1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
//! Immediate operands for Cranelift instructions
//!
//! This module defines the types of immediate operands that can appear on Cranelift instructions.
//! Each type here should have a corresponding definition in the
//! `cranelift-codegen/meta/src/shared/immediates` crate in the meta language.

use alloc::vec::Vec;
use core::cmp::Ordering;
use core::convert::TryFrom;
use core::fmt::{self, Display, Formatter};
use core::str::FromStr;
use core::{i32, u32};
#[cfg(feature = "enable-serde")]
use serde::{Deserialize, Serialize};

/// Convert a type into a vector of bytes; all implementors in this file must use little-endian
/// orderings of bytes to match WebAssembly's little-endianness.
pub trait IntoBytes {
    /// Return the little-endian byte representation of the implementing type.
    fn into_bytes(self) -> Vec<u8>;
}

impl IntoBytes for u8 {
    fn into_bytes(self) -> Vec<u8> {
        vec![self]
    }
}

impl IntoBytes for i8 {
    fn into_bytes(self) -> Vec<u8> {
        vec![self as u8]
    }
}

impl IntoBytes for i16 {
    fn into_bytes(self) -> Vec<u8> {
        self.to_le_bytes().to_vec()
    }
}

impl IntoBytes for i32 {
    fn into_bytes(self) -> Vec<u8> {
        self.to_le_bytes().to_vec()
    }
}

impl IntoBytes for Vec<u8> {
    fn into_bytes(self) -> Vec<u8> {
        self
    }
}

/// 64-bit immediate signed integer operand.
///
/// An `Imm64` operand can also be used to represent immediate values of smaller integer types by
/// sign-extending to `i64`.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Imm64(i64);

impl Imm64 {
    /// Create a new `Imm64` representing the signed number `x`.
    pub fn new(x: i64) -> Self {
        Self(x)
    }

    /// Return self negated.
    pub fn wrapping_neg(self) -> Self {
        Self(self.0.wrapping_neg())
    }

    /// Returns the value of this immediate.
    pub fn bits(&self) -> i64 {
        self.0
    }

    /// Sign extend this immediate as if it were a signed integer of the given
    /// power-of-two width.
    pub fn sign_extend_from_width(&mut self, bit_width: u32) {
        debug_assert!(bit_width.is_power_of_two());

        if bit_width >= 64 {
            return;
        }

        let bit_width = i64::from(bit_width);
        let delta = 64 - bit_width;
        let sign_extended = (self.0 << delta) >> delta;
        *self = Imm64(sign_extended);
    }
}

impl From<Imm64> for i64 {
    fn from(val: Imm64) -> i64 {
        val.0
    }
}

impl IntoBytes for Imm64 {
    fn into_bytes(self) -> Vec<u8> {
        self.0.to_le_bytes().to_vec()
    }
}

impl From<i64> for Imm64 {
    fn from(x: i64) -> Self {
        Self(x)
    }
}

impl Display for Imm64 {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        let x = self.0;
        if -10_000 < x && x < 10_000 {
            // Use decimal for small numbers.
            write!(f, "{}", x)
        } else {
            write_hex(x as u64, f)
        }
    }
}

/// Parse a 64-bit signed number.
fn parse_i64(s: &str) -> Result<i64, &'static str> {
    let negative = s.starts_with('-');
    let s2 = if negative || s.starts_with('+') {
        &s[1..]
    } else {
        s
    };

    let mut value = parse_u64(s2)?;

    // We support the range-and-a-half from -2^63 .. 2^64-1.
    if negative {
        value = value.wrapping_neg();
        // Don't allow large negative values to wrap around and become positive.
        if value as i64 > 0 {
            return Err("Negative number too small");
        }
    }
    Ok(value as i64)
}

impl FromStr for Imm64 {
    type Err = &'static str;

    // Parse a decimal or hexadecimal `Imm64`, formatted as above.
    fn from_str(s: &str) -> Result<Self, &'static str> {
        parse_i64(s).map(Self::new)
    }
}

/// 64-bit immediate unsigned integer operand.
///
/// A `Uimm64` operand can also be used to represent immediate values of smaller integer types by
/// zero-extending to `i64`.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Uimm64(u64);

impl Uimm64 {
    /// Create a new `Uimm64` representing the unsigned number `x`.
    pub fn new(x: u64) -> Self {
        Self(x)
    }

    /// Return self negated.
    pub fn wrapping_neg(self) -> Self {
        Self(self.0.wrapping_neg())
    }
}

impl From<Uimm64> for u64 {
    fn from(val: Uimm64) -> u64 {
        val.0
    }
}

impl From<u64> for Uimm64 {
    fn from(x: u64) -> Self {
        Self(x)
    }
}

/// Hexadecimal with a multiple of 4 digits and group separators:
///
///   0xfff0
///   0x0001_ffff
///   0xffff_ffff_fff8_4400
///
fn write_hex(x: u64, f: &mut Formatter) -> fmt::Result {
    let mut pos = (64 - x.leading_zeros() - 1) & 0xf0;
    write!(f, "0x{:04x}", (x >> pos) & 0xffff)?;
    while pos > 0 {
        pos -= 16;
        write!(f, "_{:04x}", (x >> pos) & 0xffff)?;
    }
    Ok(())
}

impl Display for Uimm64 {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        let x = self.0;
        if x < 10_000 {
            // Use decimal for small numbers.
            write!(f, "{}", x)
        } else {
            write_hex(x, f)
        }
    }
}

