1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
//! In-memory representation of compiled machine code, with labels and fixups to
//! refer to those labels. Handles constant-pool island insertion and also
//! veneer insertion for out-of-range jumps.
//!
//! This code exists to solve three problems:
//!
//! - Branch targets for forward branches are not known until later, when we
//!   emit code in a single pass through the instruction structs.
//!
//! - On many architectures, address references or offsets have limited range.
//!   For example, on AArch64, conditional branches can only target code +/- 1MB
//!   from the branch itself.
//!
//! - The lowering of control flow from the CFG-with-edges produced by
//!   [BlockLoweringOrder](super::BlockLoweringOrder), combined with many empty
//!   edge blocks when the register allocator does not need to insert any
//!   spills/reloads/moves in edge blocks, results in many suboptimal branch
//!   patterns. The lowering also pays no attention to block order, and so
//!   two-target conditional forms (cond-br followed by uncond-br) can often by
//!   avoided because one of the targets is the fallthrough. There are several
//!   cases here where we can simplify to use fewer branches.
//!
//! This "buffer" implements a single-pass code emission strategy (with a later
//! "fixup" pass, but only through recorded fixups, not all instructions). The
//! basic idea is:
//!
//! - Emit branches as they are, including two-target (cond/uncond) compound
//!   forms, but with zero offsets and optimistically assuming the target will be
//!   in range. Record the "fixup" for later. Targets are denoted instead by
//!   symbolic "labels" that are then bound to certain offsets in the buffer as
//!   we emit code. (Nominally, there is a label at the start of every basic
//!   block.)
//!
//! - As we do this, track the offset in the buffer at which the first label
//!   reference "goes out of range". We call this the "deadline". If we reach the
//!   deadline and we still have not bound the label to which an unresolved branch
//!   refers, we have a problem!
//!
//! - To solve this problem, we emit "islands" full of "veneers". An island is
//!   simply a chunk of code inserted in the middle of the code actually produced
//!   by the emitter (e.g., vcode iterating over instruction structs). The emitter
//!   has some awareness of this: it either asks for an island between blocks, so
//!   it is not accidentally executed, or else it emits a branch around the island
//!   when all other options fail (see `Inst::EmitIsland` meta-instruction).
//!
//! - A "veneer" is an instruction (or sequence of instructions) in an "island"
//!   that implements a longer-range reference to a label. The idea is that, for
//!   example, a branch with a limited range can branch to a "veneer" instead,
//!   which is simply a branch in a form that can use a longer-range reference. On
//!   AArch64, for example, conditionals have a +/- 1 MB range, but a conditional
//!   can branch to an unconditional branch which has a +/- 128 MB range. Hence, a
//!   conditional branch's label reference can be fixed up with a "veneer" to
//!   achieve a longer range.
//!
//! - To implement all of this, we require the backend to provide a `LabelUse`
//!   type that implements a trait. This is nominally an enum that records one of
//!   several kinds of references to an offset in code -- basically, a relocation
//!   type -- and will usually correspond to different instruction formats. The
//!   `LabelUse` implementation specifies the maximum range, how to patch in the
//!   actual label location when known, and how to generate a veneer to extend the
//!   range.
//!
//! That satisfies label references, but we still may have suboptimal branch
//! patterns. To clean up the branches, we do a simple "peephole"-style
//! optimization on the fly. To do so, the emitter (e.g., `Inst::emit()`)
//! informs the buffer of branches in the code and, in the case of conditionals,
//! the code that would have been emitted to invert this branch's condition. We
//! track the "latest branches": these are branches that are contiguous up to
//! the current offset. (If any code is emitted after a branch, that branch or
//! run of contiguous branches is no longer "latest".) The latest branches are
//! those that we can edit by simply truncating the buffer and doing something
//! else instead.
//!
//! To optimize branches, we implement several simple rules, and try to apply
//! them to the "latest branches" when possible:
//!
//! - A branch with a label target, when that label is bound to the ending
//!   offset of the branch (the fallthrough location), can be removed altogether,
//!   because the branch would have no effect).
//!
//! - An unconditional branch that starts at a label location, and branches to
//!   another label, results in a "label alias": all references to the label bound
//!   *to* this branch instruction are instead resolved to the *target* of the
//!   branch instruction. This effectively removes empty blocks that just
//!   unconditionally branch to the next block. We call this "branch threading".
//!
//! - A conditional followed by an unconditional, when the conditional branches
//!   to the unconditional's fallthrough, results in (i) the truncation of the
//!   unconditional, (ii) the inversion of the condition's condition, and (iii)
//!   replacement of the conditional's target (using the original target of the
//!   unconditional). This is a fancy way of saying "we can flip a two-target
//!   conditional branch's taken/not-taken targets if it works better with our
//!   fallthrough". To make this work, the emitter actually gives the buffer
//!   *both* forms of every conditional branch: the true form is emitted into the
//!   buffer, and the "inverted" machine-code bytes are provided as part of the
//!   branch-fixup metadata.
//!
//! - An unconditional B preceded by another unconditional P, when B's label(s) have
//!   been redirected to target(B), can be removed entirely. This is an extension
//!   of the branch-threading optimization, and is valid because if we know there
//!   will be no fallthrough into this branch instruction (the prior instruction
//!   is an unconditional jump), and if we know we have successfully redirected
//!   all labels, then this branch instruction is unreachable. Note that this
//!   works because the redirection happens before the label is ever resolved
//!   (fixups happen at island emission time, at which point latest-branches are
//!   cleared, or at the end of emission), so we are sure to catch and redirect
//!   all possible paths to this instruction.
//!
//! # Branch-optimization Correctness
//!
//! The branch-optimization mechanism depends on a few data structures with
//! invariants, which are always held outside the scope of top-level public
//! methods:
//!
//! - The latest-branches list. Each entry describes a span of the buffer
//!   (start/end offsets), the label target, the corresponding fixup-list entry
//!   index, and the bytes (must be the same length) for the inverted form, if
//!   conditional. The list of labels that are bound to the start-offset of this
//!   branch is *complete* (if any label has a resolved offset equal to `start`
//!   and is not an alias, it must appear in this list) and *precise* (no label
//!   in this list can be bound to another offset). No label in this list should
//!   be an alias.  No two branch ranges can overlap, and branches are in
//!   ascending-offset order.
//!
//! - The labels-at-tail list. This contains all MachLabels that have been bound
//!   to (whose resolved offsets are equal to) the tail offset of the buffer.
//!   No label in this list should be an alias.
//!
//! - The label_offsets array, containing the bound offset of a label or
//!   UNKNOWN. No label can be bound at an offset greater than the current
//!   buffer tail.
//!
//! - The label_aliases array, containing another label to which a label is
//!   bound or UNKNOWN. A label's resolved offset is the resolved offset
//!   of the label it is aliased to, if this is set.
//!
//! We argue below, at each method, how the invariants in these data structures
//! are maintained (grep for "Post-invariant").
//!
//! Given these invariants, we argue why each optimization preserves execution
//! semantics below (grep for "Preserves execution semantics").

use crate::binemit::{Addend, CodeOffset, Reloc, StackMap};
use crate::ir::{ExternalName, Opcode, SourceLoc, TrapCode};
use crate::isa::unwind::UnwindInst;
use crate::machinst::{
    BlockIndex, MachInstLabelUse, TextSectionBuilder, VCodeConstant, VCodeConstants, VCodeInst,
};
use crate::timing;
use cranelift_entity::{entity_impl, SecondaryMap};
use log::trace;
use smallvec::SmallVec;
use std::convert::TryFrom;
use std::mem;
use std::string::String;
use std::vec::Vec;

