1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
//! Function layout.
//!
//! The order of basic blocks in a function and the order of instructions in a block is
//! determined by the `Layout` data structure defined in this module.

use crate::entity::SecondaryMap;
use crate::ir::dfg::DataFlowGraph;
use crate::ir::progpoint::{ExpandedProgramPoint, ProgramOrder};
use crate::ir::{Block, Inst};
use crate::packed_option::PackedOption;
use crate::{timing, trace};
use core::cmp;
use core::iter::{IntoIterator, Iterator};

/// The `Layout` struct determines the layout of blocks and instructions in a function. It does not
/// contain definitions of instructions or blocks, but depends on `Inst` and `Block` entity references
/// being defined elsewhere.
///
/// This data structure determines:
///
/// - The order of blocks in the function.
/// - Which block contains a given instruction.
/// - The order of instructions with a block.
///
/// While data dependencies are not recorded, instruction ordering does affect control
/// dependencies, so part of the semantics of the program are determined by the layout.
///
#[derive(Debug, Clone, PartialEq, Hash)]
pub struct Layout {
    /// Linked list nodes for the layout order of blocks Forms a doubly linked list, terminated in
    /// both ends by `None`.
    blocks: SecondaryMap<Block, BlockNode>,

    /// Linked list nodes for the layout order of instructions. Forms a double linked list per block,
    /// terminated in both ends by `None`.
    insts: SecondaryMap<Inst, InstNode>,

    /// First block in the layout order, or `None` when no blocks have been laid out.
    first_block: Option<Block>,

    /// Last block in the layout order, or `None` when no blocks have been laid out.
    last_block: Option<Block>,
}

impl Layout {
    /// Create a new empty `Layout`.
    pub fn new() -> Self {
        Self {
            blocks: SecondaryMap::new(),
            insts: SecondaryMap::new(),
            first_block: None,
            last_block: None,
        }
    }

    /// Clear the layout.
    pub fn clear(&mut self) {
        self.blocks.clear();
        self.insts.clear();
        self.first_block = None;
        self.last_block = None;
    }

    /// Returns the capacity of the `BlockData` map.
    pub fn block_capacity(&self) -> usize {
        self.blocks.capacity()
    }
}

/// Sequence numbers.
///
/// All instructions and blocks are given a sequence number that can be used to quickly determine
/// their relative position in the layout. The sequence numbers are not contiguous, but are assigned
/// like line numbers in BASIC: 10, 20, 30, ...
///
/// The block sequence numbers are strictly increasing, and so are the instruction sequence numbers
/// within a block. The instruction sequence numbers are all between the sequence number of their
/// containing block and the following block.
///
/// The result is that sequence numbers work like BASIC line numbers for the textual form of the IR.
type SequenceNumber = u32;

/// Initial stride assigned to new sequence numbers.
const MAJOR_STRIDE: SequenceNumber = 10;

/// Secondary stride used when renumbering locally.
const MINOR_STRIDE: SequenceNumber = 2;

/// Limit on the sequence number range we'll renumber locally. If this limit is exceeded, we'll
/// switch to a full function renumbering.
const LOCAL_LIMIT: SequenceNumber = 100 * MINOR_STRIDE;

/// Compute the midpoint between `a` and `b`.
/// Return `None` if the midpoint would be equal to either.
fn midpoint(a: SequenceNumber, b: SequenceNumber) -> Option<SequenceNumber> {
    debug_assert!(a < b);
    // Avoid integer overflow.
    let m = a + (b - a) / 2;
    if m > a {
        Some(m)
    } else {
        None
    }
}

#[test]
fn test_midpoint() {
    assert_eq!(midpoint(0, 1), None);
    assert_eq!(midpoint(0, 2), Some(1));
    assert_eq!(midpoint(0, 3), Some(1));
    assert_eq!(midpoint(0, 4), Some(2));
    assert_eq!(midpoint(1, 4), Some(2));
    assert_eq!(midpoint(2, 4), Some(3));
    assert_eq!(midpoint(3, 4), None);
    assert_eq!(midpoint(3, 4), None);
}

impl ProgramOrder for Layout {
    fn cmp<A, B>(&self, a: A, b: B) -> cmp::Ordering
    where
        A: Into<ExpandedProgramPoint>,
        B: Into<ExpandedProgramPoint>,
    {
        let a_seq = self.seq(a);
        let b_seq = self.seq(b);
        a_seq.cmp(&b_seq)
    }

    fn is_block_gap(&self, inst: Inst, block: Block) -> bool {
        let i = &self.insts[inst];
        let e = &self.blocks[block];

        i.next.is_none() && i.block == e.prev
    }
}

// Private methods for dealing with sequence numbers.
impl Layout {
    /// Get the sequence number of a program point that must correspond to an entity in the layout.
    fn seq<PP: Into<ExpandedProgramPoint>>(&self, pp: PP) -> SequenceNumber {
        // When `PP = Inst` or `PP = Block`, we expect this dynamic type check to be optimized out.
        match pp.into() {
            ExpandedProgramPoint::Block(block) => self.blocks[block].seq,
            ExpandedProgramPoint::Inst(inst) => self.insts[inst].seq,
        }
    }

    /// Get the last sequence number in `block`.
    fn last_block_seq(&self, block: Block) -> SequenceNumber {
        // Get the seq of the last instruction if it exists, otherwise use the block header seq.
        self.blocks[block]
            .last_inst
            .map(|inst| self.insts[inst].seq)
            .unwrap_or(self.blocks[block].seq)
    }

