower_clif_block(backend, bb, ctrl_plane)?;
1021 self.emit_value_label_markers_for_block_args(bb);
1022 }
1023
1024 if bindex.index() == 0 {
1025 // Set up the function with arg vreg inits.
1026 self.gen_arg_setup();
1027 self.finish_ir_inst(Default::default());
1028 }
1029
1030 self.finish_bb();
1031
1032 // Check for any deferred vreg-temp allocation errors, and
1033 // bubble one up at this time if it exists.
1034 if let Some(e) = self.vregs.take_deferred_error() {
1035 return Err(e);
1036 }
1037 }
1038
1039 // Now that we've emitted all instructions into the
1040 // VCodeBuilder, let's build the VCode.
1041 trace!(
1042 "built vcode:\n{:?}Backwards {:?}",
1043 &self.vregs,
1044 &self.vcode.vcode
1045 );
1046 let vcode = self.vcode.build(self.vregs);
1047
1048 Ok(vcode)
1049 }
1050
1051 pub fn value_is_unused(&self, val: Value) -> bool {
1052 match self.value_ir_uses[val] {
1053 ValueUseState::Unused => true,
1054 _ => false,
1055 }
1056 }
1057}
1058
1059/// Pre-analysis: compute `value_ir_uses`. See comment on
1060/// `ValueUseState` for a description of what this analysis
1061/// computes.
1062fn compute_use_states(
1063 f: &Function,
1064 sret_param: Option<Value>,
1065) -> SecondaryMap<Value, ValueUseState> {
1066 // We perform the analysis without recursion, so we don't
1067 // overflow the stack on long chains of ops in the input.
1068 //
1069 // This is sort of a hybrid of a "shallow use-count" pass and
1070 // a DFS. We iterate over all instructions and mark their args
1071 // as used. However when we increment a use-count to
1072 // "Multiple" we push its args onto the stack and do a DFS,
1073 // immediately marking the whole dependency tree as
1074 // Multiple. Doing both (shallow use-counting over all insts,
1075 // and deep Multiple propagation) lets us trim both
1076 // traversals, stopping recursion when a node is already at
1077 // the appropriate state.
1078 //
1079 // In particular, note that the *coarsening* into {Unused,
1080 // Once, Multiple} is part of what makes this pass more
1081 // efficient than a full indirect-use-counting pass.
1082
1083 let mut value_ir_uses = SecondaryMap::with_default(ValueUseState::Unused);
1084
1085 if let Some(sret_param) = sret_param {
1086 // There's an implicit use of the struct-return parameter in each
1087 // copy of the function epilogue, which we count here.
1088 value_ir_uses[sret_param] = ValueUseState::Multiple;
1089 }
1090
1091 // Stack of iterators over Values as we do DFS to mark
1092 // Multiple-state subtrees. The iterator type is whatever is
1093 // returned by `uses` below.
1094 let mut stack: SmallVec<[_; 16]> = smallvec![];
1095
1096 // Find the args for the inst corresponding to the given value.
1097 //
1098 // Note that "root" instructions are skipped here. This means that multiple
1099 // uses of any result of a multi-result instruction are not considered
1100 // multiple uses of the operands of a multi-result instruction. This
1101 // requires tight coupling with `get_value_as_source_or_const` above which
1102 // is the consumer of the map that this function is producing.
1103 let uses = |value| {
1104 trace!(" -> pushing args for {} onto stack", value);
1105 if let ValueDef::Result(src_inst, _) = f.dfg.value_def(value) {
1106 if is_value_use_root(f, src_inst) {
1107 None
1108 } else {
1109 Some(f.dfg.inst_values(src_inst))
1110 }
1111 } else {
1112 None
1113 }
1114 };
1115
1116 // Do a DFS through `value_ir_uses` to mark a subtree as
1117 // Multiple.
1118 for inst in f
1119 .layout
1120 .blocks()
1121 .flat_map(|block| f.layout.block_insts(block))
1122 {
1123 // Iterate over all values used by all instructions, noting an
1124 // additional use on each operand.