/// Parse a 64-bit unsigned number.
fn parse_u64(s: &str) -> Result<u64, &'static str> {
    let mut value: u64 = 0;
    let mut digits = 0;

    if s.starts_with("-0x") {
        return Err("Invalid character in hexadecimal number");
    } else if s.starts_with("0x") {
        // Hexadecimal.
        for ch in s[2..].chars() {
            match ch.to_digit(16) {
                Some(digit) => {
                    digits += 1;
                    if digits > 16 {
                        return Err("Too many hexadecimal digits");
                    }
                    // This can't overflow given the digit limit.
                    value = (value << 4) | u64::from(digit);
                }
                None => {
                    // Allow embedded underscores, but fail on anything else.
                    if ch != '_' {
                        return Err("Invalid character in hexadecimal number");
                    }
                }
            }
        }
    } else {
        // Decimal number, possibly negative.
        for ch in s.chars() {
            match ch.to_digit(16) {
                Some(digit) => {
                    digits += 1;
                    match value.checked_mul(10) {
                        None => return Err("Too large decimal number"),
                        Some(v) => value = v,
                    }
                    match value.checked_add(u64::from(digit)) {
                        None => return Err("Too large decimal number"),
                        Some(v) => value = v,
                    }
                }
                None => {
                    // Allow embedded underscores, but fail on anything else.
                    if ch != '_' {
                        return Err("Invalid character in decimal number");
                    }
                }
            }
        }
    }

    if digits == 0 {
        return Err("No digits in number");
    }

    Ok(value)
}

impl FromStr for Uimm64 {
    type Err = &'static str;

    // Parse a decimal or hexadecimal `Uimm64`, formatted as above.
    fn from_str(s: &str) -> Result<Self, &'static str> {
        parse_u64(s).map(Self::new)
    }
}

/// 8-bit unsigned integer immediate operand.
///
/// This is used to indicate lane indexes typically.
pub type Uimm8 = u8;

/// A 32-bit unsigned integer immediate operand.
///
/// This is used to represent sizes of memory objects.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Uimm32(u32);

impl From<Uimm32> for u32 {
    fn from(val: Uimm32) -> u32 {
        val.0
    }
}

impl From<Uimm32> for u64 {
    fn from(val: Uimm32) -> u64 {
        val.0.into()
    }
}

impl From<Uimm32> for i64 {
    fn from(val: Uimm32) -> i64 {
        i64::from(val.0)
    }
}

impl From<u32> for Uimm32 {
    fn from(x: u32) -> Self {
        Self(x)
    }
}

impl Display for Uimm32 {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        if self.0 < 10_000 {
            write!(f, "{}", self.0)
        } else {
            write_hex(u64::from(self.0), f)
        }
    }
}

impl FromStr for Uimm32 {
    type Err = &'static str;

    // Parse a decimal or hexadecimal `Uimm32`, formatted as above.
    fn from_str(s: &str) -> Result<Self, &'static str> {
        parse_i64(s).and_then(|x| {
            if 0 <= x && x <= i64::from(u32::MAX) {
                Ok(Self(x as u32))
            } else {
                Err("Uimm32 out of range")
            }
        })
    }
}

/// A 128-bit immediate operand.
///
/// This is used as an immediate value in SIMD instructions.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct V128Imm(pub [u8; 16]);

impl V128Imm {
    /// Iterate over the bytes in the constant.
    pub fn bytes(&self) -> impl Iterator<Item = &u8> {
        self.0.iter()
    }

    /// Convert the immediate into a vector.
    pub fn to_vec(self) -> Vec<u8> {
        self.0.to_vec()
    }

    /// Convert the immediate into a slice.
    pub fn as_slice(&self) -> &[u8] {
        &self.0[..]
    }
}

impl From<&[u8]> for V128Imm {
    fn from(slice: &[u8]) -> Self {
        assert_eq!(slice.len(), 16);
        let mut buffer = [0; 16];
        buffer.copy_from_slice(slice);
        Self(buffer)
    }
}

impl From<u128> for V128Imm {
    fn from(val: u128) -> Self {
        V128Imm(val.to_le_bytes())
    }
}

/// 32-bit signed immediate offset.
///
/// This is used to encode an immediate offset for load/store instructions. All supported ISAs have
/// a maximum load/store offset that fits in an `i32`.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Offset32(i32);

impl Offset32 {
    /// Create a new `Offset32` representing the signed number `x`.
    pub fn new(x: i32) -> Self {
        Self(x)
    }

    /// Create a new `Offset32` representing the signed number `x` if possible.
    pub fn try_from_i64(x: i64) -> Option<Self> {
        let x = i32::try_from(x).ok()?;
        Some(Self::new(x))
    }

    /// Add in the signed number `x` if possible.
    pub fn try_add_i64(self, x: i64) -> Option<Self> {
        let x = i32::try_from(x).ok()?;
        let ret = self.0.checked_add(x)?;
        Some(Self::new(ret))
    }
}

impl From<Offset32> for i32 {
    fn from(val: Offset32) -> i32 {
        val.0
    }
}

impl From<Offset32> for i64 {
    fn from(val: Offset32) -> i64 {
        i64::from(val.0)
    }
}

impl From<i32> for Offset32 {
    fn from(x: i32) -> Self {
        Self(x)
    }
}

impl Display for Offset32 {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        // 0 displays as an empty offset.
        if self.0 == 0 {
            return Ok(());
        }

        // Always include a sign.
        write!(f, "{}", if self.0 < 0 { '-' } else { '+' })?;

        let val = i64::from(self.0).abs();
        if val < 10_000 {
            write!(f, "{}", val)
        } else {
            write_hex(val as u64, f)
        }
    }
}

impl FromStr for Offset32 {
    type Err = &'static str;

    // Parse a decimal or hexadecimal `Offset32`, formatted as above.
    fn from_str(s: &str) -> Result<Self, &'static str> {
        if !(s.starts_with('-') || s.starts_with('+')) {
            return Err("Offset must begin with sign");
        }
        parse_i64(s).and_then(|x| {
            if i64::from(i32::MIN) <= x && x <= i64::from(i32::MAX) {
                Ok(Self::new(x as i32))
            } else {
                Err("Offset out of range")
            }
        })
    }
}

/// An IEEE binary32 immediate floating point value, represented as a u32
/// containing the bit pattern.
///
/// All bit patterns are allowed.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
#[repr(C)]
pub struct Ieee32(u32);

/// An IEEE binary64 immediate floating point value, represented as a u64
/// containing the bit pattern.
///
/// All bit patterns are allowed.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
#[repr(C)]
pub struct Ieee64(u64);

/// Format a floating point number in a way that is reasonably human-readable, and that can be
/// converted back to binary without any rounding issues. The hexadecimal formatting of normal and
/// subnormal numbers is compatible with C99 and the `printf "%a"` format specifier. The NaN and Inf
/// formats are not supported by C99.
///
/// The encoding parameters are:
///
/// w - exponent field width in bits
/// t - trailing significand field width in bits
///
fn format_float(bits: u64, w: u8, t: u8, f: &mut Formatter) -> fmt::Result {
    debug_assert!(w > 0 && w <= 16, "Invalid exponent range");
    debug_assert!(1 + w + t <= 64, "Too large IEEE format for u64");
    debug_assert!((t + w + 1).is_power_of_two(), "Unexpected IEEE format size");

    let max_e_bits = (1u64 << w) - 1;
    let t_bits = bits & ((1u64 << t) - 1); // Trailing significand.
    let e_bits = (bits >> t) & max_e_bits; // Biased exponent.
    let sign_bit = (bits >> (w + t)) & 1;

    let bias: i32 = (1 << (w - 1)) - 1;
    let e = e_bits as i32 - bias; // Unbiased exponent.
    let emin = 1 - bias; // Minimum exponent.