    /// Assign a valid sequence number to `block` such that the numbers are still monotonic. This may
    /// require renumbering.
    fn assign_block_seq(&mut self, block: Block) {
        debug_assert!(self.is_block_inserted(block));

        // Get the sequence number immediately before `block`, or 0.
        let prev_seq = self.blocks[block]
            .prev
            .map(|prev_block| self.last_block_seq(prev_block))
            .unwrap_or(0);

        // Get the sequence number immediately following `block`.
        let next_seq = if let Some(inst) = self.blocks[block].first_inst.expand() {
            self.insts[inst].seq
        } else if let Some(next_block) = self.blocks[block].next.expand() {
            self.blocks[next_block].seq
        } else {
            // There is nothing after `block`. We can just use a major stride.
            self.blocks[block].seq = prev_seq + MAJOR_STRIDE;
            return;
        };

        // Check if there is room between these sequence numbers.
        if let Some(seq) = midpoint(prev_seq, next_seq) {
            self.blocks[block].seq = seq;
        } else {
            // No available integers between `prev_seq` and `next_seq`. We have to renumber.
            self.renumber_from_block(block, prev_seq + MINOR_STRIDE, prev_seq + LOCAL_LIMIT);
        }
    }

    /// Assign a valid sequence number to `inst` such that the numbers are still monotonic. This may
    /// require renumbering.
    fn assign_inst_seq(&mut self, inst: Inst) {
        let block = self
            .inst_block(inst)
            .expect("inst must be inserted before assigning an seq");

        // Get the sequence number immediately before `inst`.
        let prev_seq = match self.insts[inst].prev.expand() {
            Some(prev_inst) => self.insts[prev_inst].seq,
            None => self.blocks[block].seq,
        };

        // Get the sequence number immediately following `inst`.
        let next_seq = if let Some(next_inst) = self.insts[inst].next.expand() {
            self.insts[next_inst].seq
        } else if let Some(next_block) = self.blocks[block].next.expand() {
            self.blocks[next_block].seq
        } else {
            // There is nothing after `inst`. We can just use a major stride.
            self.insts[inst].seq = prev_seq + MAJOR_STRIDE;
            return;
        };

        // Check if there is room between these sequence numbers.
        if let Some(seq) = midpoint(prev_seq, next_seq) {
            self.insts[inst].seq = seq;
        } else {
            // No available integers between `prev_seq` and `next_seq`. We have to renumber.
            self.renumber_from_inst(inst, prev_seq + MINOR_STRIDE, prev_seq + LOCAL_LIMIT);
        }
    }

    /// Renumber instructions starting from `inst` until the end of the block or until numbers catch
    /// up.
    ///
    /// Return `None` if renumbering has caught up and the sequence is monotonic again. Otherwise
    /// return the last used sequence number.
    ///
    /// If sequence numbers exceed `limit`, switch to a full function renumbering and return `None`.
    fn renumber_insts(
        &mut self,
        inst: Inst,
        seq: SequenceNumber,
        limit: SequenceNumber,
    ) -> Option<SequenceNumber> {
        let mut inst = inst;
        let mut seq = seq;

        loop {
            self.insts[inst].seq = seq;

            // Next instruction.
            inst = match self.insts[inst].next.expand() {
                None => return Some(seq),
                Some(next) => next,
            };

            if seq < self.insts[inst].seq {
                // Sequence caught up.
                return None;
            }

            if seq > limit {
                // We're pushing too many instructions in front of us.
                // Switch to a full function renumbering to make some space.
                self.full_renumber();
                return None;
            }

            seq += MINOR_STRIDE;
        }
    }

    /// Renumber starting from `block` to `seq` and continuing until the sequence numbers are
    /// monotonic again.
    fn renumber_from_block(
        &mut self,
        block: Block,
        first_seq: SequenceNumber,
        limit: SequenceNumber,
    ) {
        let mut block = block;
        let mut seq = first_seq;

        loop {
            self.blocks[block].seq = seq;

            // Renumber instructions in `block`. Stop when the numbers catch up.
            if let Some(inst) = self.blocks[block].first_inst.expand() {
                seq = match self.renumber_insts(inst, seq + MINOR_STRIDE, limit) {
                    Some(s) => s,
                    None => return,
                }
            }

            // Advance to the next block.
            block = match self.blocks[block].next.expand() {
                Some(next) => next,
                None => return,
            };

            // Stop renumbering once the numbers catch up.
            if seq < self.blocks[block].seq {
                return;
            }

            seq += MINOR_STRIDE;
        }
    }

    /// Renumber starting from `inst` to `seq` and continuing until the sequence numbers are
    /// monotonic again.
    fn renumber_from_inst(&mut self, inst: Inst, first_seq: SequenceNumber, limit: SequenceNumber) {
        if let Some(seq) = self.renumber_insts(inst, first_seq, limit) {
            // Renumbering spills over into next block.
            if let Some(next_block) = self.blocks[self.inst_block(inst).unwrap()].next.expand() {
                self.renumber_from_block(next_block, seq + MINOR_STRIDE, limit);
            }
        }
    }

    /// Renumber all blocks and instructions in the layout.
    ///
    /// This doesn't affect the position of anything, but it gives more room in the internal
    /// sequence numbers for inserting instructions later.
    pub(crate) fn full_renumber(&mut self) {
        let _tt = timing::layout_renumber();
        let mut seq = 0;
        let mut next_block = self.first_block;
        while let Some(block) = next_block {
            self.blocks[block].seq = seq;
            seq += MAJOR_STRIDE;
            next_block = self.blocks[block].next.expand();

            let mut next_inst = self.blocks[block].first_inst.expand();
            while let Some(inst) = next_inst {
                self.insts[inst].seq = seq;
                seq += MAJOR_STRIDE;
                next_inst = self.insts[inst].next.expand();
            }
        }
        trace!("Renumbered {} program points", seq / MAJOR_STRIDE);
    }
}

