1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
//! Code sink that writes binary machine code into contiguous memory.
//!
//! The `CodeSink` trait is the most general way of extracting binary machine code from Cranelift,
//! and it is implemented by things like the `test binemit` file test driver to generate
//! hexadecimal machine code. The `CodeSink` has some undesirable performance properties because of
//! the dual abstraction: `TargetIsa` is a trait object implemented by each supported ISA, so it
//! can't have any generic functions that could be specialized for each `CodeSink` implementation.
//! This results in many virtual function callbacks (one per `put*` call) when
//! `TargetIsa::emit_inst()` is used.
//!
//! The `MemoryCodeSink` type fixes the performance problem because it is a type known to
//! `TargetIsa` so it can specialize its machine code generation for the type. The trade-off is
//! that a `MemoryCodeSink` will always write binary machine code to raw memory. It forwards any
//! relocations to a `RelocSink` trait object. Relocations are less frequent than the
//! `CodeSink::put*` methods, so the performance impact of the virtual callbacks is less severe.
use super::{Addend, CodeInfo, CodeOffset, CodeSink, Reloc};
use crate::binemit::stack_map::StackMap;
use crate::ir::{ExternalName, Opcode, SourceLoc, TrapCode};
use core::ptr::write_unaligned;
/// A `CodeSink` that writes binary machine code directly into memory.
///
/// A `MemoryCodeSink` object should be used when emitting a Cranelift IR function into executable
/// memory. It writes machine code directly to a raw pointer without any bounds checking, so make
/// sure to allocate enough memory for the whole function. The number of bytes required is returned
/// by the `Context::compile()` function.
///
/// Any relocations in the function are forwarded to the `RelocSink` trait object.
///
/// Note that `MemoryCodeSink` writes multi-byte values in the native byte order of the host. This
/// is not the right thing to do for cross compilation.
pub struct MemoryCodeSink<'a> {
/// Pointer to start of sink's preallocated memory.
data: *mut u8,
/// Offset is isize because its major consumer needs it in that form.
offset: isize,
relocs: &'a mut dyn RelocSink,
traps: &'a mut dyn TrapSink,
/// Information about the generated code and read-only data.
pub info: CodeInfo,
}
impl<'a> MemoryCodeSink<'a> {
/// Create a new memory code sink that writes a function to the memory pointed to by `data`.
///
/// # Safety
///
/// This function is unsafe since `MemoryCodeSink` does not perform bounds checking on the
/// memory buffer, and it can't guarantee that the `data` pointer is valid.
pub unsafe fn new(
data: *mut u8,
relocs: &'a mut dyn RelocSink,
traps: &'a mut dyn TrapSink,
) -> Self {
Self {
data,
offset: 0,
info: CodeInfo { total_size: 0 },
relocs,
traps,
}
}
}
/// A trait for receiving relocations for code that is emitted directly into memory.
pub trait RelocSink {
/// Add a relocation referencing an external symbol at the current offset.
fn reloc_external(
&mut self,
_: CodeOffset,
_: SourceLoc,
_: Reloc,
_: &ExternalName,
_: Addend,
);
/// Track a call site whose return address is the given CodeOffset, for the given opcode. Does
/// nothing in general, only useful for certain embedders (SpiderMonkey).
fn add_call_site(&mut self, _: Opcode, _: CodeOffset, _: SourceLoc) {}
}
/// A trait for receiving trap codes and offsets.
///
/// If you don't need information about possible traps, you can use the
/// [`NullTrapSink`](NullTrapSink) implementation.
pub trait TrapSink {
/// Add trap information for a specific offset.
fn trap(&mut self, _: CodeOffset, _: SourceLoc, _: TrapCode);
}
impl<'a> MemoryCodeSink<'a> {
fn write<T>(&mut self, x: T) {
unsafe {
#[cfg_attr(feature = "cargo-clippy", allow(clippy::cast_ptr_alignment))]
write_unaligned(self.data.offset(self.offset) as *mut T, x);
self.offset += core::mem::size_of::<T>() as isize;
}
}
}
impl<'a> CodeSink for MemoryCodeSink<'a> {
fn offset(&self) -> CodeOffset {
self.offset as CodeOffset
}
fn put1(&mut self, x: u8) {
self.write(x);
}
fn put2(&mut self, x: u16) {
self.write(x);
}
fn put4(&mut self, x: u32) {
self.write(x);
}
fn put8(&mut self, x: u64) {
self.write(x);
}
fn reloc_external(
&mut self,
srcloc: SourceLoc,
rel: Reloc,
name: &ExternalName,
addend: Addend,
) {
let ofs = self.offset();
self.relocs.reloc_external(ofs, srcloc, rel, name, addend);
}
fn trap(&mut self, code: TrapCode, srcloc: SourceLoc) {
let ofs = self.offset();
self.traps.trap(ofs, srcloc, code);
}
fn end_codegen(&mut self) {
self.info.total_size = self.offset();
}
fn add_call_site(&mut self, opcode: Opcode, loc: SourceLoc) {
debug_assert!(
opcode.is_call(),
"adding call site info for a non-call instruction."
);
let ret_addr = self.offset();
self.relocs.add_call_site(opcode, ret_addr, loc);
}
}
/// A `RelocSink` implementation that does nothing, which is convenient when
/// compiling code that does not relocate anything.
#[derive(Default)]
pub struct NullRelocSink {}
impl RelocSink for NullRelocSink {
fn reloc_external(
&mut self,
_: CodeOffset,
_: SourceLoc,
_: Reloc,
_: &ExternalName,
_: Addend,
) {
}
}
/// A `TrapSink` implementation that does nothing, which is convenient when
/// compiling code that does not rely on trapping semantics.
#[derive(Default)]
pub struct NullTrapSink {}
impl TrapSink for NullTrapSink {
fn trap(&mut self, _offset: CodeOffset, _srcloc: SourceLoc, _code: TrapCode) {}
}
/// A trait for emitting stack maps.
pub trait StackMapSink {
/// Output a bitmap of the stack representing the live reference variables at this code offset.
fn add_stack_map(&mut self, _: CodeOffset, _: StackMap);
}
/// Placeholder StackMapSink that does nothing.
pub struct NullStackMapSink {}
impl StackMapSink for NullStackMapSink {
fn add_stack_map(&mut self, _: CodeOffset, _: StackMap) {}
}