    // How many hexadecimal digits are needed for the trailing significand?
    let digits = (t + 3) / 4;
    // Trailing significand left-aligned in `digits` hexadecimal digits.
    let left_t_bits = t_bits << (4 * digits - t);

    // All formats share the leading sign.
    if sign_bit != 0 {
        write!(f, "-")?;
    }

    if e_bits == 0 {
        if t_bits == 0 {
            // Zero.
            write!(f, "0.0")
        } else {
            // Subnormal.
            write!(
                f,
                "0x0.{0:01$x}p{2}",
                left_t_bits,
                usize::from(digits),
                emin
            )
        }
    } else if e_bits == max_e_bits {
        // Always print a `+` or `-` sign for these special values.
        // This makes them easier to parse as they can't be confused as identifiers.
        if sign_bit == 0 {
            write!(f, "+")?;
        }
        if t_bits == 0 {
            // Infinity.
            write!(f, "Inf")
        } else {
            // NaN.
            let payload = t_bits & ((1 << (t - 1)) - 1);
            if t_bits & (1 << (t - 1)) != 0 {
                // Quiet NaN.
                if payload != 0 {
                    write!(f, "NaN:0x{:x}", payload)
                } else {
                    write!(f, "NaN")
                }
            } else {
                // Signaling NaN.
                write!(f, "sNaN:0x{:x}", payload)
            }
        }
    } else {
        // Normal number.
        write!(f, "0x1.{0:01$x}p{2}", left_t_bits, usize::from(digits), e)
    }
}

/// Parse a float using the same format as `format_float` above.
///
/// The encoding parameters are:
///
/// w - exponent field width in bits
/// t - trailing significand field width in bits
///
fn parse_float(s: &str, w: u8, t: u8) -> Result<u64, &'static str> {
    debug_assert!(w > 0 && w <= 16, "Invalid exponent range");
    debug_assert!(1 + w + t <= 64, "Too large IEEE format for u64");
    debug_assert!((t + w + 1).is_power_of_two(), "Unexpected IEEE format size");

    let (sign_bit, s2) = if s.starts_with('-') {
        (1u64 << (t + w), &s[1..])
    } else if s.starts_with('+') {
        (0, &s[1..])
    } else {
        (0, s)
    };

    if !s2.starts_with("0x") {
        let max_e_bits = ((1u64 << w) - 1) << t;
        let quiet_bit = 1u64 << (t - 1);

        // The only decimal encoding allowed is 0.
        if s2 == "0.0" {
            return Ok(sign_bit);
        }

        if s2 == "Inf" {
            // +/- infinity: e = max, t = 0.
            return Ok(sign_bit | max_e_bits);
        }
        if s2 == "NaN" {
            // Canonical quiet NaN: e = max, t = quiet.
            return Ok(sign_bit | max_e_bits | quiet_bit);
        }
        if s2.starts_with("NaN:0x") {
            // Quiet NaN with payload.
            return match u64::from_str_radix(&s2[6..], 16) {
                Ok(payload) if payload < quiet_bit => {
                    Ok(sign_bit | max_e_bits | quiet_bit | payload)
                }
                _ => Err("Invalid NaN payload"),
            };
        }
        if s2.starts_with("sNaN:0x") {
            // Signaling NaN with payload.
            return match u64::from_str_radix(&s2[7..], 16) {
                Ok(payload) if 0 < payload && payload < quiet_bit => {
                    Ok(sign_bit | max_e_bits | payload)
                }
                _ => Err("Invalid sNaN payload"),
            };
        }

        return Err("Float must be hexadecimal");
    }
    let s3 = &s2[2..];

    let mut digits = 0u8;
    let mut digits_before_period: Option<u8> = None;
    let mut significand = 0u64;
    let mut exponent = 0i32;

    for (idx, ch) in s3.char_indices() {
        match ch {
            '.' => {
                // This is the radix point. There can only be one.
                if digits_before_period != None {
                    return Err("Multiple radix points");
                } else {
                    digits_before_period = Some(digits);
                }
            }
            'p' => {
                // The following exponent is a decimal number.
                let exp_str = &s3[1 + idx..];
                match exp_str.parse::<i16>() {
                    Ok(e) => {
                        exponent = i32::from(e);
                        break;
                    }
                    Err(_) => return Err("Bad exponent"),
                }
            }
            _ => match ch.to_digit(16) {
                Some(digit) => {
                    digits += 1;
                    if digits > 16 {
                        return Err("Too many digits");
                    }
                    significand = (significand << 4) | u64::from(digit);
                }
                None => return Err("Invalid character"),
            },
        }
    }

    if digits == 0 {
        return Err("No digits");
    }

    if significand == 0 {
        // This is +/- 0.0.
        return Ok(sign_bit);
    }

    // Number of bits appearing after the radix point.
    match digits_before_period {
        None => {} // No radix point present.
        Some(d) => exponent -= 4 * i32::from(digits - d),
    };

    // Normalize the significand and exponent.
    let significant_bits = (64 - significand.leading_zeros()) as u8;
    if significant_bits > t + 1 {
        let adjust = significant_bits - (t + 1);
        if significand & ((1u64 << adjust) - 1) != 0 {
            return Err("Too many significant bits");
        }
        // Adjust significand down.
        significand >>= adjust;
        exponent += i32::from(adjust);
    } else {
        let adjust = t + 1 - significant_bits;
        significand <<= adjust;
        exponent -= i32::from(adjust);
    }
    debug_assert_eq!(significand >> t, 1);