/// Methods for laying out blocks.
///
/// An unknown block starts out as *not inserted* in the block layout. The layout is a linear order of
/// inserted blocks. Once a block has been inserted in the layout, instructions can be added. A block
/// can only be removed from the layout when it is empty.
///
/// Since every block must end with a terminator instruction which cannot fall through, the layout of
/// blocks do not affect the semantics of the program.
///
impl Layout {
    /// Is `block` currently part of the layout?
    pub fn is_block_inserted(&self, block: Block) -> bool {
        Some(block) == self.first_block || self.blocks[block].prev.is_some()
    }

    /// Insert `block` as the last block in the layout.
    pub fn append_block(&mut self, block: Block) {
        debug_assert!(
            !self.is_block_inserted(block),
            "Cannot append block that is already in the layout"
        );
        {
            let node = &mut self.blocks[block];
            debug_assert!(node.first_inst.is_none() && node.last_inst.is_none());
            node.prev = self.last_block.into();
            node.next = None.into();
        }
        if let Some(last) = self.last_block {
            self.blocks[last].next = block.into();
        } else {
            self.first_block = Some(block);
        }
        self.last_block = Some(block);
        self.assign_block_seq(block);
    }

    /// Insert `block` in the layout before the existing block `before`.
    pub fn insert_block(&mut self, block: Block, before: Block) {
        debug_assert!(
            !self.is_block_inserted(block),
            "Cannot insert block that is already in the layout"
        );
        debug_assert!(
            self.is_block_inserted(before),
            "block Insertion point not in the layout"
        );
        let after = self.blocks[before].prev;
        {
            let node = &mut self.blocks[block];
            node.next = before.into();
            node.prev = after;
        }
        self.blocks[before].prev = block.into();
        match after.expand() {
            None => self.first_block = Some(block),
            Some(a) => self.blocks[a].next = block.into(),
        }
        self.assign_block_seq(block);
    }

    /// Insert `block` in the layout *after* the existing block `after`.
    pub fn insert_block_after(&mut self, block: Block, after: Block) {
        debug_assert!(
            !self.is_block_inserted(block),
            "Cannot insert block that is already in the layout"
        );
        debug_assert!(
            self.is_block_inserted(after),
            "block Insertion point not in the layout"
        );
        let before = self.blocks[after].next;
        {
            let node = &mut self.blocks[block];
            node.next = before;
            node.prev = after.into();
        }
        self.blocks[after].next = block.into();
        match before.expand() {
            None => self.last_block = Some(block),
            Some(b) => self.blocks[b].prev = block.into(),
        }
        self.assign_block_seq(block);
    }

    /// Remove `block` from the layout.
    pub fn remove_block(&mut self, block: Block) {
        debug_assert!(self.is_block_inserted(block), "block not in the layout");
        debug_assert!(self.first_inst(block).is_none(), "block must be empty.");

        // Clear the `block` node and extract links.
        let prev;
        let next;
        {
            let n = &mut self.blocks[block];
            prev = n.prev;
            next = n.next;
            n.prev = None.into();
            n.next = None.into();
        }
        // Fix up links to `block`.
        match prev.expand() {
            None => self.first_block = next.expand(),
            Some(p) => self.blocks[p].next = next,
        }
        match next.expand() {
            None => self.last_block = prev.expand(),
            Some(n) => self.blocks[n].prev = prev,
        }
    }

    /// Return an iterator over all blocks in layout order.
    pub fn blocks(&self) -> Blocks {
        Blocks {
            layout: self,
            next: self.first_block,
        }
    }

    /// Get the function's entry block.
    /// This is simply the first block in the layout order.
    pub fn entry_block(&self) -> Option<Block> {
        self.first_block
    }

    /// Get the last block in the layout.
    pub fn last_block(&self) -> Option<Block> {
        self.last_block
    }

    /// Get the block preceding `block` in the layout order.
    pub fn prev_block(&self, block: Block) -> Option<Block> {
        self.blocks[block].prev.expand()
    }

    /// Get the block following `block` in the layout order.
    pub fn next_block(&self, block: Block) -> Option<Block> {
        self.blocks[block].next.expand()
    }

    /// Mark a block as "cold".
    ///
    /// This will try to move it out of the ordinary path of execution
    /// when lowered to machine code.
    pub fn set_cold(&mut self, block: Block) {
        self.blocks[block].cold = true;
    }

    /// Is the given block cold?
    pub fn is_cold(&self, block: Block) -> bool {
        self.blocks[block].cold
    }
}

/// A single node in the linked-list of blocks.
// Whenever you add new fields here, don't forget to update the custom serializer for `Layout` too.
#[derive(Clone, Debug, Default, PartialEq, Hash)]
struct BlockNode {
    prev: PackedOption<Block>,
    next: PackedOption<Block>,
    first_inst: PackedOption<Inst>,
    last_inst: PackedOption<Inst>,
    seq: SequenceNumber,
    cold: bool,
}

/// Iterate over blocks in layout order. See [crate::ir::layout::Layout::blocks].
pub struct Blocks<'f> {
    layout: &'f Layout,
    next: Option<Block>,
}

impl<'f> Iterator for Blocks<'f> {
    type Item = Block;

    fn next(&mut self) -> Option<Block> {
        match self.next {
            Some(block) => {
                self.next = self.layout.next_block(block);
                Some(block)
            }
            None => None,
        }
    }
}