/// A buffer of output to be produced, fixed up, and then emitted to a CodeSink
/// in bulk.
///
/// This struct uses `SmallVec`s to support small-ish function bodies without
/// any heap allocation. As such, it will be several kilobytes large. This is
/// likely fine as long as it is stack-allocated for function emission then
/// thrown away; but beware if many buffer objects are retained persistently.
pub struct MachBuffer<I: VCodeInst> {
    /// The buffer contents, as raw bytes.
    data: SmallVec<[u8; 1024]>,
    /// Any relocations referring to this code. Note that only *external*
    /// relocations are tracked here; references to labels within the buffer are
    /// resolved before emission.
    relocs: SmallVec<[MachReloc; 16]>,
    /// Any trap records referring to this code.
    traps: SmallVec<[MachTrap; 16]>,
    /// Any call site records referring to this code.
    call_sites: SmallVec<[MachCallSite; 16]>,
    /// Any source location mappings referring to this code.
    srclocs: SmallVec<[MachSrcLoc; 64]>,
    /// Any stack maps referring to this code.
    stack_maps: SmallVec<[MachStackMap; 8]>,
    /// Any unwind info at a given location.
    unwind_info: SmallVec<[(CodeOffset, UnwindInst); 8]>,
    /// The current source location in progress (after `start_srcloc()` and
    /// before `end_srcloc()`).  This is a (start_offset, src_loc) tuple.
    cur_srcloc: Option<(CodeOffset, SourceLoc)>,
    /// Known label offsets; `UNKNOWN_LABEL_OFFSET` if unknown.
    label_offsets: SmallVec<[CodeOffset; 16]>,
    /// Label aliases: when one label points to an unconditional jump, and that
    /// jump points to another label, we can redirect references to the first
    /// label immediately to the second.
    ///
    /// Invariant: we don't have label-alias cycles. We ensure this by,
    /// before setting label A to alias label B, resolving B's alias
    /// target (iteratively until a non-aliased label); if B is already
    /// aliased to A, then we cannot alias A back to B.
    label_aliases: SmallVec<[MachLabel; 16]>,
    /// Constants that must be emitted at some point.
    pending_constants: SmallVec<[MachLabelConstant; 16]>,
    /// Fixups that must be performed after all code is emitted.
    fixup_records: SmallVec<[MachLabelFixup<I>; 16]>,
    /// Current deadline at which all constants are flushed and all code labels
    /// are extended by emitting long-range jumps in an island. This flush
    /// should be rare (e.g., on AArch64, the shortest-range PC-rel references
    /// are +/- 1MB for conditional jumps and load-literal instructions), so
    /// it's acceptable to track a minimum and flush-all rather than doing more
    /// detailed "current minimum" / sort-by-deadline trickery.
    island_deadline: CodeOffset,
    /// How many bytes are needed in the worst case for an island, given all
    /// pending constants and fixups.
    island_worst_case_size: CodeOffset,
    /// Latest branches, to facilitate in-place editing for better fallthrough
    /// behavior and empty-block removal.
    latest_branches: SmallVec<[MachBranch; 4]>,
    /// All labels at the current offset (emission tail). This is lazily
    /// cleared: it is actually accurate as long as the current offset is
    /// `labels_at_tail_off`, but if `cur_offset()` has grown larger, it should
    /// be considered as empty.
    ///
    /// For correctness, this *must* be complete (i.e., the vector must contain
    /// all labels whose offsets are resolved to the current tail), because we
    /// rely on it to update labels when we truncate branches.
    labels_at_tail: SmallVec<[MachLabel; 4]>,
    /// The last offset at which `labels_at_tail` is valid. It is conceptually
    /// always describing the tail of the buffer, but we do not clear
    /// `labels_at_tail` eagerly when the tail grows, rather we lazily clear it
    /// when the offset has grown past this (`labels_at_tail_off`) point.
    /// Always <= `cur_offset()`.
    labels_at_tail_off: CodeOffset,
    /// Map used constants to their [MachLabel].
    constant_labels: SecondaryMap<VCodeConstant, MachLabel>,
}

/// A `MachBuffer` once emission is completed: holds generated code and records,
/// without fixups. This allows the type to be independent of the backend.
pub struct MachBufferFinalized {
    /// The buffer contents, as raw bytes.
    data: SmallVec<[u8; 1024]>,
    /// Any relocations referring to this code. Note that only *external*
    /// relocations are tracked here; references to labels within the buffer are
    /// resolved before emission.
    relocs: SmallVec<[MachReloc; 16]>,
    /// Any trap records referring to this code.
    traps: SmallVec<[MachTrap; 16]>,
    /// Any call site records referring to this code.
    call_sites: SmallVec<[MachCallSite; 16]>,
    /// Any source location mappings referring to this code.
    srclocs: SmallVec<[MachSrcLoc; 64]>,
    /// Any stack maps referring to this code.
    stack_maps: SmallVec<[MachStackMap; 8]>,
    /// Any unwind info at a given location.
    pub unwind_info: SmallVec<[(CodeOffset, UnwindInst); 8]>,
}

const UNKNOWN_LABEL_OFFSET: CodeOffset = 0xffff_ffff;
const UNKNOWN_LABEL: MachLabel = MachLabel(0xffff_ffff);

/// Threshold on max length of `labels_at_this_branch` list to avoid
/// unbounded quadratic behavior (see comment below at use-site).
const LABEL_LIST_THRESHOLD: usize = 100;

/// A label refers to some offset in a `MachBuffer`. It may not be resolved at
/// the point at which it is used by emitted code; the buffer records "fixups"
/// for references to the label, and will come back and patch the code
/// appropriately when the label's location is eventually known.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct MachLabel(u32);
entity_impl!(MachLabel);

impl MachLabel {
    /// Get a label for a block. (The first N MachLabels are always reseved for
    /// the N blocks in the vcode.)
    pub fn from_block(bindex: BlockIndex) -> MachLabel {
        MachLabel(bindex.index() as u32)
    }

    /// Get the numeric label index.
    pub fn get(self) -> u32 {
        self.0
    }

    /// Creates a string representing this label, for convenience.
    pub fn to_string(&self) -> String {
        format!("label{}", self.0)
    }
}

impl Default for MachLabel {
    fn default() -> Self {
        UNKNOWN_LABEL
    }
}

/// A stack map extent, when creating a stack map.
pub enum StackMapExtent {
    /// The stack map starts at this instruction, and ends after the number of upcoming bytes
    /// (note: this is a code offset diff).
    UpcomingBytes(CodeOffset),

    /// The stack map started at the given offset and ends at the current one. This helps
    /// architectures where the instruction size has not a fixed length.
    StartedAtOffset(CodeOffset),
}

impl<I: VCodeInst> MachBuffer<I> {
    /// Create a new section, known to start at `start_offset` and with a size limited to
    /// `length_limit`.
    pub fn new() -> MachBuffer<I> {
        MachBuffer {
            data: SmallVec::new(),
            relocs: SmallVec::new(),
            traps: SmallVec::new(),
            call_sites: SmallVec::new(),
            srclocs: SmallVec::new(),
            stack_maps: SmallVec::new(),
            unwind_info: SmallVec::new(),
            cur_srcloc: None,
            label_offsets: SmallVec::new(),
            label_aliases: SmallVec::new(),
            pending_constants: SmallVec::new(),
            fixup_records: SmallVec::new(),
            island_deadline: UNKNOWN_LABEL_OFFSET,
            island_worst_case_size: 0,
            latest_branches: SmallVec::new(),
            labels_at_tail: SmallVec::new(),
            labels_at_tail_off: 0,
            constant_labels: SecondaryMap::new(),
        }
    }

    /// Current offset from start of buffer.
    pub fn cur_offset(&self) -> CodeOffset {
        self.data.len() as CodeOffset
    }

    /// Add a byte.
    pub fn put1(&mut self, value: u8) {
        trace!("MachBuffer: put byte @ {}: {:x}", self.cur_offset(), value);
        self.data.push(value);

        // Post-invariant: conceptual-labels_at_tail contains a complete and
        // precise list of labels bound at `cur_offset()`. We have advanced
        // `cur_offset()`, hence if it had been equal to `labels_at_tail_off`
        // before, it is not anymore (and it cannot become equal, because
        // `labels_at_tail_off` is always <= `cur_offset()`). Thus the list is
        // conceptually empty (even though it is only lazily cleared). No labels
        // can be bound at this new offset (by invariant on `label_offsets`).
        // Hence the invariant holds.
    }

    /// Add 2 bytes.
    pub fn put2(&mut self, value: u16) {
        trace!(
            "MachBuffer: put 16-bit word @ {}: {:x}",
            self.cur_offset(),
            value
        );
        let bytes = value.to_le_bytes();
        self.data.extend_from_slice(&bytes[..]);

        // Post-invariant: as for `put1()`.
    }

    /// Add 4 bytes.
    pub fn put4(&mut self, value: u32) {
        trace!(
            "MachBuffer: put 32-bit word @ {}: {:x}",
            self.cur_offset(),
            value
        );
        let bytes = value.to_le_bytes();
        self.data.extend_from_slice(&bytes[..]);

        // Post-invariant: as for `put1()`.
    }

    /// Add 8 bytes.
    pub fn put8(&mut self, value: u64) {
        trace!(
            "MachBuffer: put 64-bit word @ {}: {:x}",
            self.cur_offset(),
            value
        );
        let bytes = value.to_le_bytes();
        self.data.extend_from_slice(&bytes[..]);

        // Post-invariant: as for `put1()`.
    }

    /// Add a slice of bytes.
    pub fn put_data(&mut self, data: &[u8]) {
        trace!(
            "MachBuffer: put data @ {}: len {}",
            self.cur_offset(),
            data.len()
        );
        self.data.extend_from_slice(data);

        // Post-invariant: as for `put1()`.
    }

    /// Reserve appended space and return a mutable slice referring to it.
    pub fn get_appended_space(&mut self, len: usize) -> &mut [u8] {
        trace!("MachBuffer: put data @ {}: len {}", self.cur_offset(), len);
        let off = self.data.len();
        let new_len = self.data.len() + len;
        self.data.resize(new_len, 0);
        &mut self.data[off..]