1125 for arg in f.dfg.inst_values(inst) {
1126 debug_assert!(f.dfg.value_is_real(arg));
1127 let old = value_ir_uses[arg];
1128 value_ir_uses[arg].inc();
1129 let new = value_ir_uses[arg];
1130 trace!("arg {} used, old state {:?}, new {:?}", arg, old, new);
1131
1132 // On transition to Multiple, do DFS.
1133 if old == ValueUseState::Multiple || new != ValueUseState::Multiple {
1134 continue;
1135 }
1136 if let Some(iter) = uses(arg) {
1137 stack.push(iter);
1138 }
1139 while let Some(iter) = stack.last_mut() {
1140 if let Some(value) = iter.next() {
1141 debug_assert!(f.dfg.value_is_real(value));
1142 trace!(" -> DFS reaches {}", value);
1143 if value_ir_uses[value] == ValueUseState::Multiple {
1144 // Truncate DFS here: no need to go further,
1145 // as whole subtree must already be Multiple.
1146 // With debug asserts, check one level of
1147 // that invariant at least.
1148 debug_assert!(uses(value).into_iter().flatten().all(|arg| {
1149 debug_assert!(f.dfg.value_is_real(arg));
1150 value_ir_uses[arg] == ValueUseState::Multiple
1151 }));
1152 continue;
1153 }
1154 value_ir_uses[value] = ValueUseState::Multiple;
1155 trace!(" -> became Multiple");
1156 if let Some(iter) = uses(value) {
1157 stack.push(iter);
1158 }
1159 } else {
1160 // Empty iterator, discard.
1161 stack.pop();
1162 }
1163 }
1164 }
1165 }
1166
1167 value_ir_uses
1168}
1169
1170/// Definition of a "root" instruction for the calculation of `ValueUseState`.
1171///
1172/// This function calculates whether `inst` is considered a "root" for value-use
1173/// information. This concept is used to forcibly prevent looking-through the
1174/// instruction during `get_value_as_source_or_const` as it additionally
1175/// prevents propagating `Multiple`-used results of the `inst` here to the
1176/// operands of the instruction.
1177///
1178/// Currently this is defined as multi-result instructions. That means that
1179/// lowerings are never allowed to look through a multi-result instruction to
1180/// generate patterns. Note that this isn't possible in ISLE today anyway so
1181/// this isn't currently much of a loss.
1182///
1183/// The main purpose of this function is to prevent the operands of a
1184/// multi-result instruction from being forcibly considered `Multiple`-used
1185/// regardless of circumstances.
1186fn is_value_use_root(f: &Function, inst: Inst) -> bool {
1187 f.dfg.inst_results(inst).len() > 1
1188}
1189
1190/// Function-level queries.
1191impl<'func, I: VCodeInst> Lower<'func, I> {
1192 pub fn dfg(&self) -> &DataFlowGraph {
1193 &self.f.dfg
1194 }
1195
1196 /// Get the `Callee`.
1197 pub fn abi(&self) -> &Callee<I::ABIMachineSpec> {
1198 self.vcode.abi()
1199 }
1200
1201 /// Get the `Callee`.
1202 pub fn abi_mut(&mut self) -> &mut Callee<I::ABIMachineSpec> {
1203 self.vcode.abi_mut()
1204 }
1205}
1206
1207/// Instruction input/output queries.
1208impl<'func, I: VCodeInst> Lower<'func, I> {
1209 /// Get the instdata for a given IR instruction.
1210 pub fn data(&self, ir_inst: Inst) -> &InstructionData {
1211 &self.f.dfg.insts[ir_inst]
1212 }
1213
1214 /// Likewise, but starting with a GlobalValue identifier.
1215 pub fn symbol_value_data<'b>(
1216 &'b self,
1217 global_value: GlobalValue,
1218 ) -> Option<(&'b ExternalName, RelocDistance, i64)> {
1219 let gvdata = &self.f.global_values[global_value];
1220 match gvdata {
1221 &GlobalValueData::Symbol {
1222 ref name,
1223 ref offset,
1224 colocated,
1225 ..
1226 } => {
1227 let offset = offset.bits();
1228 let dist = if colocated {
1229 RelocDistance::Near
1230 } else {
1231 RelocDistance::Far
1232 };
1233 Some((name, dist, offset))
1234 }
1235 _ => None,
1236 }
1237 }
1238
1239 /// Returns the memory flags of a given memory access.