/// Use a layout reference in a for loop.
impl<'f> IntoIterator for &'f Layout {
    type Item = Block;
    type IntoIter = Blocks<'f>;

    fn into_iter(self) -> Blocks<'f> {
        self.blocks()
    }
}

/// Methods for arranging instructions.
///
/// An instruction starts out as *not inserted* in the layout. An instruction can be inserted into
/// a block at a given position.
impl Layout {
    /// Get the block containing `inst`, or `None` if `inst` is not inserted in the layout.
    pub fn inst_block(&self, inst: Inst) -> Option<Block> {
        self.insts[inst].block.into()
    }

    /// Get the block containing the program point `pp`. Panic if `pp` is not in the layout.
    pub fn pp_block<PP>(&self, pp: PP) -> Block
    where
        PP: Into<ExpandedProgramPoint>,
    {
        match pp.into() {
            ExpandedProgramPoint::Block(block) => block,
            ExpandedProgramPoint::Inst(inst) => {
                self.inst_block(inst).expect("Program point not in layout")
            }
        }
    }

    /// Append `inst` to the end of `block`.
    pub fn append_inst(&mut self, inst: Inst, block: Block) {
        debug_assert_eq!(self.inst_block(inst), None);
        debug_assert!(
            self.is_block_inserted(block),
            "Cannot append instructions to block not in layout"
        );
        {
            let block_node = &mut self.blocks[block];
            {
                let inst_node = &mut self.insts[inst];
                inst_node.block = block.into();
                inst_node.prev = block_node.last_inst;
                debug_assert!(inst_node.next.is_none());
            }
            if block_node.first_inst.is_none() {
                block_node.first_inst = inst.into();
            } else {
                self.insts[block_node.last_inst.unwrap()].next = inst.into();
            }
            block_node.last_inst = inst.into();
        }
        self.assign_inst_seq(inst);
    }

    /// Fetch a block's first instruction.
    pub fn first_inst(&self, block: Block) -> Option<Inst> {
        self.blocks[block].first_inst.into()
    }

    /// Fetch a block's last instruction.
    pub fn last_inst(&self, block: Block) -> Option<Inst> {
        self.blocks[block].last_inst.into()
    }

    /// Fetch the instruction following `inst`.
    pub fn next_inst(&self, inst: Inst) -> Option<Inst> {
        self.insts[inst].next.expand()
    }

    /// Fetch the instruction preceding `inst`.
    pub fn prev_inst(&self, inst: Inst) -> Option<Inst> {
        self.insts[inst].prev.expand()
    }

    /// Fetch the first instruction in a block's terminal branch group.
    pub fn canonical_branch_inst(&self, dfg: &DataFlowGraph, block: Block) -> Option<Inst> {
        // Basic blocks permit at most two terminal branch instructions.
        // If two, the former is conditional and the latter is unconditional.
        let last = self.last_inst(block)?;
        if let Some(prev) = self.prev_inst(last) {
            if dfg.insts[prev].opcode().is_branch() {
                return Some(prev);
            }
        }
        Some(last)
    }

    /// Insert `inst` before the instruction `before` in the same block.
    pub fn insert_inst(&mut self, inst: Inst, before: Inst) {
        debug_assert_eq!(self.inst_block(inst), None);
        let block = self
            .inst_block(before)
            .expect("Instruction before insertion point not in the layout");
        let after = self.insts[before].prev;
        {
            let inst_node = &mut self.insts[inst];
            inst_node.block = block.into();
            inst_node.next = before.into();
            inst_node.prev = after;
        }
        self.insts[before].prev = inst.into();
        match after.expand() {
            None => self.blocks[block].first_inst = inst.into(),
            Some(a) => self.insts[a].next = inst.into(),
        }
        self.assign_inst_seq(inst);
    }

    /// Remove `inst` from the layout.
    pub fn remove_inst(&mut self, inst: Inst) {
        let block = self.inst_block(inst).expect("Instruction already removed.");
        // Clear the `inst` node and extract links.
        let prev;
        let next;
        {
            let n = &mut self.insts[inst];
            prev = n.prev;
            next = n.next;
            n.block = None.into();
            n.prev = None.into();
            n.next = None.into();
        }
        // Fix up links to `inst`.
        match prev.expand() {
            None => self.blocks[block].first_inst = next,
            Some(p) => self.insts[p].next = next,
        }
        match next.expand() {
            None => self.blocks[block].last_inst = prev,
            Some(n) => self.insts[n].prev = prev,
        }
    }

    /// Iterate over the instructions in `block` in layout order.
    pub fn block_insts(&self, block: Block) -> Insts {
        Insts {
            layout: self,
            head: self.blocks[block].first_inst.into(),
            tail: self.blocks[block].last_inst.into(),
        }
    }

    /// Iterate over a limited set of instruction which are likely the branches of `block` in layout
    /// order. Any instruction not visited by this iterator is not a branch, but an instruction visited by this may not be a branch.
    pub fn block_likely_branches(&self, block: Block) -> Insts {
        // Note: Checking whether an instruction is a branch or not while walking backward might add
        // extra overhead. However, we know that the number of branches is limited to 2 at the end of
        // each block, and therefore we can just iterate over the last 2 instructions.
        let mut iter = self.block_insts(block);
        let head = iter.head;
        let tail = iter.tail;
        iter.next_back();
        let head = iter.next_back().or(head);
        Insts {
            layout: self,
            head,
            tail,
        }
    }