        // Post-invariant: as for `put1()`.
    }

    /// Align up to the given alignment.
    pub fn align_to(&mut self, align_to: CodeOffset) {
        trace!("MachBuffer: align to {}", align_to);
        assert!(align_to.is_power_of_two());
        while self.cur_offset() & (align_to - 1) != 0 {
            self.put1(0);
        }

        // Post-invariant: as for `put1()`.
    }

    /// Allocate a `Label` to refer to some offset. May not be bound to a fixed
    /// offset yet.
    pub fn get_label(&mut self) -> MachLabel {
        let l = self.label_offsets.len() as u32;
        self.label_offsets.push(UNKNOWN_LABEL_OFFSET);
        self.label_aliases.push(UNKNOWN_LABEL);
        trace!("MachBuffer: new label -> {:?}", MachLabel(l));
        MachLabel(l)

        // Post-invariant: the only mutation is to add a new label; it has no
        // bound offset yet, so it trivially satisfies all invariants.
    }

    /// Reserve the first N MachLabels for blocks.
    pub fn reserve_labels_for_blocks(&mut self, blocks: usize) {
        trace!("MachBuffer: first {} labels are for blocks", blocks);
        debug_assert!(self.label_offsets.is_empty());
        self.label_offsets.resize(blocks, UNKNOWN_LABEL_OFFSET);
        self.label_aliases.resize(blocks, UNKNOWN_LABEL);

        // Post-invariant: as for `get_label()`.
    }

    /// Reserve the next N MachLabels for constants.
    pub fn reserve_labels_for_constants(&mut self, constants: &VCodeConstants) {
        trace!(
            "MachBuffer: next {} labels are for constants",
            constants.len()
        );
        for c in constants.keys() {
            self.constant_labels[c] = self.get_label();
        }

        // Post-invariant: as for `get_label()`.
    }

    /// Retrieve the reserved label for a constant.
    pub fn get_label_for_constant(&self, constant: VCodeConstant) -> MachLabel {
        self.constant_labels[constant]
    }

    /// Bind a label to the current offset. A label can only be bound once.
    pub fn bind_label(&mut self, label: MachLabel) {
        trace!(
            "MachBuffer: bind label {:?} at offset {}",
            label,
            self.cur_offset()
        );
        debug_assert_eq!(self.label_offsets[label.0 as usize], UNKNOWN_LABEL_OFFSET);
        debug_assert_eq!(self.label_aliases[label.0 as usize], UNKNOWN_LABEL);
        let offset = self.cur_offset();
        self.label_offsets[label.0 as usize] = offset;
        self.lazily_clear_labels_at_tail();
        self.labels_at_tail.push(label);

        // Invariants hold: bound offset of label is <= cur_offset (in fact it
        // is equal). If the `labels_at_tail` list was complete and precise
        // before, it is still, because we have bound this label to the current
        // offset and added it to the list (which contains all labels at the
        // current offset).

        self.optimize_branches();

        // Post-invariant: by `optimize_branches()` (see argument there).
    }

    /// Lazily clear `labels_at_tail` if the tail offset has moved beyond the
    /// offset that it applies to.
    fn lazily_clear_labels_at_tail(&mut self) {
        let offset = self.cur_offset();
        if offset > self.labels_at_tail_off {
            self.labels_at_tail_off = offset;
            self.labels_at_tail.clear();
        }

        // Post-invariant: either labels_at_tail_off was at cur_offset, and
        // state is untouched, or was less than cur_offset, in which case the
        // labels_at_tail list was conceptually empty, and is now actually
        // empty.
    }

    /// Resolve a label to an offset, if known. May return `UNKNOWN_LABEL_OFFSET`.
    pub(crate) fn resolve_label_offset(&self, mut label: MachLabel) -> CodeOffset {
        let mut iters = 0;
        while self.label_aliases[label.0 as usize] != UNKNOWN_LABEL {
            label = self.label_aliases[label.0 as usize];
            // To protect against an infinite loop (despite our assurances to
            // ourselves that the invariants make this impossible), assert out
            // after 1M iterations. The number of basic blocks is limited
            // in most contexts anyway so this should be impossible to hit with
            // a legitimate input.
            iters += 1;
            assert!(iters < 1_000_000, "Unexpected cycle in label aliases");
        }
        self.label_offsets[label.0 as usize]

        // Post-invariant: no mutations.
    }

    /// Emit a reference to the given label with the given reference type (i.e.,
    /// branch-instruction format) at the current offset.  This is like a
    /// relocation, but handled internally.
    ///
    /// This can be called before the branch is actually emitted; fixups will
    /// not happen until an island is emitted or the buffer is finished.
    pub fn use_label_at_offset(&mut self, offset: CodeOffset, label: MachLabel, kind: I::LabelUse) {
        trace!(
            "MachBuffer: use_label_at_offset: offset {} label {:?} kind {:?}",
            offset,
            label,
            kind
        );

        // Add the fixup, and update the worst-case island size based on a
        // veneer for this label use.
        self.fixup_records.push(MachLabelFixup {
            label,
            offset,
            kind,
        });
        if kind.supports_veneer() {
            self.island_worst_case_size += kind.veneer_size();
            self.island_worst_case_size &= !(I::LabelUse::ALIGN - 1);
        }
        let deadline = offset.saturating_add(kind.max_pos_range());
        if deadline < self.island_deadline {
            self.island_deadline = deadline;
        }

        // Post-invariant: no mutations to branches/labels data structures.
    }

    /// Inform the buffer of an unconditional branch at the given offset,
    /// targetting the given label. May be used to optimize branches.
    /// The last added label-use must correspond to this branch.
    /// This must be called when the current offset is equal to `start`; i.e.,
    /// before actually emitting the branch. This implies that for a branch that
    /// uses a label and is eligible for optimizations by the MachBuffer, the
    /// proper sequence is:
    ///
    /// - Call `use_label_at_offset()` to emit the fixup record.
    /// - Call `add_uncond_branch()` to make note of the branch.
    /// - Emit the bytes for the branch's machine code.
    ///
    /// Additional requirement: no labels may be bound between `start` and `end`
    /// (exclusive on both ends).
    pub fn add_uncond_branch(&mut self, start: CodeOffset, end: CodeOffset, target: MachLabel) {
        assert!(self.cur_offset() == start);
        debug_assert!(end > start);
        assert!(!self.fixup_records.is_empty());
        let fixup = self.fixup_records.len() - 1;
        self.lazily_clear_labels_at_tail();
        self.latest_branches.push(MachBranch {
            start,
            end,
            target,
            fixup,
            inverted: None,
            labels_at_this_branch: self.labels_at_tail.clone(),
        });

        // Post-invariant: we asserted branch start is current tail; the list of
        // labels at branch is cloned from list of labels at current tail.
    }

    /// Inform the buffer of a conditional branch at the given offset,
    /// targetting the given label. May be used to optimize branches.
    /// The last added label-use must correspond to this branch.
    ///
    /// Additional requirement: no labels may be bound between `start` and `end`
    /// (exclusive on both ends).
    pub fn add_cond_branch(
        &mut self,
        start: CodeOffset,
        end: CodeOffset,
        target: MachLabel,
        inverted: &[u8],
    ) {
        assert!(self.cur_offset() == start);
        debug_assert!(end > start);
        assert!(!self.fixup_records.is_empty());
        debug_assert!(inverted.len() == (end - start) as usize);
        let fixup = self.fixup_records.len() - 1;
        let inverted = Some(SmallVec::from(inverted));
        self.lazily_clear_labels_at_tail();
        self.latest_branches.push(MachBranch {
            start,
            end,
            target,
            fixup,
            inverted,
            labels_at_this_branch: self.labels_at_tail.clone(),
        });

        // Post-invariant: we asserted branch start is current tail; labels at
        // branch list is cloned from list of labels at current tail.
    }

    fn truncate_last_branch(&mut self) {
        self.lazily_clear_labels_at_tail();
        // Invariants hold at this point.

        let b = self.latest_branches.pop().unwrap();
        assert!(b.end == self.cur_offset());

        // State:
        //    [PRE CODE]
        //  Offset b.start, b.labels_at_this_branch:
        //    [BRANCH CODE]
        //  cur_off, self.labels_at_tail -->
        //    (end of buffer)
        self.data.truncate(b.start as usize);
        self.fixup_records.truncate(b.fixup);
        while let Some(mut last_srcloc) = self.srclocs.last_mut() {
            if last_srcloc.end <= b.start {
                break;
            }
            if last_srcloc.start < b.start {
                last_srcloc.end = b.start;
                break;
            }
            self.srclocs.pop();
        }
        // State:
        //    [PRE CODE]
        //  cur_off, Offset b.start, b.labels_at_this_branch:
        //    (end of buffer)
        //
        //  self.labels_at_tail -->  (past end of buffer)
        let cur_off = self.cur_offset();
        self.labels_at_tail_off = cur_off;
        // State:
        //    [PRE CODE]
        //  cur_off, Offset b.start, b.labels_at_this_branch,
        //  self.labels_at_tail:
        //    (end of buffer)
        //
        // resolve_label_offset(l) for l in labels_at_tail:
        //    (past end of buffer)

        trace!(
            "truncate_last_branch: truncated {:?}; off now {}",
            b,
            cur_off
        );

        // Fix up resolved label offsets for labels at tail.
        for &l in &self.labels_at_tail {
            self.label_offsets[l.0 as usize] = cur_off;
        }
        // Old labels_at_this_branch are now at cur_off.
        self.labels_at_tail
            .extend(b.labels_at_this_branch.into_iter());