1240 pub fn memflags(&self, ir_inst: Inst) -> Option<MemFlags> {
1241 match &self.f.dfg.insts[ir_inst] {
1242 &InstructionData::AtomicCas { flags, .. } => Some(flags),
1243 &InstructionData::AtomicRmw { flags, .. } => Some(flags),
1244 &InstructionData::Load { flags, .. }
1245 | &InstructionData::LoadNoOffset { flags, .. }
1246 | &InstructionData::Store { flags, .. } => Some(flags),
1247 &InstructionData::StoreNoOffset { flags, .. } => Some(flags),
1248 _ => None,
1249 }
1250 }
1251
1252 /// Get the source location for a given instruction.
1253 pub fn srcloc(&self, ir_inst: Inst) -> RelSourceLoc {
1254 self.f.rel_srclocs()[ir_inst]
1255 }
1256
1257 /// Get the number of inputs to the given IR instruction. This is a count only of the Value
1258 /// arguments to the instruction: block arguments will not be included in this count.
1259 pub fn num_inputs(&self, ir_inst: Inst) -> usize {
1260 self.f.dfg.inst_args(ir_inst).len()
1261 }
1262
1263 /// Get the number of outputs to the given IR instruction.
1264 pub fn num_outputs(&self, ir_inst: Inst) -> usize {
1265 self.f.dfg.inst_results(ir_inst).len()
1266 }
1267
1268 /// Get the type for an instruction's input.
1269 pub fn input_ty(&self, ir_inst: Inst, idx: usize) -> Type {
1270 self.value_ty(self.input_as_value(ir_inst, idx))
1271 }
1272
1273 /// Get the type for a value.
1274 pub fn value_ty(&self, val: Value) -> Type {
1275 self.f.dfg.value_type(val)
1276 }
1277
1278 /// Get the type for an instruction's output.
1279 pub fn output_ty(&self, ir_inst: Inst, idx: usize) -> Type {
1280 self.f.dfg.value_type(self.f.dfg.inst_results(ir_inst)[idx])
1281 }
1282
1283 /// Get the value of a constant instruction (`iconst`, etc.) as a 64-bit
1284 /// value, if possible.
1285 pub fn get_constant(&self, ir_inst: Inst) -> Option<u64> {
1286 self.inst_constants.get(&ir_inst).map(|&c| {
1287 // The upper bits must be zero, enforced during legalization and by
1288 // the CLIF verifier.
1289 debug_assert_eq!(c, {
1290 let input_size = self.output_ty(ir_inst, 0).bits() as u64;
1291 let shift = 64 - input_size;
1292 (c << shift) >> shift
1293 });
1294 c
1295 })
1296 }
1297
1298 /// Get the input as one of two options other than a direct register:
1299 ///
1300 /// - An instruction, given that it is effect-free or able to sink its
1301 /// effect to the current instruction being lowered, and given it has only
1302 /// one output, and if effect-ful, given that this is the only use;
1303 /// - A constant, if the value is a constant.
1304 ///
1305 /// The instruction input may be available in either of these forms. It may
1306 /// be available in neither form, if the conditions are not met; if so, use
1307 /// `put_input_in_regs()` instead to get it in a register.
1308 ///
1309 /// If the backend merges the effect of a side-effecting instruction, it
1310 /// must call `sink_inst()`. When this is called, it indicates that the
1311 /// effect has been sunk to the current scan location. The sunk
1312 /// instruction's result(s) must have *no* uses remaining, because it will
1313 /// not be codegen'd (it has been integrated into the current instruction).
1314 pub fn input_as_value(&self, ir_inst: Inst, idx: usize) -> Value {
1315 let val = self.f.dfg.inst_args(ir_inst)[idx];
1316 debug_assert!(self.f.dfg.value_is_real(val));
1317 val
1318 }
1319
1320 /// Resolves a particular input of an instruction to the `Value` that it is
1321 /// represented with.
1322 ///
1323 /// For more information see [`Lower::get_value_as_source_or_const`].