    /// Split the block containing `before` in two.
    ///
    /// Insert `new_block` after the old block and move `before` and the following instructions to
    /// `new_block`:
    ///
    /// ```text
    /// old_block:
    ///     i1
    ///     i2
    ///     i3 << before
    ///     i4
    /// ```
    /// becomes:
    ///
    /// ```text
    /// old_block:
    ///     i1
    ///     i2
    /// new_block:
    ///     i3 << before
    ///     i4
    /// ```
    pub fn split_block(&mut self, new_block: Block, before: Inst) {
        let old_block = self
            .inst_block(before)
            .expect("The `before` instruction must be in the layout");
        debug_assert!(!self.is_block_inserted(new_block));

        // Insert new_block after old_block.
        let next_block = self.blocks[old_block].next;
        let last_inst = self.blocks[old_block].last_inst;
        {
            let node = &mut self.blocks[new_block];
            node.prev = old_block.into();
            node.next = next_block;
            node.first_inst = before.into();
            node.last_inst = last_inst;
        }
        self.blocks[old_block].next = new_block.into();

        // Fix backwards link.
        if Some(old_block) == self.last_block {
            self.last_block = Some(new_block);
        } else {
            self.blocks[next_block.unwrap()].prev = new_block.into();
        }

        // Disconnect the instruction links.
        let prev_inst = self.insts[before].prev;
        self.insts[before].prev = None.into();
        self.blocks[old_block].last_inst = prev_inst;
        match prev_inst.expand() {
            None => self.blocks[old_block].first_inst = None.into(),
            Some(pi) => self.insts[pi].next = None.into(),
        }

        // Fix the instruction -> block pointers.
        let mut opt_i = Some(before);
        while let Some(i) = opt_i {
            debug_assert_eq!(self.insts[i].block.expand(), Some(old_block));
            self.insts[i].block = new_block.into();
            opt_i = self.insts[i].next.into();
        }

        self.assign_block_seq(new_block);
    }
}

#[derive(Clone, Debug, Default, PartialEq, Hash)]
struct InstNode {
    /// The Block containing this instruction, or `None` if the instruction is not yet inserted.
    block: PackedOption<Block>,
    prev: PackedOption<Inst>,
    next: PackedOption<Inst>,
    seq: SequenceNumber,
}

/// Iterate over instructions in a block in layout order. See `Layout::block_insts()`.
pub struct Insts<'f> {
    layout: &'f Layout,
    head: Option<Inst>,
    tail: Option<Inst>,
}

impl<'f> Iterator for Insts<'f> {
    type Item = Inst;

    fn next(&mut self) -> Option<Inst> {
        let rval = self.head;
        if let Some(inst) = rval {
            if self.head == self.tail {
                self.head = None;
                self.tail = None;
            } else {
                self.head = self.layout.insts[inst].next.into();
            }
        }
        rval
    }
}

impl<'f> DoubleEndedIterator for Insts<'f> {
    fn next_back(&mut self) -> Option<Inst> {
        let rval = self.tail;
        if let Some(inst) = rval {
            if self.head == self.tail {
                self.head = None;
                self.tail = None;
            } else {
                self.tail = self.layout.insts[inst].prev.into();
            }
        }
        rval
    }
}

/// A custom serialize and deserialize implementation for [`Layout`].
///
/// This doesn't use a derived implementation as [`Layout`] is a manual implementation of a linked
/// list. Storing it directly as a regular list saves a lot of space.
///
/// The following format is used. (notated in EBNF form)
///
/// ```plain
/// data = block_data * ;
/// block_data = "block_id" , "cold" , "inst_count" , ( "inst_id" * ) ;
/// ```
#[cfg(feature = "enable-serde")]
mod serde {
    use ::serde::de::{Deserializer, Error, SeqAccess, Visitor};
    use ::serde::ser::{SerializeSeq, Serializer};
    use ::serde::{Deserialize, Serialize};
    use core::convert::TryFrom;
    use core::fmt;
    use core::marker::PhantomData;

    use super::*;

    impl Serialize for Layout {
        fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
        where
            S: Serializer,
        {
            let size = self.blocks().count() * 3
                + self
                    .blocks()
                    .map(|block| self.block_insts(block).count())
                    .sum::<usize>();
            let mut seq = serializer.serialize_seq(Some(size))?;
            for block in self.blocks() {
                seq.serialize_element(&block)?;
                seq.serialize_element(&self.blocks[block].cold)?;
                seq.serialize_element(&u32::try_from(self.block_insts(block).count()).unwrap())?;
                for inst in self.block_insts(block) {
                    seq.serialize_element(&inst)?;
                }
            }
            seq.end()
        }
    }

    impl<'de> Deserialize<'de> for Layout {
        fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
        where
            D: Deserializer<'de>,
        {
            deserializer.deserialize_seq(LayoutVisitor {
                marker: PhantomData,
            })
        }
    }

    struct LayoutVisitor {
        marker: PhantomData<fn() -> Layout>,
    }

    impl<'de> Visitor<'de> for LayoutVisitor {
        type Value = Layout;

        fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
            write!(formatter, "a `cranelift_codegen::ir::Layout`")
        }

        fn visit_seq<M>(self, mut access: M) -> Result<Self::Value, M::Error>
        where
            M: SeqAccess<'de>,
        {
            let mut layout = Layout::new();

            while let Some(block) = access.next_element::<Block>()? {
                layout.append_block(block);

                let cold = access
                    .next_element::<bool>()?
                    .ok_or_else(|| Error::missing_field("cold"))?;
                layout.blocks[block].cold = cold;

                let count = access
                    .next_element::<u32>()?
                    .ok_or_else(|| Error::missing_field("count"))?;

                for _ in 0..count {
                    let inst = access
                        .next_element::<Inst>()?
                        .ok_or_else(|| Error::missing_field("inst"))?;
                    layout.append_inst(inst, block);
                }
            }