    // Trailing significand excludes the high bit.
    let t_bits = significand & ((1 << t) - 1);

    let max_exp = (1i32 << w) - 2;
    let bias: i32 = (1 << (w - 1)) - 1;
    exponent += bias + i32::from(t);

    if exponent > max_exp {
        Err("Magnitude too large")
    } else if exponent > 0 {
        // This is a normal number.
        let e_bits = (exponent as u64) << t;
        Ok(sign_bit | e_bits | t_bits)
    } else if 1 - exponent <= i32::from(t) {
        // This is a subnormal number: e = 0, t = significand bits.
        // Renormalize significand for exponent = 1.
        let adjust = 1 - exponent;
        if significand & ((1u64 << adjust) - 1) != 0 {
            Err("Subnormal underflow")
        } else {
            significand >>= adjust;
            Ok(sign_bit | significand)
        }
    } else {
        Err("Magnitude too small")
    }
}

impl Ieee32 {
    /// Create a new `Ieee32` containing the bits of `x`.
    pub fn with_bits(x: u32) -> Self {
        Self(x)
    }

    /// Create an `Ieee32` number representing `2.0^n`.
    pub fn pow2<I: Into<i32>>(n: I) -> Self {
        let n = n.into();
        let w = 8;
        let t = 23;
        let bias = (1 << (w - 1)) - 1;
        let exponent = (n + bias) as u32;
        assert!(exponent > 0, "Underflow n={}", n);
        assert!(exponent < (1 << w) + 1, "Overflow n={}", n);
        Self(exponent << t)
    }

    /// Create an `Ieee32` number representing the greatest negative value
    /// not convertable from f32 to a signed integer with width n.
    pub fn fcvt_to_sint_negative_overflow<I: Into<i32>>(n: I) -> Self {
        let n = n.into();
        debug_assert!(n < 32);
        debug_assert!(23 + 1 - n < 32);
        Self::with_bits((1u32 << (32 - 1)) | Self::pow2(n - 1).0 | (1u32 << (23 + 1 - n)))
    }

    /// Return self negated.
    pub fn neg(self) -> Self {
        Self(self.0 ^ (1 << 31))
    }

    /// Create a new `Ieee32` representing the number `x`.
    pub fn with_float(x: f32) -> Self {
        Self(x.to_bits())
    }

    /// Get the bitwise representation.
    pub fn bits(self) -> u32 {
        self.0
    }

    /// Check if the value is a NaN.
    pub fn is_nan(&self) -> bool {
        f32::from_bits(self.0).is_nan()
    }

    /// Returns the square root of self.
    pub fn sqrt(self) -> Self {
        Self::with_float(f32::from_bits(self.0).sqrt())
    }
}

impl PartialOrd for Ieee32 {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        f32::from_bits(self.0).partial_cmp(&f32::from_bits(other.0))
    }
}

impl Display for Ieee32 {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        let bits: u32 = self.0;
        format_float(u64::from(bits), 8, 23, f)
    }
}

impl FromStr for Ieee32 {
    type Err = &'static str;

    fn from_str(s: &str) -> Result<Self, &'static str> {
        match parse_float(s, 8, 23) {
            Ok(b) => Ok(Self(b as u32)),
            Err(s) => Err(s),
        }
    }
}

impl From<f32> for Ieee32 {
    fn from(x: f32) -> Self {
        Self::with_float(x)
    }
}

impl IntoBytes for Ieee32 {
    fn into_bytes(self) -> Vec<u8> {
        self.0.to_le_bytes().to_vec()
    }
}

impl Ieee64 {
    /// Create a new `Ieee64` containing the bits of `x`.
    pub fn with_bits(x: u64) -> Self {
        Self(x)
    }

    /// Create an `Ieee64` number representing `2.0^n`.
    pub fn pow2<I: Into<i64>>(n: I) -> Self {
        let n = n.into();
        let w = 11;
        let t = 52;
        let bias = (1 << (w - 1)) - 1;
        let exponent = (n + bias) as u64;
        assert!(exponent > 0, "Underflow n={}", n);
        assert!(exponent < (1 << w) + 1, "Overflow n={}", n);
        Self(exponent << t)
    }

    /// Create an `Ieee64` number representing the greatest negative value
    /// not convertable from f64 to a signed integer with width n.
    pub fn fcvt_to_sint_negative_overflow<I: Into<i64>>(n: I) -> Self {
        let n = n.into();
        debug_assert!(n < 64);
        debug_assert!(52 + 1 - n < 64);
        Self::with_bits((1u64 << (64 - 1)) | Self::pow2(n - 1).0 | (1u64 << (52 + 1 - n)))
    }

    /// Return self negated.
    pub fn neg(self) -> Self {
        Self(self.0 ^ (1 << 63))
    }

    /// Create a new `Ieee64` representing the number `x`.
    pub fn with_float(x: f64) -> Self {
        Self(x.to_bits())
    }

    /// Get the bitwise representation.
    pub fn bits(self) -> u64 {
        self.0
    }

    /// Check if the value is a NaN. For [Ieee64], this means checking that the 11 exponent bits are
    /// all set.
    pub fn is_nan(&self) -> bool {
        f64::from_bits(self.0).is_nan()
    }

    /// Returns the square root of self.
    pub fn sqrt(self) -> Self {
        Self::with_float(f64::from_bits(self.0).sqrt())
    }
}

impl PartialOrd for Ieee64 {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        f64::from_bits(self.0).partial_cmp(&f64::from_bits(other.0))
    }
}

impl Display for Ieee64 {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        let bits: u64 = self.0;
        format_float(bits, 11, 52, f)
    }
}

impl FromStr for Ieee64 {
    type Err = &'static str;

    fn from_str(s: &str) -> Result<Self, &'static str> {
        match parse_float(s, 11, 52) {
            Ok(b) => Ok(Self(b)),
            Err(s) => Err(s),
        }
    }
}

impl From<f64> for Ieee64 {
    fn from(x: f64) -> Self {
        Self::with_float(x)
    }
}

impl From<u64> for Ieee64 {
    fn from(x: u64) -> Self {
        Self::with_float(f64::from_bits(x))
    }
}

impl IntoBytes for Ieee64 {
    fn into_bytes(self) -> Vec<u8> {
        self.0.to_le_bytes().to_vec()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use alloc::string::ToString;
    use core::fmt::Display;
    use core::mem;
    use core::str::FromStr;
    use core::{f32, f64};