1324 pub fn get_input_as_source_or_const(&self, ir_inst: Inst, idx: usize) -> NonRegInput {
1325 let val = self.input_as_value(ir_inst, idx);
1326 self.get_value_as_source_or_const(val)
1327 }
1328
1329 /// Resolves a `Value` definition to the source instruction it came from
1330 /// plus whether it's a unique-use of that instruction.
1331 ///
1332 /// This function is the workhorse of pattern-matching in ISLE which enables
1333 /// combining multiple instructions together. This is used implicitly in
1334 /// patterns such as `(iadd x (iconst y))` where this function is used to
1335 /// extract the `(iconst y)` operand.
1336 ///
1337 /// At its core this function is a wrapper around
1338 /// [`DataFlowGraph::value_def`]. This function applies a filter on top of
1339 /// that, however, to determine when it is actually safe to "look through"
1340 /// the `val` definition here and view the underlying instruction. This
1341 /// protects against duplicating side effects, such as loads, for example.
1342 ///
1343 /// Internally this uses the data computed from `compute_use_states` along
1344 /// with other instruction properties to know what to return.
1345 pub fn get_value_as_source_or_const(&self, val: Value) -> NonRegInput {
1346 trace!(
1347 "get_input_for_val: val {} at cur_inst {:?} cur_scan_entry_color {:?}",
1348 val,
1349 self.cur_inst,
1350 self.cur_scan_entry_color,
1351 );
1352 let inst = match self.f.dfg.value_def(val) {
1353 // OK to merge source instruction if we have a source
1354 // instruction, and one of these two conditions hold:
1355 //
1356 // - It has no side-effects and this instruction is not a "value-use
1357 // root" instruction. Instructions which are considered "roots"
1358 // for value-use calculations do not have accurate information
1359 // known about the `ValueUseState` of their operands. This is
1360 // currently done for multi-result instructions to prevent a use
1361 // of each result from forcing all operands of the multi-result
1362 // instruction to also be `Multiple`. This in turn means that the
1363 // `ValueUseState` for operands of a "root" instruction to be a
1364 // lie if pattern matching were to look through the multi-result
1365 // instruction. As a result the "look through this instruction"
1366 // logic only succeeds if it's not a root instruction.
1367 //
1368 // - It has a side-effect, has one output value, that one
1369 // output has only one use, directly or indirectly (so
1370 // cannot be duplicated -- see comment on
1371 // `ValueUseState`), and the instruction's color is *one
1372 // less than* the current scan color.
1373 //
1374 // This latter set of conditions is testing whether a
1375 // side-effecting instruction can sink to the current scan
1376 // location; this is possible if the in-color of this inst is
1377 // equal to the out-color of the producing inst, so no other
1378 // side-effecting ops occur between them (which will only be true
1379 // if they are in the same BB, because color increments at each BB
1380 // start).
1381 //
1382 // If it is actually sunk, then in `merge_inst()`, we update the
1383 // scan color so that as we scan over the range past which the
1384 // instruction was sunk, we allow other instructions (that came
1385 // prior to the sunk instruction) to sink.
1386 ValueDef::Result(src_inst, result_idx) => {
1387 let src_side_effect = has_lowering_side_effect(self.f, src_inst);
1388 trace!(" -> src inst {}", src_inst);
1389 trace!(" -> has lowering side effect: {}", src_side_effect);
1390 if is_value_use_root(self.f, src_inst) {
1391 // If this instruction is a "root instruction" then it's
1392 // required that we can't look through it to see the
1393 // definition. This means that the `ValueUseState` for the
1394 // operands of this result assume that this instruction is
1395 // generated exactly once which might get violated were we
1396 // to allow looking through it.
1397 trace!(" -> is a root instruction");
1398 InputSourceInst::None
1399 } else if !src_side_effect {
1400 // Otherwise if this instruction has no side effects and the
1401 // value is used only once then we can look through it with
1402 // a "unique" tag. A non-unique `Use` can be shown for other
1403 // values ensuring consumers know how it's computed but that
1404 // it's not available to omit.
1405 if self.value_ir_uses[val] == ValueUseState::Once {
1406 InputSourceInst::UniqueUse(src_inst, result_idx)
1407 } else {
1408 InputSourceInst::Use(src_inst, result_idx)
1409 }
1410 } else {
1411 // Side-effect: test whether this is the only use of the
1412 // only result of the instruction, and whether colors allow
1413 // the code-motion.