        // Post-invariant: this operation is defined to truncate the buffer,
        // which moves cur_off backward, and to move labels at the end of the
        // buffer back to the start-of-branch offset.
        //
        // latest_branches satisfies all invariants:
        // - it has no branches past the end of the buffer (branches are in
        //   order, we removed the last one, and we truncated the buffer to just
        //   before the start of that branch)
        // - no labels were moved to lower offsets than the (new) cur_off, so
        //   the labels_at_this_branch list for any other branch need not change.
        //
        // labels_at_tail satisfies all invariants:
        // - all labels that were at the tail after the truncated branch are
        //   moved backward to just before the branch, which becomes the new tail;
        //   thus every element in the list should remain (ensured by `.extend()`
        //   above).
        // - all labels that refer to the new tail, which is the start-offset of
        //   the truncated branch, must be present. The `labels_at_this_branch`
        //   list in the truncated branch's record is a complete and precise list
        //   of exactly these labels; we append these to labels_at_tail.
        // - labels_at_tail_off is at cur_off after truncation occurs, so the
        //   list is valid (not to be lazily cleared).
        //
        // The stated operation was performed:
        // - For each label at the end of the buffer prior to this method, it
        //   now resolves to the new (truncated) end of the buffer: it must have
        //   been in `labels_at_tail` (this list is precise and complete, and
        //   the tail was at the end of the truncated branch on entry), and we
        //   iterate over this list and set `label_offsets` to the new tail.
        //   None of these labels could have been an alias (by invariant), so
        //   `label_offsets` is authoritative for each.
        // - No other labels will be past the end of the buffer, because of the
        //   requirement that no labels be bound to the middle of branch ranges
        //   (see comments to `add_{cond,uncond}_branch()`).
        // - The buffer is truncated to just before the last branch, and the
        //   fixup record referring to that last branch is removed.
    }

    fn optimize_branches(&mut self) {
        self.lazily_clear_labels_at_tail();
        // Invariants valid at this point.

        trace!(
            "enter optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
            self.latest_branches,
            self.labels_at_tail,
            self.fixup_records
        );

        // We continue to munch on branches at the tail of the buffer until no
        // more rules apply. Note that the loop only continues if a branch is
        // actually truncated (or if labels are redirected away from a branch),
        // so this always makes progress.
        while let Some(b) = self.latest_branches.last() {
            let cur_off = self.cur_offset();
            trace!("optimize_branches: last branch {:?} at off {}", b, cur_off);
            // If there has been any code emission since the end of the last branch or
            // label definition, then there's nothing we can edit (because we
            // don't move code once placed, only back up and overwrite), so
            // clear the records and finish.
            if b.end < cur_off {
                break;
            }

            // If the "labels at this branch" list on this branch is
            // longer than a threshold, don't do any simplification,
            // and let the branch remain to separate those labels from
            // the current tail. This avoids quadratic behavior (see
            // #3468): otherwise, if a long string of "goto next;
            // next:" patterns are emitted, all of the labels will
            // coalesce into a long list of aliases for the current
            // buffer tail. We must track all aliases of the current
            // tail for correctness, but we are also allowed to skip
            // optimization (removal) of any branch, so we take the
            // escape hatch here and let it stand. In effect this
            // "spreads" the many thousands of labels in the
            // pathological case among an actual (harmless but
            // suboptimal) instruction once per N labels.
            if b.labels_at_this_branch.len() > LABEL_LIST_THRESHOLD {
                break;
            }

            // Invariant: we are looking at a branch that ends at the tail of
            // the buffer.

            // For any branch, conditional or unconditional:
            // - If the target is a label at the current offset, then remove
            //   the conditional branch, and reset all labels that targetted
            //   the current offset (end of branch) to the truncated
            //   end-of-code.
            //
            // Preserves execution semantics: a branch to its own fallthrough
            // address is equivalent to a no-op; in both cases, nextPC is the
            // fallthrough.
            if self.resolve_label_offset(b.target) == cur_off {
                trace!("branch with target == cur off; truncating");
                self.truncate_last_branch();
                continue;
            }

            // If latest is an unconditional branch:
            //
            // - If the branch's target is not its own start address, then for
            //   each label at the start of branch, make the label an alias of the
            //   branch target, and remove the label from the "labels at this
            //   branch" list.
            //
            //   - Preserves execution semantics: an unconditional branch's
            //     only effect is to set PC to a new PC; this change simply
            //     collapses one step in the step-semantics.
            //
            //   - Post-invariant: the labels that were bound to the start of
            //     this branch become aliases, so they must not be present in any
            //     labels-at-this-branch list or the labels-at-tail list. The
            //     labels are removed form the latest-branch record's
            //     labels-at-this-branch list, and are never placed in the
            //     labels-at-tail list. Furthermore, it is correct that they are
            //     not in either list, because they are now aliases, and labels
            //     that are aliases remain aliases forever.
            //
            // - If there is a prior unconditional branch that ends just before
            //   this one begins, and this branch has no labels bound to its
            //   start, then we can truncate this branch, because it is entirely
            //   unreachable (we have redirected all labels that make it
            //   reachable otherwise). Do so and continue around the loop.
            //
            //   - Preserves execution semantics: the branch is unreachable,
            //     because execution can only flow into an instruction from the
            //     prior instruction's fallthrough or from a branch bound to that
            //     instruction's start offset. Unconditional branches have no
            //     fallthrough, so if the prior instruction is an unconditional
            //     branch, no fallthrough entry can happen. The
            //     labels-at-this-branch list is complete (by invariant), so if it
            //     is empty, then the instruction is entirely unreachable. Thus,
            //     it can be removed.
            //
            //   - Post-invariant: ensured by truncate_last_branch().
            //
            // - If there is a prior conditional branch whose target label
            //   resolves to the current offset (branches around the
            //   unconditional branch), then remove the unconditional branch,
            //   and make the target of the unconditional the target of the
            //   conditional instead.
            //
            //   - Preserves execution semantics: previously we had:
            //
            //         L1:
            //            cond_br L2
            //            br L3
            //         L2:
            //            (end of buffer)
            //
            //     by removing the last branch, we have:
            //
            //         L1:
            //            cond_br L2
            //         L2:
            //            (end of buffer)
            //
            //     we then fix up the records for the conditional branch to
            //     have:
            //
            //         L1:
            //           cond_br.inverted L3
            //         L2:
            //
            //     In the original code, control flow reaches L2 when the
            //     conditional branch's predicate is true, and L3 otherwise. In
            //     the optimized code, the same is true.
            //
            //   - Post-invariant: all edits to latest_branches and
            //     labels_at_tail are performed by `truncate_last_branch()`,
            //     which maintains the invariants at each step.

            if b.is_uncond() {
                // Set any label equal to current branch's start as an alias of
                // the branch's target, if the target is not the branch itself
                // (i.e., an infinite loop).
                //
                // We cannot perform this aliasing if the target of this branch
                // ultimately aliases back here; if so, we need to keep this
                // branch, so break out of this loop entirely (and clear the
                // latest-branches list below).
                //
                // Note that this check is what prevents cycles from forming in
                // `self.label_aliases`. To see why, consider an arbitrary start
                // state:
                //
                // label_aliases[L1] = L2, label_aliases[L2] = L3, ..., up to
                // Ln, which is not aliased.
                //
                // We would create a cycle if we assigned label_aliases[Ln]
                // = L1.  Note that the below assignment is the only write
                // to label_aliases.
                //
                // By our other invariants, we have that Ln (`l` below)
                // resolves to the offset `b.start`, because it is in the
                // set `b.labels_at_this_branch`.
                //
                // If L1 were already aliased, through some arbitrarily deep
                // chain, to Ln, then it must also resolve to this offset
                // `b.start`.
                //
                // By checking the resolution of `L1` against this offset,
                // and aborting this branch-simplification if they are
                // equal, we prevent the below assignment from ever creating
                // a cycle.
                if self.resolve_label_offset(b.target) != b.start {
                    let redirected = b.labels_at_this_branch.len();
                    for &l in &b.labels_at_this_branch {
                        trace!(
                            " -> label at start of branch {:?} redirected to target {:?}",
                            l,
                            b.target
                        );
                        self.label_aliases[l.0 as usize] = b.target;
                        // NOTE: we continue to ensure the invariant that labels
                        // pointing to tail of buffer are in `labels_at_tail`
                        // because we already ensured above that the last branch
                        // cannot have a target of `cur_off`; so we never have
                        // to put the label into `labels_at_tail` when moving it
                        // here.
                    }
                    // Maintain invariant: all branches have been redirected
                    // and are no longer pointing at the start of this branch.
                    let mut_b = self.latest_branches.last_mut().unwrap();
                    mut_b.labels_at_this_branch.clear();

                    if redirected > 0 {
                        trace!(" -> after label redirects, restarting loop");
                        continue;
                    }
                } else {
                    break;
                }

                let b = self.latest_branches.last().unwrap();

                // Examine any immediately preceding branch.
                if self.latest_branches.len() > 1 {
                    let prev_b = &self.latest_branches[self.latest_branches.len() - 2];
                    trace!(" -> more than one branch; prev_b = {:?}", prev_b);
                    // This uncond is immediately after another uncond; we
                    // should have already redirected labels to this uncond away
                    // (but check to be sure); so we can truncate this uncond.
                    if prev_b.is_uncond()
                        && prev_b.end == b.start
                        && b.labels_at_this_branch.is_empty()
                    {
                        trace!(" -> uncond follows another uncond; truncating");
                        self.truncate_last_branch();
                        continue;
                    }