    #[test]
    fn format_imm64() {
        assert_eq!(Imm64(0).to_string(), "0");
        assert_eq!(Imm64(9999).to_string(), "9999");
        assert_eq!(Imm64(10000).to_string(), "0x2710");
        assert_eq!(Imm64(-9999).to_string(), "-9999");
        assert_eq!(Imm64(-10000).to_string(), "0xffff_ffff_ffff_d8f0");
        assert_eq!(Imm64(0xffff).to_string(), "0xffff");
        assert_eq!(Imm64(0x10000).to_string(), "0x0001_0000");
    }

    #[test]
    fn format_uimm64() {
        assert_eq!(Uimm64(0).to_string(), "0");
        assert_eq!(Uimm64(9999).to_string(), "9999");
        assert_eq!(Uimm64(10000).to_string(), "0x2710");
        assert_eq!(Uimm64(-9999i64 as u64).to_string(), "0xffff_ffff_ffff_d8f1");
        assert_eq!(
            Uimm64(-10000i64 as u64).to_string(),
            "0xffff_ffff_ffff_d8f0"
        );
        assert_eq!(Uimm64(0xffff).to_string(), "0xffff");
        assert_eq!(Uimm64(0x10000).to_string(), "0x0001_0000");
    }

    // Verify that `text` can be parsed as a `T` into a value that displays as `want`.
    fn parse_ok<T: FromStr + Display>(text: &str, want: &str)
    where
        <T as FromStr>::Err: Display,
    {
        match text.parse::<T>() {
            Err(s) => panic!("\"{}\".parse() error: {}", text, s),
            Ok(x) => assert_eq!(x.to_string(), want),
        }
    }

    // Verify that `text` fails to parse as `T` with the error `msg`.
    fn parse_err<T: FromStr + Display>(text: &str, msg: &str)
    where
        <T as FromStr>::Err: Display,
    {
        match text.parse::<T>() {
            Err(s) => assert_eq!(s.to_string(), msg),
            Ok(x) => panic!("Wanted Err({}), but got {}", msg, x),
        }
    }

    #[test]
    fn parse_imm64() {
        parse_ok::<Imm64>("0", "0");
        parse_ok::<Imm64>("1", "1");
        parse_ok::<Imm64>("-0", "0");
        parse_ok::<Imm64>("-1", "-1");
        parse_ok::<Imm64>("0x0", "0");
        parse_ok::<Imm64>("0xf", "15");
        parse_ok::<Imm64>("-0x9", "-9");

        // Probe limits.
        parse_ok::<Imm64>("0xffffffff_ffffffff", "-1");
        parse_ok::<Imm64>("0x80000000_00000000", "0x8000_0000_0000_0000");
        parse_ok::<Imm64>("-0x80000000_00000000", "0x8000_0000_0000_0000");
        parse_err::<Imm64>("-0x80000000_00000001", "Negative number too small");
        parse_ok::<Imm64>("18446744073709551615", "-1");
        parse_ok::<Imm64>("-9223372036854775808", "0x8000_0000_0000_0000");
        // Overflow both the `checked_add` and `checked_mul`.
        parse_err::<Imm64>("18446744073709551616", "Too large decimal number");
        parse_err::<Imm64>("184467440737095516100", "Too large decimal number");
        parse_err::<Imm64>("-9223372036854775809", "Negative number too small");

        // Underscores are allowed where digits go.
        parse_ok::<Imm64>("0_0", "0");
        parse_ok::<Imm64>("-_10_0", "-100");
        parse_ok::<Imm64>("_10_", "10");
        parse_ok::<Imm64>("0x97_88_bb", "0x0097_88bb");
        parse_ok::<Imm64>("0x_97_", "151");

        parse_err::<Imm64>("", "No digits in number");
        parse_err::<Imm64>("-", "No digits in number");
        parse_err::<Imm64>("_", "No digits in number");
        parse_err::<Imm64>("0x", "No digits in number");
        parse_err::<Imm64>("0x_", "No digits in number");
        parse_err::<Imm64>("-0x", "No digits in number");
        parse_err::<Imm64>(" ", "Invalid character in decimal number");
        parse_err::<Imm64>("0 ", "Invalid character in decimal number");
        parse_err::<Imm64>(" 0", "Invalid character in decimal number");
        parse_err::<Imm64>("--", "Invalid character in decimal number");
        parse_err::<Imm64>("-0x-", "Invalid character in hexadecimal number");

        // Hex count overflow.
        parse_err::<Imm64>("0x0_0000_0000_0000_0000", "Too many hexadecimal digits");
    }

    #[test]
    fn parse_uimm64() {
        parse_ok::<Uimm64>("0", "0");
        parse_ok::<Uimm64>("1", "1");
        parse_ok::<Uimm64>("0x0", "0");
        parse_ok::<Uimm64>("0xf", "15");
        parse_ok::<Uimm64>("0xffffffff_fffffff7", "0xffff_ffff_ffff_fff7");

        // Probe limits.
        parse_ok::<Uimm64>("0xffffffff_ffffffff", "0xffff_ffff_ffff_ffff");
        parse_ok::<Uimm64>("0x80000000_00000000", "0x8000_0000_0000_0000");
        parse_ok::<Uimm64>("18446744073709551615", "0xffff_ffff_ffff_ffff");
        // Overflow both the `checked_add` and `checked_mul`.
        parse_err::<Uimm64>("18446744073709551616", "Too large decimal number");
        parse_err::<Uimm64>("184467440737095516100", "Too large decimal number");