1414 trace!(
1415 " -> side-effecting op {} for val {}: use state {:?}",
1416 src_inst,
1417 val,
1418 self.value_ir_uses[val]
1419 );
1420 if self.cur_scan_entry_color.is_some()
1421 && self.value_ir_uses[val] == ValueUseState::Once
1422 && self.num_outputs(src_inst) == 1
1423 && self
1424 .side_effect_inst_entry_colors
1425 .get(&src_inst)
1426 .unwrap()
1427 .get()
1428 + 1
1429 == self.cur_scan_entry_color.unwrap().get()
1430 {
1431 InputSourceInst::UniqueUse(src_inst, 0)
1432 } else {
1433 InputSourceInst::None
1434 }
1435 }
1436 }
1437 _ => InputSourceInst::None,
1438 };
1439 let constant = inst.as_inst().and_then(|(inst, _)| self.get_constant(inst));
1440
1441 NonRegInput { inst, constant }
1442 }
1443
1444 /// Increment the reference count for the Value, ensuring that it gets lowered.
1445 pub fn increment_lowered_uses(&mut self, val: Value) {
1446 self.value_lowered_uses[val] += 1
1447 }
1448
1449 /// Put the `idx`th input into register(s) and return the assigned register.
1450 pub fn put_input_in_regs(&mut self, ir_inst: Inst, idx: usize) -> ValueRegs<Reg> {
1451 let val = self.f.dfg.inst_args(ir_inst)[idx];
1452 self.put_value_in_regs(val)
1453 }
1454
1455 /// Put the given value into register(s) and return the assigned register.
1456 pub fn put_value_in_regs(&mut self, val: Value) -> ValueRegs<Reg> {
1457 debug_assert!(self.f.dfg.value_is_real(val));
1458 trace!("put_value_in_regs: val {}", val);
1459
1460 if let Some(inst) = self.f.dfg.value_def(val).inst() {
1461 assert!(!self.inst_sunk.contains(&inst));
1462 }
1463
1464 let regs = self.value_regs[val];
1465 trace!(" -> regs {:?}", regs);
1466 assert!(regs.is_valid());
1467
1468 self.value_lowered_uses[val] += 1;
1469
1470 regs
1471 }
1472}
1473
1474/// Codegen primitives: allocate temps, emit instructions, set result registers,
1475/// ask for an input to be gen'd into a register.
1476impl<'func, I: VCodeInst> Lower<'func, I> {
1477 /// Get a new temp.
1478 pub fn alloc_tmp(&mut self, ty: Type) -> ValueRegs<Writable<Reg>> {
1479 writable_value_regs(self.vregs.alloc_with_deferred_error(ty))
1480 }
1481
1482 /// Emit a machine instruction.
1483 pub fn emit(&mut self, mach_inst: I) {
1484 trace!("emit: {:?}", mach_inst);
1485 self.ir_insts.push(mach_inst);
1486 }
1487
1488 /// Indicate that the side-effect of an instruction has been sunk to the
1489 /// current scan location. This should only be done with the instruction's
1490 /// original results are not used (i.e., `put_input_in_regs` is not invoked
1491 /// for the input produced by the sunk instruction), otherwise the
1492 /// side-effect will occur twice.
1493 pub fn sink_inst(&mut self, ir_inst: Inst) {
1494 assert!(has_lowering_side_effect(self.f, ir_inst));
1495 assert!(self.cur_scan_entry_color.is_some());
1496
1497 for result in self.dfg().inst_results(ir_inst) {
1498 assert!(self.value_lowered_uses[*result] == 0);
1499 }
1500
1501 let sunk_inst_entry_color = self
1502 .side_effect_inst_entry_colors
1503 .get(&ir_inst)
1504 .cloned()
1505 .unwrap();
1506 let sunk_inst_exit_color = InstColor::new(sunk_inst_entry_color.get() + 1);
1507 assert!(sunk_inst_exit_color == self.cur_scan_entry_color.unwrap());
1508 self.cur_scan_entry_color = Some(sunk_inst_entry_color);
1509 self.inst_sunk.insert(ir_inst);
1510 }
1511
1512 /// Retrieve immediate data given a handle.