                    // This uncond is immediately after a conditional, and the
                    // conditional's target is the end of this uncond, and we've
                    // already redirected labels to this uncond away; so we can
                    // truncate this uncond, flip the sense of the conditional, and
                    // set the conditional's target (in `latest_branches` and in
                    // `fixup_records`) to the uncond's target.
                    if prev_b.is_cond()
                        && prev_b.end == b.start
                        && self.resolve_label_offset(prev_b.target) == cur_off
                    {
                        trace!(" -> uncond follows a conditional, and conditional's target resolves to current offset");
                        // Save the target of the uncond (this becomes the
                        // target of the cond), and truncate the uncond.
                        let target = b.target;
                        let data = prev_b.inverted.clone().unwrap();
                        self.truncate_last_branch();

                        // Mutate the code and cond branch.
                        let off_before_edit = self.cur_offset();
                        let prev_b = self.latest_branches.last_mut().unwrap();
                        let not_inverted = SmallVec::from(
                            &self.data[(prev_b.start as usize)..(prev_b.end as usize)],
                        );

                        // Low-level edit: replaces bytes of branch with
                        // inverted form. cur_off remains the same afterward, so
                        // we do not need to modify label data structures.
                        self.data.truncate(prev_b.start as usize);
                        self.data.extend_from_slice(&data[..]);

                        // Save the original code as the inversion of the
                        // inverted branch, in case we later edit this branch
                        // again.
                        prev_b.inverted = Some(not_inverted);
                        self.fixup_records[prev_b.fixup].label = target;
                        trace!(" -> reassigning target of condbr to {:?}", target);
                        prev_b.target = target;
                        debug_assert_eq!(off_before_edit, self.cur_offset());
                        continue;
                    }
                }
            }

            // If we couldn't do anything with the last branch, then break.
            break;
        }

        self.purge_latest_branches();

        trace!(
            "leave optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
            self.latest_branches,
            self.labels_at_tail,
            self.fixup_records
        );
    }

    fn purge_latest_branches(&mut self) {
        // All of our branch simplification rules work only if a branch ends at
        // the tail of the buffer, with no following code; and branches are in
        // order in latest_branches; so if the last entry ends prior to
        // cur_offset, then clear all entries.
        let cur_off = self.cur_offset();
        if let Some(l) = self.latest_branches.last() {
            if l.end < cur_off {
                trace!("purge_latest_branches: removing branch {:?}", l);
                self.latest_branches.clear();
            }
        }

        // Post-invariant: no invariant requires any branch to appear in
        // `latest_branches`; it is always optional. The list-clear above thus
        // preserves all semantics.
    }

    /// Emit a constant at some point in the future, binding the given label to
    /// its offset. The constant will be placed at most `max_distance` from the
    /// current offset.
    pub fn defer_constant(
        &mut self,
        label: MachLabel,
        align: CodeOffset,
        data: &[u8],
        max_distance: CodeOffset,
    ) {
        trace!(
            "defer_constant: eventually emit {} bytes aligned to {} at label {:?}",
            data.len(),
            align,
            label
        );
        let deadline = self.cur_offset().saturating_add(max_distance);
        self.island_worst_case_size += data.len() as CodeOffset;
        self.island_worst_case_size =
            (self.island_worst_case_size + I::LabelUse::ALIGN - 1) & !(I::LabelUse::ALIGN - 1);
        self.pending_constants.push(MachLabelConstant {
            label,
            align,
            data: SmallVec::from(data),
        });
        if deadline < self.island_deadline {
            self.island_deadline = deadline;
        }
    }

    /// Is an island needed within the next N bytes?
    pub fn island_needed(&self, distance: CodeOffset) -> bool {
        self.worst_case_end_of_island(distance) > self.island_deadline
    }

    /// Returns the maximal offset that islands can reach if `distance` more
    /// bytes are appended.
    ///
    /// This is used to determine if veneers need insertions since jumps that
    /// can't reach past this point must get a veneer of some form.
    fn worst_case_end_of_island(&self, distance: CodeOffset) -> CodeOffset {
        self.cur_offset()
            .saturating_add(distance)
            .saturating_add(self.island_worst_case_size)
    }

    /// Emit all pending constants and required pending veneers.
    ///
    /// Should only be called if `island_needed()` returns true, i.e., if we
    /// actually reach a deadline. It's not necessarily a problem to do so
    /// otherwise but it may result in unnecessary work during emission.
    pub fn emit_island(&mut self, distance: CodeOffset) {
        self.emit_island_maybe_forced(false, distance);
    }

    /// Same as `emit_island`, but an internal API with a `force_veneers`
    /// argument to force all veneers to always get emitted for debugging.
    fn emit_island_maybe_forced(&mut self, force_veneers: bool, distance: CodeOffset) {
        // We're going to purge fixups, so no latest-branch editing can happen
        // anymore.
        self.latest_branches.clear();

        // Reset internal calculations about islands since we're going to
        // change the calculus as we apply fixups. The `forced_threshold` is
        // used here to determine whether jumps to unknown labels will require
        // a veneer or not.
        let forced_threshold = self.worst_case_end_of_island(distance);
        self.island_deadline = UNKNOWN_LABEL_OFFSET;
        self.island_worst_case_size = 0;

        // First flush out all constants so we have more labels in case fixups
        // are applied against these labels.
        for MachLabelConstant { label, align, data } in mem::take(&mut self.pending_constants) {
            self.align_to(align);
            self.bind_label(label);
            self.put_data(&data[..]);
        }

        for fixup in mem::take(&mut self.fixup_records) {
            trace!("emit_island: fixup {:?}", fixup);
            let MachLabelFixup {
                label,
                offset,
                kind,
            } = fixup;
            let label_offset = self.resolve_label_offset(label);
            let start = offset as usize;
            let end = (offset + kind.patch_size()) as usize;

            if label_offset != UNKNOWN_LABEL_OFFSET {
                // If the offset of the label for this fixup is known then
                // we're going to do something here-and-now. We're either going
                // to patch the original offset because it's an in-bounds jump,
                // or we're going to generate a veneer, patch the fixup to jump
                // to the veneer, and then keep going.
                //
                // If the label comes after the original fixup, then we should
                // be guaranteed that the jump is in-bounds. Otherwise there's
                // a bug somewhere because this method wasn't called soon
                // enough. All forward-jumps are tracked and should get veneers
                // before their deadline comes and they're unable to jump
                // further.
                //
                // Otherwise if the label is before the fixup, then that's a
                // backwards jump. If it's past the maximum negative range
                // then we'll emit a veneer that to jump forward to which can
                // then jump backwards.
                let veneer_required = if label_offset >= offset {
                    assert!((label_offset - offset) <= kind.max_pos_range());
                    false
                } else {
                    (offset - label_offset) > kind.max_neg_range()
                };
                trace!(
                    " -> label_offset = {}, known, required = {} (pos {} neg {})",
                    label_offset,
                    veneer_required,
                    kind.max_pos_range(),
                    kind.max_neg_range()
                );

                if (force_veneers && kind.supports_veneer()) || veneer_required {
                    self.emit_veneer(label, offset, kind);
                } else {
                    let slice = &mut self.data[start..end];
                    trace!("patching in-range!");
                    kind.patch(slice, offset, label_offset);
                }
            } else {
                // If the offset of this label is not known at this time then
                // there's one of two possibilities:
                //
                // * First we may be about to exceed the maximum jump range of
                //   this fixup. In that case a veneer is inserted to buy some
                //   more budget for the forward-jump. It's guaranteed that the
                //   label will eventually come after where we're at, so we know
                //   that the forward jump is necessary.
                //
                // * Otherwise we're still within range of the forward jump but
                //   the precise target isn't known yet. In that case we
                //   enqueue the fixup to get processed later.
                if forced_threshold - offset > kind.max_pos_range() {
                    self.emit_veneer(label, offset, kind);
                } else {
                    self.use_label_at_offset(offset, label, kind);
                }
            }
        }
    }

    /// Emits a "veneer" the `kind` code at `offset` to jump to `label`.
    ///
    /// This will generate extra machine code, using `kind`, to get a
    /// larger-jump-kind than `kind` allows. The code at `offset` is then
    /// patched to jump to our new code, and then the new code is enqueued for
    /// a fixup to get processed at some later time.
    fn emit_veneer(&mut self, label: MachLabel, offset: CodeOffset, kind: I::LabelUse) {
        // If this `kind` doesn't support a veneer then that's a bug in the
        // backend because we need to implement support for such a veneer.
        assert!(
            kind.supports_veneer(),
            "jump beyond the range of {:?} but a veneer isn't supported",
            kind,
        );