        // Underscores are allowed where digits go.
        parse_ok::<Uimm64>("0_0", "0");
        parse_ok::<Uimm64>("_10_", "10");
        parse_ok::<Uimm64>("0x97_88_bb", "0x0097_88bb");
        parse_ok::<Uimm64>("0x_97_", "151");

        parse_err::<Uimm64>("", "No digits in number");
        parse_err::<Uimm64>("_", "No digits in number");
        parse_err::<Uimm64>("0x", "No digits in number");
        parse_err::<Uimm64>("0x_", "No digits in number");
        parse_err::<Uimm64>("-", "Invalid character in decimal number");
        parse_err::<Uimm64>("-0x", "Invalid character in hexadecimal number");
        parse_err::<Uimm64>(" ", "Invalid character in decimal number");
        parse_err::<Uimm64>("0 ", "Invalid character in decimal number");
        parse_err::<Uimm64>(" 0", "Invalid character in decimal number");
        parse_err::<Uimm64>("--", "Invalid character in decimal number");
        parse_err::<Uimm64>("-0x-", "Invalid character in hexadecimal number");
        parse_err::<Uimm64>("-0", "Invalid character in decimal number");
        parse_err::<Uimm64>("-1", "Invalid character in decimal number");

        // Hex count overflow.
        parse_err::<Uimm64>("0x0_0000_0000_0000_0000", "Too many hexadecimal digits");
    }

    #[test]
    fn format_offset32() {
        assert_eq!(Offset32(0).to_string(), "");
        assert_eq!(Offset32(1).to_string(), "+1");
        assert_eq!(Offset32(-1).to_string(), "-1");
        assert_eq!(Offset32(9999).to_string(), "+9999");
        assert_eq!(Offset32(10000).to_string(), "+0x2710");
        assert_eq!(Offset32(-9999).to_string(), "-9999");
        assert_eq!(Offset32(-10000).to_string(), "-0x2710");
        assert_eq!(Offset32(0xffff).to_string(), "+0xffff");
        assert_eq!(Offset32(0x10000).to_string(), "+0x0001_0000");
    }

    #[test]
    fn parse_offset32() {
        parse_ok::<Offset32>("+0", "");
        parse_ok::<Offset32>("+1", "+1");
        parse_ok::<Offset32>("-0", "");
        parse_ok::<Offset32>("-1", "-1");
        parse_ok::<Offset32>("+0x0", "");
        parse_ok::<Offset32>("+0xf", "+15");
        parse_ok::<Offset32>("-0x9", "-9");
        parse_ok::<Offset32>("-0x8000_0000", "-0x8000_0000");

        parse_err::<Offset32>("+0x8000_0000", "Offset out of range");
    }

    #[test]
    fn format_ieee32() {
        assert_eq!(Ieee32::with_float(0.0).to_string(), "0.0");
        assert_eq!(Ieee32::with_float(-0.0).to_string(), "-0.0");
        assert_eq!(Ieee32::with_float(1.0).to_string(), "0x1.000000p0");
        assert_eq!(Ieee32::with_float(1.5).to_string(), "0x1.800000p0");
        assert_eq!(Ieee32::with_float(0.5).to_string(), "0x1.000000p-1");
        assert_eq!(
            Ieee32::with_float(f32::EPSILON).to_string(),
            "0x1.000000p-23"
        );
        assert_eq!(Ieee32::with_float(f32::MIN).to_string(), "-0x1.fffffep127");
        assert_eq!(Ieee32::with_float(f32::MAX).to_string(), "0x1.fffffep127");
        // Smallest positive normal number.
        assert_eq!(
            Ieee32::with_float(f32::MIN_POSITIVE).to_string(),
            "0x1.000000p-126"
        );
        // Subnormals.
        assert_eq!(
            Ieee32::with_float(f32::MIN_POSITIVE / 2.0).to_string(),
            "0x0.800000p-126"
        );
        assert_eq!(
            Ieee32::with_float(f32::MIN_POSITIVE * f32::EPSILON).to_string(),
            "0x0.000002p-126"
        );
        assert_eq!(Ieee32::with_float(f32::INFINITY).to_string(), "+Inf");
        assert_eq!(Ieee32::with_float(f32::NEG_INFINITY).to_string(), "-Inf");
        assert_eq!(Ieee32::with_float(f32::NAN).to_string(), "+NaN");
        assert_eq!(Ieee32::with_float(-f32::NAN).to_string(), "-NaN");
        // Construct some qNaNs with payloads.
        assert_eq!(Ieee32(0x7fc00001).to_string(), "+NaN:0x1");
        assert_eq!(Ieee32(0x7ff00001).to_string(), "+NaN:0x300001");
        // Signaling NaNs.
        assert_eq!(Ieee32(0x7f800001).to_string(), "+sNaN:0x1");
        assert_eq!(Ieee32(0x7fa00001).to_string(), "+sNaN:0x200001");
    }

    #[test]
    fn parse_ieee32() {
        parse_ok::<Ieee32>("0.0", "0.0");
        parse_ok::<Ieee32>("+0.0", "0.0");
        parse_ok::<Ieee32>("-0.0", "-0.0");
        parse_ok::<Ieee32>("0x0", "0.0");
        parse_ok::<Ieee32>("0x0.0", "0.0");
        parse_ok::<Ieee32>("0x.0", "0.0");
        parse_ok::<Ieee32>("0x0.", "0.0");
        parse_ok::<Ieee32>("0x1", "0x1.000000p0");
        parse_ok::<Ieee32>("+0x1", "0x1.000000p0");
        parse_ok::<Ieee32>("-0x1", "-0x1.000000p0");
        parse_ok::<Ieee32>("0x10", "0x1.000000p4");
        parse_ok::<Ieee32>("0x10.0", "0x1.000000p4");
        parse_err::<Ieee32>("0.", "Float must be hexadecimal");
        parse_err::<Ieee32>(".0", "Float must be hexadecimal");
        parse_err::<Ieee32>("0", "Float must be hexadecimal");
        parse_err::<Ieee32>("-0", "Float must be hexadecimal");
        parse_err::<Ieee32>(".", "Float must be hexadecimal");
        parse_err::<Ieee32>("", "Float must be hexadecimal");
        parse_err::<Ieee32>("-", "Float must be hexadecimal");
        parse_err::<Ieee32>("0x", "No digits");
        parse_err::<Ieee32>("0x..", "Multiple radix points");