1513 pub fn get_immediate_data(&self, imm: Immediate) -> &ConstantData {
1514 self.f.dfg.immediates.get(imm).unwrap()
1515 }
1516
1517 /// Retrieve constant data given a handle.
1518 pub fn get_constant_data(&self, constant_handle: Constant) -> &ConstantData {
1519 self.f.dfg.constants.get(constant_handle)
1520 }
1521
1522 /// Indicate that a constant should be emitted.
1523 pub fn use_constant(&mut self, constant: VCodeConstantData) -> VCodeConstant {
1524 self.vcode.constants().insert(constant)
1525 }
1526
1527 /// Cause the value in `reg` to be in a virtual reg, by copying it into a
1528 /// new virtual reg if `reg` is a real reg. `ty` describes the type of the
1529 /// value in `reg`.
1530 pub fn ensure_in_vreg(&mut self, reg: Reg, ty: Type) -> Reg {
1531 if reg.to_virtual_reg().is_some() {
1532 reg
1533 } else {
1534 let new_reg = self.alloc_tmp(ty).only_reg().unwrap();
1535 self.emit(I::gen_move(new_reg, reg, ty));
1536 new_reg.to_reg()
1537 }
1538 }
1539
1540 /// Add a range fact to a register, if no other fact is present.
1541 pub fn add_range_fact(&mut self, reg: Reg, bit_width: u16, min: u64, max: u64) {
1542 if self.flags.enable_pcc() {
1543 self.vregs.set_fact_if_missing(
1544 reg.to_virtual_reg().unwrap(),
1545 Fact::Range {
1546 bit_width,
1547 min,
1548 max,
1549 },
1550 );
1551 }
1552 }
1553}
1554
1555#[cfg(test)]
1556mod tests {
1557 use super::ValueUseState;
1558 use crate::cursor::{Cursor, FuncCursor};
1559 use crate::ir::types;
1560 use crate::ir::{Function, InstBuilder};
1561
1562 #[test]
1563 fn multi_result_use_once() {
1564 let mut func = Function::new();
1565 let block0 = func.dfg.make_block();
1566 let mut pos = FuncCursor::new(&mut func);
1567 pos.insert_block(block0);
1568 let v1 = pos.ins().iconst(types::I64, 0);
1569 let v2 = pos.ins().iconst(types::I64, 1);
1570 let v3 = pos.ins().iconcat(v1, v2);
1571 let (v4, v5) = pos.ins().isplit(v3);
1572 pos.ins().return_(&[v4, v5]);
1573 let func = pos.func;
1574
1575 let uses = super::compute_use_states(&func, None);
1576 assert_eq!(uses[v1], ValueUseState::Once);
1577 assert_eq!(uses[v2], ValueUseState::Once);
1578 assert_eq!(uses[v3], ValueUseState::Once);
1579 assert_eq!(uses[v4], ValueUseState::Once);
1580 assert_eq!(uses[v5], ValueUseState::Once);
1581 }
1582
1583 #[test]
1584 fn results_used_twice_but_not_operands() {
1585 let mut func = Function::new();
1586 let block0 = func.dfg.make_block();
1587 let mut pos = FuncCursor::new(&mut func);
1588 pos.insert_block(block0);
1589 let v1 = pos.ins().iconst(types::I64, 0);
1590 let v2 = pos.ins().iconst(types::I64, 1);
1591 let v3 = pos.ins().iconcat(v1, v2);
1592 let (v4, v5) = pos.ins().isplit(v3);
1593 pos.ins().return_(&[v4, v4]);
1594 let func = pos.func;
1595
1596 let uses = super::compute_use_states(&func, None);
1597 assert_eq!(uses[v1], ValueUseState::Once);
1598 assert_eq!(uses[v2], ValueUseState::Once);
1599 assert_eq!(uses[v3], ValueUseState::Once);
1600 assert_eq!(uses[v4], ValueUseState::Multiple);
1601 assert_eq!(uses[v5], ValueUseState::Unused);
1602 }
1603}