        // Allocate space for a veneer in the island.
        self.align_to(I::LabelUse::ALIGN);
        let veneer_offset = self.cur_offset();
        trace!("making a veneer at {}", veneer_offset);
        let start = offset as usize;
        let end = (offset + kind.patch_size()) as usize;
        let slice = &mut self.data[start..end];
        // Patch the original label use to refer to the veneer.
        trace!(
            "patching original at offset {} to veneer offset {}",
            offset,
            veneer_offset
        );
        kind.patch(slice, offset, veneer_offset);
        // Generate the veneer.
        let veneer_slice = self.get_appended_space(kind.veneer_size() as usize);
        let (veneer_fixup_off, veneer_label_use) =
            kind.generate_veneer(veneer_slice, veneer_offset);
        trace!(
            "generated veneer; fixup offset {}, label_use {:?}",
            veneer_fixup_off,
            veneer_label_use
        );
        // Register a new use of `label` with our new veneer fixup and offset.
        // This'll recalculate deadlines accordingly and enqueue this fixup to
        // get processed at some later time.
        self.use_label_at_offset(veneer_fixup_off, label, veneer_label_use);
    }

    fn finish_emission_maybe_forcing_veneers(&mut self, force_veneers: bool) {
        while !self.pending_constants.is_empty() || !self.fixup_records.is_empty() {
            // `emit_island()` will emit any pending veneers and constants, and
            // as a side-effect, will also take care of any fixups with resolved
            // labels eagerly.
            self.emit_island_maybe_forced(force_veneers, u32::MAX);
        }

        // Ensure that all labels have been fixed up after the last island is emitted. This is a
        // full (release-mode) assert because an unresolved label means the emitted code is
        // incorrect.
        assert!(self.fixup_records.is_empty());
    }

    /// Finish any deferred emissions and/or fixups.
    pub fn finish(mut self) -> MachBufferFinalized {
        let _tt = timing::vcode_emit_finish();

        self.finish_emission_maybe_forcing_veneers(false);

        let mut srclocs = self.srclocs;
        srclocs.sort_by_key(|entry| entry.start);

        MachBufferFinalized {
            data: self.data,
            relocs: self.relocs,
            traps: self.traps,
            call_sites: self.call_sites,
            srclocs,
            stack_maps: self.stack_maps,
            unwind_info: self.unwind_info,
        }
    }

    /// Add an external relocation at the current offset.
    pub fn add_reloc(&mut self, kind: Reloc, name: &ExternalName, addend: Addend) {
        let name = name.clone();
        // FIXME(#3277): This should use `I::LabelUse::from_reloc` to optionally
        // generate a label-use statement to track whether an island is possibly
        // needed to escape this function to actually get to the external name.
        // This is most likely to come up on AArch64 where calls between
        // functions use a 26-bit signed offset which gives +/- 64MB. This means
        // that if a function is 128MB in size and there's a call in the middle
        // it's impossible to reach the actual target. Also, while it's
        // technically possible to jump to the start of a function and then jump
        // further, island insertion below always inserts islands after
        // previously appended code so for Cranelift's own implementation this
        // is also a problem for 64MB functions on AArch64 which start with a
        // call instruction, those won't be able to escape.
        //
        // Ideally what needs to happen here is that a `LabelUse` is
        // transparently generated (or call-sites of this function are audited
        // to generate a `LabelUse` instead) and tracked internally. The actual
        // relocation would then change over time if and when a veneer is
        // inserted, where the relocation here would be patched by this
        // `MachBuffer` to jump to the veneer. The problem, though, is that all
        // this still needs to end up, in the case of a singular function,
        // generating a final relocation pointing either to this particular
        // relocation or to the veneer inserted. Additionally
        // `MachBuffer` needs the concept of a label which will never be
        // resolved, so `emit_island` doesn't trip over not actually ever
        // knowning what some labels are. Currently the loop in
        // `finish_emission_maybe_forcing_veneers` would otherwise infinitely
        // loop.
        //
        // For now this means that because relocs aren't tracked at all that
        // AArch64 functions have a rough size limits of 64MB. For now that's
        // somewhat reasonable and the failure mode is a panic in `MachBuffer`
        // when a relocation can't otherwise be resolved later, so it shouldn't
        // actually result in any memory unsafety or anything like that.
        self.relocs.push(MachReloc {
            offset: self.data.len() as CodeOffset,
            kind,
            name,
            addend,
        });
    }

    /// Add a trap record at the current offset.
    pub fn add_trap(&mut self, code: TrapCode) {
        self.traps.push(MachTrap {
            offset: self.data.len() as CodeOffset,
            code,
        });
    }

    /// Add a call-site record at the current offset.
    pub fn add_call_site(&mut self, opcode: Opcode) {
        debug_assert!(
            opcode.is_call(),
            "adding call site info for a non-call instruction."
        );
        self.call_sites.push(MachCallSite {
            ret_addr: self.data.len() as CodeOffset,
            opcode,
        });
    }

    /// Add an unwind record at the current offset.
    pub fn add_unwind(&mut self, unwind: UnwindInst) {
        self.unwind_info.push((self.cur_offset(), unwind));
    }

    /// Set the `SourceLoc` for code from this offset until the offset at the
    /// next call to `end_srcloc()`.
    pub fn start_srcloc(&mut self, loc: SourceLoc) {
        self.cur_srcloc = Some((self.cur_offset(), loc));
    }

    /// Mark the end of the `SourceLoc` segment started at the last
    /// `start_srcloc()` call.
    pub fn end_srcloc(&mut self) {
        let (start, loc) = self
            .cur_srcloc
            .take()
            .expect("end_srcloc() called without start_srcloc()");
        let end = self.cur_offset();
        // Skip zero-length extends.
        debug_assert!(end >= start);
        if end > start {
            self.srclocs.push(MachSrcLoc { start, end, loc });
        }
    }

    /// Add stack map metadata for this program point: a set of stack offsets
    /// (from SP upward) that contain live references.
    ///
    /// The `offset_to_fp` value is the offset from the nominal SP (at which the `stack_offsets`
    /// are based) and the FP value. By subtracting `offset_to_fp` from each `stack_offsets`
    /// element, one can obtain live-reference offsets from FP instead.
    pub fn add_stack_map(&mut self, extent: StackMapExtent, stack_map: StackMap) {
        let (start, end) = match extent {
            StackMapExtent::UpcomingBytes(insn_len) => {
                let start_offset = self.cur_offset();
                (start_offset, start_offset + insn_len)
            }
            StackMapExtent::StartedAtOffset(start_offset) => {
                let end_offset = self.cur_offset();
                debug_assert!(end_offset >= start_offset);
                (start_offset, end_offset)
            }
        };
        self.stack_maps.push(MachStackMap {
            offset: start,
            offset_end: end,
            stack_map,
        });
    }
}

impl MachBufferFinalized {
    /// Get a list of source location mapping tuples in sorted-by-start-offset order.
    pub fn get_srclocs_sorted(&self) -> &[MachSrcLoc] {
        &self.srclocs[..]
    }

    /// Get the total required size for the code.
    pub fn total_size(&self) -> CodeOffset {
        self.data.len() as CodeOffset
    }

    /// Return the code in this mach buffer as a hex string for testing purposes.
    pub fn stringify_code_bytes(&self) -> String {
        // This is pretty lame, but whatever ..
        use std::fmt::Write;
        let mut s = String::with_capacity(self.data.len() * 2);
        for b in &self.data {
            write!(&mut s, "{:02X}", b).unwrap();
        }
        s
    }

    /// Get the code bytes.
    pub fn data(&self) -> &[u8] {
        // N.B.: we emit every section into the .text section as far as
        // the `CodeSink` is concerned; we do not bother to segregate
        // the contents into the actual program text, the jumptable and the
        // rodata (constant pool). This allows us to generate code assuming
        // that these will not be relocated relative to each other, and avoids
        // having to designate each section as belonging in one of the three
        // fixed categories defined by `CodeSink`. If this becomes a problem
        // later (e.g. because of memory permissions or similar), we can
        // add this designation and segregate the output; take care, however,
        // to add the appropriate relocations in this case.

        &self.data[..]
    }

    /// Get the list of external relocations for this code.
    pub fn relocs(&self) -> &[MachReloc] {
        &self.relocs[..]
    }

    /// Get the list of trap records for this code.
    pub fn traps(&self) -> &[MachTrap] {
        &self.traps[..]
    }

    /// Get the stack map metadata for this code.
    pub fn stack_maps(&self) -> &[MachStackMap] {
        &self.stack_maps[..]
    }

    /// Get the list of call sites for this code.
    pub fn call_sites(&self) -> &[MachCallSite] {
        &self.call_sites[..]
    }
}

/// A constant that is deferred to the next constant-pool opportunity.
struct MachLabelConstant {
    /// This label will refer to the constant's offset.
    label: MachLabel,
    /// Required alignment.
    align: CodeOffset,
    /// This data will be emitted when able.
    data: SmallVec<[u8; 16]>,
}

/// A fixup to perform on the buffer once code is emitted. Fixups always refer
/// to labels and patch the code based on label offsets. Hence, they are like
/// relocations, but internal to one buffer.
#[derive(Debug)]
struct MachLabelFixup<I: VCodeInst> {
    /// The label whose offset controls this fixup.
    label: MachLabel,
    /// The offset to fix up / patch to refer to this label.
    offset: CodeOffset,
    /// The kind of fixup. This is architecture-specific; each architecture may have,
    /// e.g., several types of branch instructions, each with differently-sized
    /// offset fields and different places within the instruction to place the
    /// bits.
    kind: I::LabelUse,
}