            Ok(layout)
        }
    }
}

#[cfg(test)]
mod tests {
    use super::Layout;
    use crate::cursor::{Cursor, CursorPosition};
    use crate::entity::EntityRef;
    use crate::ir::{Block, Inst, ProgramOrder, SourceLoc};
    use alloc::vec::Vec;
    use core::cmp::Ordering;

    struct LayoutCursor<'f> {
        /// Borrowed function layout. Public so it can be re-borrowed from this cursor.
        pub layout: &'f mut Layout,
        pos: CursorPosition,
    }

    impl<'f> Cursor for LayoutCursor<'f> {
        fn position(&self) -> CursorPosition {
            self.pos
        }

        fn set_position(&mut self, pos: CursorPosition) {
            self.pos = pos;
        }

        fn srcloc(&self) -> SourceLoc {
            unimplemented!()
        }

        fn set_srcloc(&mut self, _srcloc: SourceLoc) {
            unimplemented!()
        }

        fn layout(&self) -> &Layout {
            self.layout
        }

        fn layout_mut(&mut self) -> &mut Layout {
            self.layout
        }
    }

    impl<'f> LayoutCursor<'f> {
        /// Create a new `LayoutCursor` for `layout`.
        /// The cursor holds a mutable reference to `layout` for its entire lifetime.
        pub fn new(layout: &'f mut Layout) -> Self {
            Self {
                layout,
                pos: CursorPosition::Nowhere,
            }
        }
    }

    fn verify(layout: &mut Layout, blocks: &[(Block, &[Inst])]) {
        // Check that blocks are inserted and instructions belong the right places.
        // Check forward linkage with iterators.
        // Check that layout sequence numbers are strictly monotonic.
        {
            let mut seq = 0;
            let mut block_iter = layout.blocks();
            for &(block, insts) in blocks {
                assert!(layout.is_block_inserted(block));
                assert_eq!(block_iter.next(), Some(block));
                assert!(layout.blocks[block].seq > seq);
                seq = layout.blocks[block].seq;

                let mut inst_iter = layout.block_insts(block);
                for &inst in insts {
                    assert_eq!(layout.inst_block(inst), Some(block));
                    assert_eq!(inst_iter.next(), Some(inst));
                    assert!(layout.insts[inst].seq > seq);
                    seq = layout.insts[inst].seq;
                }
                assert_eq!(inst_iter.next(), None);
            }
            assert_eq!(block_iter.next(), None);
        }

        // Check backwards linkage with a cursor.
        let mut cur = LayoutCursor::new(layout);
        for &(block, insts) in blocks.into_iter().rev() {
            assert_eq!(cur.prev_block(), Some(block));
            for &inst in insts.into_iter().rev() {
                assert_eq!(cur.prev_inst(), Some(inst));
            }
            assert_eq!(cur.prev_inst(), None);
        }
        assert_eq!(cur.prev_block(), None);
    }

    #[test]
    fn append_block() {
        let mut layout = Layout::new();
        let e0 = Block::new(0);
        let e1 = Block::new(1);
        let e2 = Block::new(2);

        {
            let imm = &layout;
            assert!(!imm.is_block_inserted(e0));
            assert!(!imm.is_block_inserted(e1));
        }
        verify(&mut layout, &[]);

        layout.append_block(e1);
        assert!(!layout.is_block_inserted(e0));
        assert!(layout.is_block_inserted(e1));
        assert!(!layout.is_block_inserted(e2));
        let v: Vec<Block> = layout.blocks().collect();
        assert_eq!(v, [e1]);

        layout.append_block(e2);
        assert!(!layout.is_block_inserted(e0));
        assert!(layout.is_block_inserted(e1));
        assert!(layout.is_block_inserted(e2));
        let v: Vec<Block> = layout.blocks().collect();
        assert_eq!(v, [e1, e2]);

        layout.append_block(e0);
        assert!(layout.is_block_inserted(e0));
        assert!(layout.is_block_inserted(e1));
        assert!(layout.is_block_inserted(e2));
        let v: Vec<Block> = layout.blocks().collect();
        assert_eq!(v, [e1, e2, e0]);

        {
            let imm = &layout;
            let mut v = Vec::new();
            for e in imm {
                v.push(e);
            }
            assert_eq!(v, [e1, e2, e0]);
        }

        // Test cursor positioning.
        let mut cur = LayoutCursor::new(&mut layout);
        assert_eq!(cur.position(), CursorPosition::Nowhere);
        assert_eq!(cur.next_inst(), None);
        assert_eq!(cur.position(), CursorPosition::Nowhere);
        assert_eq!(cur.prev_inst(), None);
        assert_eq!(cur.position(), CursorPosition::Nowhere);

        assert_eq!(cur.next_block(), Some(e1));
        assert_eq!(cur.position(), CursorPosition::Before(e1));
        assert_eq!(cur.next_inst(), None);
        assert_eq!(cur.position(), CursorPosition::After(e1));
        assert_eq!(cur.next_inst(), None);
        assert_eq!(cur.position(), CursorPosition::After(e1));
        assert_eq!(cur.next_block(), Some(e2));
        assert_eq!(cur.prev_inst(), None);
        assert_eq!(cur.position(), CursorPosition::Before(e2));
        assert_eq!(cur.next_block(), Some(e0));
        assert_eq!(cur.next_block(), None);
        assert_eq!(cur.position(), CursorPosition::Nowhere);