        // Check significant bits.
        parse_ok::<Ieee32>("0x0.ffffff", "0x1.fffffep-1");
        parse_ok::<Ieee32>("0x1.fffffe", "0x1.fffffep0");
        parse_ok::<Ieee32>("0x3.fffffc", "0x1.fffffep1");
        parse_ok::<Ieee32>("0x7.fffff8", "0x1.fffffep2");
        parse_ok::<Ieee32>("0xf.fffff0", "0x1.fffffep3");
        parse_err::<Ieee32>("0x1.ffffff", "Too many significant bits");
        parse_err::<Ieee32>("0x1.fffffe0000000000", "Too many digits");

        // Exponents.
        parse_ok::<Ieee32>("0x1p3", "0x1.000000p3");
        parse_ok::<Ieee32>("0x1p-3", "0x1.000000p-3");
        parse_ok::<Ieee32>("0x1.0p3", "0x1.000000p3");
        parse_ok::<Ieee32>("0x2.0p3", "0x1.000000p4");
        parse_ok::<Ieee32>("0x1.0p127", "0x1.000000p127");
        parse_ok::<Ieee32>("0x1.0p-126", "0x1.000000p-126");
        parse_ok::<Ieee32>("0x0.1p-122", "0x1.000000p-126");
        parse_err::<Ieee32>("0x2.0p127", "Magnitude too large");

        // Subnormals.
        parse_ok::<Ieee32>("0x1.0p-127", "0x0.800000p-126");
        parse_ok::<Ieee32>("0x1.0p-149", "0x0.000002p-126");
        parse_ok::<Ieee32>("0x0.000002p-126", "0x0.000002p-126");
        parse_err::<Ieee32>("0x0.100001p-126", "Subnormal underflow");
        parse_err::<Ieee32>("0x1.8p-149", "Subnormal underflow");
        parse_err::<Ieee32>("0x1.0p-150", "Magnitude too small");

        // NaNs and Infs.
        parse_ok::<Ieee32>("Inf", "+Inf");
        parse_ok::<Ieee32>("+Inf", "+Inf");
        parse_ok::<Ieee32>("-Inf", "-Inf");
        parse_ok::<Ieee32>("NaN", "+NaN");
        parse_ok::<Ieee32>("+NaN", "+NaN");
        parse_ok::<Ieee32>("-NaN", "-NaN");
        parse_ok::<Ieee32>("NaN:0x0", "+NaN");
        parse_err::<Ieee32>("NaN:", "Float must be hexadecimal");
        parse_err::<Ieee32>("NaN:0", "Float must be hexadecimal");
        parse_err::<Ieee32>("NaN:0x", "Invalid NaN payload");
        parse_ok::<Ieee32>("NaN:0x000001", "+NaN:0x1");
        parse_ok::<Ieee32>("NaN:0x300001", "+NaN:0x300001");
        parse_err::<Ieee32>("NaN:0x400001", "Invalid NaN payload");
        parse_ok::<Ieee32>("sNaN:0x1", "+sNaN:0x1");
        parse_err::<Ieee32>("sNaN:0x0", "Invalid sNaN payload");
        parse_ok::<Ieee32>("sNaN:0x200001", "+sNaN:0x200001");
        parse_err::<Ieee32>("sNaN:0x400001", "Invalid sNaN payload");
    }

    #[test]
    fn pow2_ieee32() {
        assert_eq!(Ieee32::pow2(0).to_string(), "0x1.000000p0");
        assert_eq!(Ieee32::pow2(1).to_string(), "0x1.000000p1");
        assert_eq!(Ieee32::pow2(-1).to_string(), "0x1.000000p-1");
        assert_eq!(Ieee32::pow2(127).to_string(), "0x1.000000p127");
        assert_eq!(Ieee32::pow2(-126).to_string(), "0x1.000000p-126");

        assert_eq!(Ieee32::pow2(1).neg().to_string(), "-0x1.000000p1");
    }

    #[test]
    fn fcvt_to_sint_negative_overflow_ieee32() {
        for n in &[8, 16] {
            assert_eq!(-((1u32 << (n - 1)) as f32) - 1.0, unsafe {
                mem::transmute(Ieee32::fcvt_to_sint_negative_overflow(*n))
            });
        }
    }

    #[test]
    fn format_ieee64() {
        assert_eq!(Ieee64::with_float(0.0).to_string(), "0.0");
        assert_eq!(Ieee64::with_float(-0.0).to_string(), "-0.0");
        assert_eq!(Ieee64::with_float(1.0).to_string(), "0x1.0000000000000p0");
        assert_eq!(Ieee64::with_float(1.5).to_string(), "0x1.8000000000000p0");
        assert_eq!(Ieee64::with_float(0.5).to_string(), "0x1.0000000000000p-1");
        assert_eq!(
            Ieee64::with_float(f64::EPSILON).to_string(),
            "0x1.0000000000000p-52"
        );
        assert_eq!(
            Ieee64::with_float(f64::MIN).to_string(),
            "-0x1.fffffffffffffp1023"
        );
        assert_eq!(
            Ieee64::with_float(f64::MAX).to_string(),
            "0x1.fffffffffffffp1023"
        );
        // Smallest positive normal number.
        assert_eq!(
            Ieee64::with_float(f64::MIN_POSITIVE).to_string(),
            "0x1.0000000000000p-1022"
        );
        // Subnormals.
        assert_eq!(
            Ieee64::with_float(f64::MIN_POSITIVE / 2.0).to_string(),
            "0x0.8000000000000p-1022"
        );
        assert_eq!(
            Ieee64::with_float(f64::MIN_POSITIVE * f64::EPSILON).to_string(),
            "0x0.0000000000001p-1022"
        );
        assert_eq!(Ieee64::with_float(f64::INFINITY).to_string(), "+Inf");
        assert_eq!(Ieee64::with_float(f64::NEG_INFINITY).to_string(), "-Inf");
        assert_eq!(Ieee64::with_float(f64::NAN).to_string(), "+NaN");
        assert_eq!(Ieee64::with_float(-f64::NAN).to_string(), "-NaN");
        // Construct some qNaNs with payloads.
        assert_eq!(Ieee64(0x7ff8000000000001).to_string(), "+NaN:0x1");
        assert_eq!(
            Ieee64(0x7ffc000000000001).to_string(),
            "+NaN:0x4000000000001"
        );
        // Signaling NaNs.
        assert_eq!(Ieee64(0x7ff0000000000001).to_string(), "+sNaN:0x1");
        assert_eq!(
            Ieee64(0x7ff4000000000001).to_string(),
            "+sNaN:0x4000000000001"
        );
    }