/// A relocation resulting from a compilation.
#[derive(Clone, Debug)]
pub struct MachReloc {
    /// The offset at which the relocation applies, *relative to the
    /// containing section*.
    pub offset: CodeOffset,
    /// The kind of relocation.
    pub kind: Reloc,
    /// The external symbol / name to which this relocation refers.
    pub name: ExternalName,
    /// The addend to add to the symbol value.
    pub addend: i64,
}

/// A trap record resulting from a compilation.
#[derive(Clone, Debug)]
pub struct MachTrap {
    /// The offset at which the trap instruction occurs, *relative to the
    /// containing section*.
    pub offset: CodeOffset,
    /// The trap code.
    pub code: TrapCode,
}

/// A call site record resulting from a compilation.
#[derive(Clone, Debug)]
pub struct MachCallSite {
    /// The offset of the call's return address, *relative to the containing section*.
    pub ret_addr: CodeOffset,
    /// The call's opcode.
    pub opcode: Opcode,
}

/// A source-location mapping resulting from a compilation.
#[derive(Clone, Debug)]
pub struct MachSrcLoc {
    /// The start of the region of code corresponding to a source location.
    /// This is relative to the start of the function, not to the start of the
    /// section.
    pub start: CodeOffset,
    /// The end of the region of code corresponding to a source location.
    /// This is relative to the start of the section, not to the start of the
    /// section.
    pub end: CodeOffset,
    /// The source location.
    pub loc: SourceLoc,
}

/// Record of stack map metadata: stack offsets containing references.
#[derive(Clone, Debug)]
pub struct MachStackMap {
    /// The code offset at which this stack map applies.
    pub offset: CodeOffset,
    /// The code offset just past the "end" of the instruction: that is, the
    /// offset of the first byte of the following instruction, or equivalently,
    /// the start offset plus the instruction length.
    pub offset_end: CodeOffset,
    /// The stack map itself.
    pub stack_map: StackMap,
}

/// Record of branch instruction in the buffer, to facilitate editing.
#[derive(Clone, Debug)]
struct MachBranch {
    start: CodeOffset,
    end: CodeOffset,
    target: MachLabel,
    fixup: usize,
    inverted: Option<SmallVec<[u8; 8]>>,
    /// All labels pointing to the start of this branch. For correctness, this
    /// *must* be complete (i.e., must contain all labels whose resolved offsets
    /// are at the start of this branch): we rely on being able to redirect all
    /// labels that could jump to this branch before removing it, if it is
    /// otherwise unreachable.
    labels_at_this_branch: SmallVec<[MachLabel; 4]>,
}

impl MachBranch {
    fn is_cond(&self) -> bool {
        self.inverted.is_some()
    }
    fn is_uncond(&self) -> bool {
        self.inverted.is_none()
    }
}

/// Implementation of the `TextSectionBuilder` trait backed by `MachBuffer`.
///
/// Note that `MachBuffer` was primarily written for intra-function references
/// of jumps between basic blocks, but it's also quite usable for entire text
/// sections and resolving references between functions themselves. This
/// builder interprets "blocks" as labeled functions for the purposes of
/// resolving labels internally in the buffer.
pub struct MachTextSectionBuilder<I: VCodeInst> {
    buf: MachBuffer<I>,
    next_func: usize,
    force_veneers: bool,
}

impl<I: VCodeInst> MachTextSectionBuilder<I> {
    pub fn new(num_funcs: u32) -> MachTextSectionBuilder<I> {
        let mut buf = MachBuffer::new();
        buf.reserve_labels_for_blocks(num_funcs as usize);
        MachTextSectionBuilder {
            buf,
            next_func: 0,
            force_veneers: false,
        }
    }
}

impl<I: VCodeInst> TextSectionBuilder for MachTextSectionBuilder<I> {
    fn append(&mut self, named: bool, func: &[u8], align: Option<u32>) -> u64 {
        // Conditionally emit an island if it's necessary to resolve jumps
        // between functions which are too far away.
        let size = func.len() as u32;
        if self.force_veneers || self.buf.island_needed(size) {
            self.buf.emit_island_maybe_forced(self.force_veneers, size);
        }

        self.buf.align_to(align.unwrap_or(I::LabelUse::ALIGN));
        let pos = self.buf.cur_offset();
        if named {
            self.buf
                .bind_label(MachLabel::from_block(BlockIndex::new(self.next_func)));
            self.next_func += 1;
        }
        self.buf.put_data(func);
        u64::from(pos)
    }

    fn resolve_reloc(&mut self, offset: u64, reloc: Reloc, addend: Addend, target: u32) -> bool {
        let label = MachLabel::from_block(BlockIndex::new(target as usize));
        let offset = u32::try_from(offset).unwrap();
        match I::LabelUse::from_reloc(reloc, addend) {
            Some(label_use) => {
                self.buf.use_label_at_offset(offset, label, label_use);
                true
            }
            None => false,
        }
    }

    fn force_veneers(&mut self) {
        self.force_veneers = true;
    }

    fn finish(&mut self) -> Vec<u8> {
        // Double-check all functions were pushed.
        assert_eq!(self.next_func, self.buf.label_offsets.len());

        // Finish up any veneers, if necessary.
        self.buf
            .finish_emission_maybe_forcing_veneers(self.force_veneers);

        // We don't need the data any more, so return it to the caller.
        mem::take(&mut self.buf.data).into_vec()
    }
}

// We use an actual instruction definition to do tests, so we depend on the `arm64` feature here.
#[cfg(all(test, feature = "arm64"))]
mod test {
    use super::*;
    use crate::isa::aarch64::inst::xreg;
    use crate::isa::aarch64::inst::{BranchTarget, CondBrKind, EmitInfo, Inst};
    use crate::machinst::MachInstEmit;
    use crate::settings;
    use std::default::Default;
    use std::vec::Vec;

    fn label(n: u32) -> MachLabel {
        MachLabel::from_block(BlockIndex::new(n as usize))
    }
    fn target(n: u32) -> BranchTarget {
        BranchTarget::Label(label(n))
    }

    #[test]
    fn test_elide_jump_to_next() {
        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
        let mut buf = MachBuffer::new();
        let mut state = Default::default();

        buf.reserve_labels_for_blocks(2);
        buf.bind_label(label(0));
        let inst = Inst::Jump { dest: target(1) };
        inst.emit(&[], &mut buf, &info, &mut state);
        buf.bind_label(label(1));
        let buf = buf.finish();
        assert_eq!(0, buf.total_size());
    }

    #[test]
    fn test_elide_trivial_jump_blocks() {
        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
        let mut buf = MachBuffer::new();
        let mut state = Default::default();

        buf.reserve_labels_for_blocks(4);

        buf.bind_label(label(0));
        let inst = Inst::CondBr {
            kind: CondBrKind::NotZero(xreg(0)),
            taken: target(1),
            not_taken: target(2),
        };
        inst.emit(&[], &mut buf, &info, &mut state);

        buf.bind_label(label(1));
        let inst = Inst::Jump { dest: target(3) };
        inst.emit(&[], &mut buf, &info, &mut state);

        buf.bind_label(label(2));
        let inst = Inst::Jump { dest: target(3) };
        inst.emit(&[], &mut buf, &info, &mut state);

        buf.bind_label(label(3));

        let buf = buf.finish();
        assert_eq!(0, buf.total_size());
    }

    #[test]
    fn test_flip_cond() {
        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
        let mut buf = MachBuffer::new();
        let mut state = Default::default();

        buf.reserve_labels_for_blocks(4);

        buf.bind_label(label(0));
        let inst = Inst::CondBr {
            kind: CondBrKind::NotZero(xreg(0)),
            taken: target(1),
            not_taken: target(2),
        };
        inst.emit(&[], &mut buf, &info, &mut state);

        buf.bind_label(label(1));
        let inst = Inst::Udf {
            use_allocated_encoding: true,
            trap_code: TrapCode::Interrupt,
        };
        inst.emit(&[], &mut buf, &info, &mut state);

        buf.bind_label(label(2));
        let inst = Inst::Nop4;
        inst.emit(&[], &mut buf, &info, &mut state);

        buf.bind_label(label(3));

        let buf = buf.finish();

        let mut buf2 = MachBuffer::new();
        let mut state = Default::default();
        let inst = Inst::TrapIf {
            kind: CondBrKind::NotZero(xreg(0)),
            trap_code: TrapCode::Interrupt,
        };
        inst.emit(&[], &mut buf2, &info, &mut state);
        let inst = Inst::Nop4;
        inst.emit(&[], &mut buf2, &info, &mut state);

        let buf2 = buf2.finish();

        assert_eq!(buf.data, buf2.data);
    }

    #[test]
    fn test_island() {
        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
        let mut buf = MachBuffer::new();
        let mut state = Default::default();

        buf.reserve_labels_for_blocks(4);

        buf.bind_label(label(0));
        let inst = Inst::CondBr {
            kind: CondBrKind::NotZero(xreg(0)),
            taken: target(2),
            not_taken: target(3),
        };
        inst.emit(&[], &mut buf, &info, &mut state);

        buf.bind_label(label(1));
        while buf.cur_offset() < 2000000 {
            if buf.island_needed(0) {
                buf.emit_island(0);
            }
            let inst = Inst::Nop4;
            inst.emit(&[], &mut buf, &info, &mut state);
        }

        buf.bind_label(label(2));
        let inst = Inst::Nop4;
        inst.emit(&[], &mut buf, &info, &mut state);

        buf.bind_label(label(3));
        let inst = Inst::Nop4;
        inst.emit(&[], &mut buf, &info, &mut state);

        let buf = buf.finish();

        assert_eq!(2000000 + 8, buf.total_size());

        let mut buf2 = MachBuffer::new();
        let mut state = Default::default();
        let inst = Inst::CondBr {
            kind: CondBrKind::NotZero(xreg(0)),