        // Backwards through the blocks.
        assert_eq!(cur.prev_block(), Some(e0));
        assert_eq!(cur.position(), CursorPosition::After(e0));
        assert_eq!(cur.prev_block(), Some(e2));
        assert_eq!(cur.prev_block(), Some(e1));
        assert_eq!(cur.prev_block(), None);
        assert_eq!(cur.position(), CursorPosition::Nowhere);
    }

    #[test]
    fn insert_block() {
        let mut layout = Layout::new();
        let e0 = Block::new(0);
        let e1 = Block::new(1);
        let e2 = Block::new(2);

        {
            let imm = &layout;
            assert!(!imm.is_block_inserted(e0));
            assert!(!imm.is_block_inserted(e1));

            let v: Vec<Block> = layout.blocks().collect();
            assert_eq!(v, []);
        }

        layout.append_block(e1);
        assert!(!layout.is_block_inserted(e0));
        assert!(layout.is_block_inserted(e1));
        assert!(!layout.is_block_inserted(e2));
        verify(&mut layout, &[(e1, &[])]);

        layout.insert_block(e2, e1);
        assert!(!layout.is_block_inserted(e0));
        assert!(layout.is_block_inserted(e1));
        assert!(layout.is_block_inserted(e2));
        verify(&mut layout, &[(e2, &[]), (e1, &[])]);

        layout.insert_block(e0, e1);
        assert!(layout.is_block_inserted(e0));
        assert!(layout.is_block_inserted(e1));
        assert!(layout.is_block_inserted(e2));
        verify(&mut layout, &[(e2, &[]), (e0, &[]), (e1, &[])]);
    }

    #[test]
    fn insert_block_after() {
        let mut layout = Layout::new();
        let e0 = Block::new(0);
        let e1 = Block::new(1);
        let e2 = Block::new(2);

        layout.append_block(e1);
        layout.insert_block_after(e2, e1);
        verify(&mut layout, &[(e1, &[]), (e2, &[])]);

        layout.insert_block_after(e0, e1);
        verify(&mut layout, &[(e1, &[]), (e0, &[]), (e2, &[])]);
    }

    #[test]
    fn append_inst() {
        let mut layout = Layout::new();
        let e1 = Block::new(1);

        layout.append_block(e1);
        let v: Vec<Inst> = layout.block_insts(e1).collect();
        assert_eq!(v, []);

        let i0 = Inst::new(0);
        let i1 = Inst::new(1);
        let i2 = Inst::new(2);

        assert_eq!(layout.inst_block(i0), None);
        assert_eq!(layout.inst_block(i1), None);
        assert_eq!(layout.inst_block(i2), None);

        layout.append_inst(i1, e1);
        assert_eq!(layout.inst_block(i0), None);
        assert_eq!(layout.inst_block(i1), Some(e1));
        assert_eq!(layout.inst_block(i2), None);
        let v: Vec<Inst> = layout.block_insts(e1).collect();
        assert_eq!(v, [i1]);

        layout.append_inst(i2, e1);
        assert_eq!(layout.inst_block(i0), None);
        assert_eq!(layout.inst_block(i1), Some(e1));
        assert_eq!(layout.inst_block(i2), Some(e1));
        let v: Vec<Inst> = layout.block_insts(e1).collect();
        assert_eq!(v, [i1, i2]);

        // Test double-ended instruction iterator.
        let v: Vec<Inst> = layout.block_insts(e1).rev().collect();
        assert_eq!(v, [i2, i1]);

        layout.append_inst(i0, e1);
        verify(&mut layout, &[(e1, &[i1, i2, i0])]);

        // Test cursor positioning.
        let mut cur = LayoutCursor::new(&mut layout).at_top(e1);
        assert_eq!(cur.position(), CursorPosition::Before(e1));
        assert_eq!(cur.prev_inst(), None);
        assert_eq!(cur.position(), CursorPosition::Before(e1));
        assert_eq!(cur.next_inst(), Some(i1));
        assert_eq!(cur.position(), CursorPosition::At(i1));
        assert_eq!(cur.next_inst(), Some(i2));
        assert_eq!(cur.next_inst(), Some(i0));
        assert_eq!(cur.prev_inst(), Some(i2));
        assert_eq!(cur.position(), CursorPosition::At(i2));
        assert_eq!(cur.next_inst(), Some(i0));
        assert_eq!(cur.position(), CursorPosition::At(i0));
        assert_eq!(cur.next_inst(), None);
        assert_eq!(cur.position(), CursorPosition::After(e1));
        assert_eq!(cur.next_inst(), None);
        assert_eq!(cur.position(), CursorPosition::After(e1));
        assert_eq!(cur.prev_inst(), Some(i0));
        assert_eq!(cur.prev_inst(), Some(i2));
        assert_eq!(cur.prev_inst(), Some(i1));
        assert_eq!(cur.prev_inst(), None);
        assert_eq!(cur.position(), CursorPosition::Before(e1));

        // Test remove_inst.
        cur.goto_inst(i2);
        assert_eq!(cur.remove_inst(), i2);
        verify(cur.layout, &[(e1, &[i1, i0])]);
        assert_eq!(cur.layout.inst_block(i2), None);
        assert_eq!(cur.remove_inst(), i0);
        verify(cur.layout, &[(e1, &[i1])]);
        assert_eq!(cur.layout.inst_block(i0), None);
        assert_eq!(cur.position(), CursorPosition::After(e1));
        cur.layout.remove_inst(i1);
        verify(cur.layout, &[(e1, &[])]);
        assert_eq!(cur.layout.inst_block(i1), None);
    }