    #[test]
    fn parse_ieee64() {
        parse_ok::<Ieee64>("0.0", "0.0");
        parse_ok::<Ieee64>("-0.0", "-0.0");
        parse_ok::<Ieee64>("0x0", "0.0");
        parse_ok::<Ieee64>("0x0.0", "0.0");
        parse_ok::<Ieee64>("0x.0", "0.0");
        parse_ok::<Ieee64>("0x0.", "0.0");
        parse_ok::<Ieee64>("0x1", "0x1.0000000000000p0");
        parse_ok::<Ieee64>("-0x1", "-0x1.0000000000000p0");
        parse_ok::<Ieee64>("0x10", "0x1.0000000000000p4");
        parse_ok::<Ieee64>("0x10.0", "0x1.0000000000000p4");
        parse_err::<Ieee64>("0.", "Float must be hexadecimal");
        parse_err::<Ieee64>(".0", "Float must be hexadecimal");
        parse_err::<Ieee64>("0", "Float must be hexadecimal");
        parse_err::<Ieee64>("-0", "Float must be hexadecimal");
        parse_err::<Ieee64>(".", "Float must be hexadecimal");
        parse_err::<Ieee64>("", "Float must be hexadecimal");
        parse_err::<Ieee64>("-", "Float must be hexadecimal");
        parse_err::<Ieee64>("0x", "No digits");
        parse_err::<Ieee64>("0x..", "Multiple radix points");

        // Check significant bits.
        parse_ok::<Ieee64>("0x0.fffffffffffff8", "0x1.fffffffffffffp-1");
        parse_ok::<Ieee64>("0x1.fffffffffffff", "0x1.fffffffffffffp0");
        parse_ok::<Ieee64>("0x3.ffffffffffffe", "0x1.fffffffffffffp1");
        parse_ok::<Ieee64>("0x7.ffffffffffffc", "0x1.fffffffffffffp2");
        parse_ok::<Ieee64>("0xf.ffffffffffff8", "0x1.fffffffffffffp3");
        parse_err::<Ieee64>("0x3.fffffffffffff", "Too many significant bits");
        parse_err::<Ieee64>("0x001.fffffe00000000", "Too many digits");

        // Exponents.
        parse_ok::<Ieee64>("0x1p3", "0x1.0000000000000p3");
        parse_ok::<Ieee64>("0x1p-3", "0x1.0000000000000p-3");
        parse_ok::<Ieee64>("0x1.0p3", "0x1.0000000000000p3");
        parse_ok::<Ieee64>("0x2.0p3", "0x1.0000000000000p4");
        parse_ok::<Ieee64>("0x1.0p1023", "0x1.0000000000000p1023");
        parse_ok::<Ieee64>("0x1.0p-1022", "0x1.0000000000000p-1022");
        parse_ok::<Ieee64>("0x0.1p-1018", "0x1.0000000000000p-1022");
        parse_err::<Ieee64>("0x2.0p1023", "Magnitude too large");

        // Subnormals.
        parse_ok::<Ieee64>("0x1.0p-1023", "0x0.8000000000000p-1022");
        parse_ok::<Ieee64>("0x1.0p-1074", "0x0.0000000000001p-1022");
        parse_ok::<Ieee64>("0x0.0000000000001p-1022", "0x0.0000000000001p-1022");
        parse_err::<Ieee64>("0x0.10000000000008p-1022", "Subnormal underflow");
        parse_err::<Ieee64>("0x1.8p-1074", "Subnormal underflow");
        parse_err::<Ieee64>("0x1.0p-1075", "Magnitude too small");

        // NaNs and Infs.
        parse_ok::<Ieee64>("Inf", "+Inf");
        parse_ok::<Ieee64>("-Inf", "-Inf");
        parse_ok::<Ieee64>("NaN", "+NaN");
        parse_ok::<Ieee64>("-NaN", "-NaN");
        parse_ok::<Ieee64>("NaN:0x0", "+NaN");
        parse_err::<Ieee64>("NaN:", "Float must be hexadecimal");
        parse_err::<Ieee64>("NaN:0", "Float must be hexadecimal");
        parse_err::<Ieee64>("NaN:0x", "Invalid NaN payload");
        parse_ok::<Ieee64>("NaN:0x000001", "+NaN:0x1");
        parse_ok::<Ieee64>("NaN:0x4000000000001", "+NaN:0x4000000000001");
        parse_err::<Ieee64>("NaN:0x8000000000001", "Invalid NaN payload");
        parse_ok::<Ieee64>("sNaN:0x1", "+sNaN:0x1");
        parse_err::<Ieee64>("sNaN:0x0", "Invalid sNaN payload");
        parse_ok::<Ieee64>("sNaN:0x4000000000001", "+sNaN:0x4000000000001");
        parse_err::<Ieee64>("sNaN:0x8000000000001", "Invalid sNaN payload");
    }

    #[test]
    fn pow2_ieee64() {
        assert_eq!(Ieee64::pow2(0).to_string(), "0x1.0000000000000p0");
        assert_eq!(Ieee64::pow2(1).to_string(), "0x1.0000000000000p1");
        assert_eq!(Ieee64::pow2(-1).to_string(), "0x1.0000000000000p-1");
        assert_eq!(Ieee64::pow2(1023).to_string(), "0x1.0000000000000p1023");
        assert_eq!(Ieee64::pow2(-1022).to_string(), "0x1.0000000000000p-1022");

        assert_eq!(Ieee64::pow2(1).neg().to_string(), "-0x1.0000000000000p1");
    }

    #[test]
    fn fcvt_to_sint_negative_overflow_ieee64() {
        for n in &[8, 16, 32] {
            assert_eq!(-((1u64 << (n - 1)) as f64) - 1.0, unsafe {
                mem::transmute(Ieee64::fcvt_to_sint_negative_overflow(*n))
            });
        }
    }
}