            // This conditionally taken branch has a 19-bit constant, shifted
            // to the left by two, giving us a 21-bit range in total. Half of
            // this range positive so the we should be around 1 << 20 bytes
            // away for our jump target.
            //
            // There are two pending fixups by the time we reach this point,
            // one for this 19-bit jump and one for the unconditional 26-bit
            // jump below. A 19-bit veneer is 4 bytes large and the 26-bit
            // veneer is 20 bytes large, which means that pessimistically
            // assuming we'll need two veneers we need 24 bytes of extra
            // space, meaning that the actual island should come 24-bytes
            // before the deadline.
            taken: BranchTarget::ResolvedOffset((1 << 20) - 4 - 20),

            // This branch is in-range so no veneers should be needed, it should
            // go directly to the target.
            not_taken: BranchTarget::ResolvedOffset(2000000 + 4 - 4),
        };
        inst.emit(&[], &mut buf2, &info, &mut state);

        let buf2 = buf2.finish();

        assert_eq!(&buf.data[0..8], &buf2.data[..]);
    }

    #[test]
    fn test_island_backward() {
        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
        let mut buf = MachBuffer::new();
        let mut state = Default::default();

        buf.reserve_labels_for_blocks(4);

        buf.bind_label(label(0));
        let inst = Inst::Nop4;
        inst.emit(&[], &mut buf, &info, &mut state);

        buf.bind_label(label(1));
        let inst = Inst::Nop4;
        inst.emit(&[], &mut buf, &info, &mut state);

        buf.bind_label(label(2));
        while buf.cur_offset() < 2000000 {
            let inst = Inst::Nop4;
            inst.emit(&[], &mut buf, &info, &mut state);
        }

        buf.bind_label(label(3));
        let inst = Inst::CondBr {
            kind: CondBrKind::NotZero(xreg(0)),
            taken: target(0),
            not_taken: target(1),
        };
        inst.emit(&[], &mut buf, &info, &mut state);

        let buf = buf.finish();

        assert_eq!(2000000 + 12, buf.total_size());

        let mut buf2 = MachBuffer::new();
        let mut state = Default::default();
        let inst = Inst::CondBr {
            kind: CondBrKind::NotZero(xreg(0)),
            taken: BranchTarget::ResolvedOffset(8),
            not_taken: BranchTarget::ResolvedOffset(4 - (2000000 + 4)),
        };
        inst.emit(&[], &mut buf2, &info, &mut state);
        let inst = Inst::Jump {
            dest: BranchTarget::ResolvedOffset(-(2000000 + 8)),
        };
        inst.emit(&[], &mut buf2, &info, &mut state);

        let buf2 = buf2.finish();

        assert_eq!(&buf.data[2000000..], &buf2.data[..]);
    }

    #[test]
    fn test_multiple_redirect() {
        // label0:
        //   cbz x0, label1
        //   b label2
        // label1:
        //   b label3
        // label2:
        //   nop
        //   nop
        //   b label0
        // label3:
        //   b label4
        // label4:
        //   b label5
        // label5:
        //   b label7
        // label6:
        //   nop
        // label7:
        //   ret
        //
        // -- should become:
        //
        // label0:
        //   cbz x0, label7
        // label2:
        //   nop
        //   nop
        //   b label0
        // label6:
        //   nop
        // label7:
        //   ret

        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
        let mut buf = MachBuffer::new();
        let mut state = Default::default();

        buf.reserve_labels_for_blocks(8);

        buf.bind_label(label(0));
        let inst = Inst::CondBr {
            kind: CondBrKind::Zero(xreg(0)),
            taken: target(1),
            not_taken: target(2),
        };
        inst.emit(&[], &mut buf, &info, &mut state);

        buf.bind_label(label(1));
        let inst = Inst::Jump { dest: target(3) };
        inst.emit(&[], &mut buf, &info, &mut state);

        buf.bind_label(label(2));
        let inst = Inst::Nop4;
        inst.emit(&[], &mut buf, &info, &mut state);
        inst.emit(&[], &mut buf, &info, &mut state);
        let inst = Inst::Jump { dest: target(0) };
        inst.emit(&[], &mut buf, &info, &mut state);

        buf.bind_label(label(3));
        let inst = Inst::Jump { dest: target(4) };
        inst.emit(&[], &mut buf, &info, &mut state);

        buf.bind_label(label(4));
        let inst = Inst::Jump { dest: target(5) };
        inst.emit(&[], &mut buf, &info, &mut state);

        buf.bind_label(label(5));
        let inst = Inst::Jump { dest: target(7) };
        inst.emit(&[], &mut buf, &info, &mut state);

        buf.bind_label(label(6));
        let inst = Inst::Nop4;
        inst.emit(&[], &mut buf, &info, &mut state);

        buf.bind_label(label(7));
        let inst = Inst::Ret { rets: vec![] };
        inst.emit(&[], &mut buf, &info, &mut state);

        let buf = buf.finish();

        let golden_data = vec![
            0xa0, 0x00, 0x00, 0xb4, // cbz x0, 0x14
            0x1f, 0x20, 0x03, 0xd5, // nop
            0x1f, 0x20, 0x03, 0xd5, // nop
            0xfd, 0xff, 0xff, 0x17, // b 0
            0x1f, 0x20, 0x03, 0xd5, // nop
            0xc0, 0x03, 0x5f, 0xd6, // ret
        ];

        assert_eq!(&golden_data[..], &buf.data[..]);
    }

    #[test]
    fn test_handle_branch_cycle() {
        // label0:
        //   b label1
        // label1:
        //   b label2
        // label2:
        //   b label3
        // label3:
        //   b label4
        // label4:
        //   b label1  // note: not label0 (to make it interesting).
        //
        // -- should become:
        //
        // label0, label1, ..., label4:
        //   b label0
        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
        let mut buf = MachBuffer::new();
        let mut state = Default::default();

        buf.reserve_labels_for_blocks(5);

        buf.bind_label(label(0));
        let inst = Inst::Jump { dest: target(1) };
        inst.emit(&[], &mut buf, &info, &mut state);

        buf.bind_label(label(1));
        let inst = Inst::Jump { dest: target(2) };
        inst.emit(&[], &mut buf, &info, &mut state);

        buf.bind_label(label(2));
        let inst = Inst::Jump { dest: target(3) };
        inst.emit(&[], &mut buf, &info, &mut state);

        buf.bind_label(label(3));
        let inst = Inst::Jump { dest: target(4) };
        inst.emit(&[], &mut buf, &info, &mut state);

        buf.bind_label(label(4));
        let inst = Inst::Jump { dest: target(1) };
        inst.emit(&[], &mut buf, &info, &mut state);

        let buf = buf.finish();

        let golden_data = vec![
            0x00, 0x00, 0x00, 0x14, // b 0
        ];

        assert_eq!(&golden_data[..], &buf.data[..]);
    }

    #[test]
    fn metadata_records() {
        let mut buf = MachBuffer::<Inst>::new();

        buf.reserve_labels_for_blocks(1);

        buf.bind_label(label(0));
        buf.put1(1);
        buf.add_trap(TrapCode::HeapOutOfBounds);
        buf.put1(2);
        buf.add_trap(TrapCode::IntegerOverflow);
        buf.add_trap(TrapCode::IntegerDivisionByZero);
        buf.add_call_site(Opcode::Call);
        buf.add_reloc(Reloc::Abs4, &ExternalName::user(0, 0), 0);
        buf.put1(3);
        buf.add_reloc(Reloc::Abs8, &ExternalName::user(1, 1), 1);
        buf.put1(4);

        let buf = buf.finish();

        assert_eq!(buf.data(), &[1, 2, 3, 4]);
        assert_eq!(
            buf.traps()
                .iter()
                .map(|trap| (trap.offset, trap.code))
                .collect::<Vec<_>>(),
            vec![
                (1, TrapCode::HeapOutOfBounds),
                (2, TrapCode::IntegerOverflow),
                (2, TrapCode::IntegerDivisionByZero)
            ]
        );
        assert_eq!(
            buf.call_sites()
                .iter()
                .map(|call_site| (call_site.ret_addr, call_site.opcode))
                .collect::<Vec<_>>(),
            vec![(2, Opcode::Call)]
        );
        assert_eq!(
            buf.relocs()
                .iter()
                .map(|reloc| (reloc.offset, reloc.kind))
                .collect::<Vec<_>>(),
            vec![(2, Reloc::Abs4), (3, Reloc::Abs8)]
        );
    }
}