    #[test]
    fn insert_inst() {
        let mut layout = Layout::new();
        let e1 = Block::new(1);

        layout.append_block(e1);
        let v: Vec<Inst> = layout.block_insts(e1).collect();
        assert_eq!(v, []);

        let i0 = Inst::new(0);
        let i1 = Inst::new(1);
        let i2 = Inst::new(2);

        assert_eq!(layout.inst_block(i0), None);
        assert_eq!(layout.inst_block(i1), None);
        assert_eq!(layout.inst_block(i2), None);

        layout.append_inst(i1, e1);
        assert_eq!(layout.inst_block(i0), None);
        assert_eq!(layout.inst_block(i1), Some(e1));
        assert_eq!(layout.inst_block(i2), None);
        let v: Vec<Inst> = layout.block_insts(e1).collect();
        assert_eq!(v, [i1]);

        layout.insert_inst(i2, i1);
        assert_eq!(layout.inst_block(i0), None);
        assert_eq!(layout.inst_block(i1), Some(e1));
        assert_eq!(layout.inst_block(i2), Some(e1));
        let v: Vec<Inst> = layout.block_insts(e1).collect();
        assert_eq!(v, [i2, i1]);

        layout.insert_inst(i0, i1);
        verify(&mut layout, &[(e1, &[i2, i0, i1])]);
    }

    #[test]
    fn multiple_blocks() {
        let mut layout = Layout::new();

        let e0 = Block::new(0);
        let e1 = Block::new(1);

        assert_eq!(layout.entry_block(), None);
        layout.append_block(e0);
        assert_eq!(layout.entry_block(), Some(e0));
        layout.append_block(e1);
        assert_eq!(layout.entry_block(), Some(e0));

        let i0 = Inst::new(0);
        let i1 = Inst::new(1);
        let i2 = Inst::new(2);
        let i3 = Inst::new(3);

        layout.append_inst(i0, e0);
        layout.append_inst(i1, e0);
        layout.append_inst(i2, e1);
        layout.append_inst(i3, e1);

        let v0: Vec<Inst> = layout.block_insts(e0).collect();
        let v1: Vec<Inst> = layout.block_insts(e1).collect();
        assert_eq!(v0, [i0, i1]);
        assert_eq!(v1, [i2, i3]);
    }

    #[test]
    fn split_block() {
        let mut layout = Layout::new();

        let e0 = Block::new(0);
        let e1 = Block::new(1);
        let e2 = Block::new(2);

        let i0 = Inst::new(0);
        let i1 = Inst::new(1);
        let i2 = Inst::new(2);
        let i3 = Inst::new(3);

        layout.append_block(e0);
        layout.append_inst(i0, e0);
        assert_eq!(layout.inst_block(i0), Some(e0));
        layout.split_block(e1, i0);
        assert_eq!(layout.inst_block(i0), Some(e1));

        {
            let mut cur = LayoutCursor::new(&mut layout);
            assert_eq!(cur.next_block(), Some(e0));
            assert_eq!(cur.next_inst(), None);
            assert_eq!(cur.next_block(), Some(e1));
            assert_eq!(cur.next_inst(), Some(i0));
            assert_eq!(cur.next_inst(), None);
            assert_eq!(cur.next_block(), None);

            // Check backwards links.
            assert_eq!(cur.prev_block(), Some(e1));
            assert_eq!(cur.prev_inst(), Some(i0));
            assert_eq!(cur.prev_inst(), None);
            assert_eq!(cur.prev_block(), Some(e0));
            assert_eq!(cur.prev_inst(), None);
            assert_eq!(cur.prev_block(), None);
        }

        layout.append_inst(i1, e0);
        layout.append_inst(i2, e0);
        layout.append_inst(i3, e0);
        layout.split_block(e2, i2);

        assert_eq!(layout.inst_block(i0), Some(e1));
        assert_eq!(layout.inst_block(i1), Some(e0));
        assert_eq!(layout.inst_block(i2), Some(e2));
        assert_eq!(layout.inst_block(i3), Some(e2));

        {
            let mut cur = LayoutCursor::new(&mut layout);
            assert_eq!(cur.next_block(), Some(e0));
            assert_eq!(cur.next_inst(), Some(i1));
            assert_eq!(cur.next_inst(), None);
            assert_eq!(cur.next_block(), Some(e2));
            assert_eq!(cur.next_inst(), Some(i2));
            assert_eq!(cur.next_inst(), Some(i3));
            assert_eq!(cur.next_inst(), None);
            assert_eq!(cur.next_block(), Some(e1));
            assert_eq!(cur.next_inst(), Some(i0));
            assert_eq!(cur.next_inst(), None);
            assert_eq!(cur.next_block(), None);

            assert_eq!(cur.prev_block(), Some(e1));
            assert_eq!(cur.prev_inst(), Some(i0));
            assert_eq!(cur.prev_inst(), None);
            assert_eq!(cur.prev_block(), Some(e2));
            assert_eq!(cur.prev_inst(), Some(i3));
            assert_eq!(cur.prev_inst(), Some(i2));
            assert_eq!(cur.prev_inst(), None);
            assert_eq!(cur.prev_block(), Some(e0));
            assert_eq!(cur.prev_inst(), Some(i1));
            assert_eq!(cur.prev_inst(), None);
            assert_eq!(cur.prev_block(), None);
        }

        // Check `ProgramOrder`.
        assert_eq!(layout.cmp(e2, e2), Ordering::Equal);
        assert_eq!(layout.cmp(e2, i2), Ordering::Less);
        assert_eq!(layout.cmp(i3, i2), Ordering::Greater);

        assert_eq!(layout.is_block_gap(i1, e2), true);
        assert_eq!(layout.is_block_gap(i3, e1), true);
        assert_eq!(layout.is_block_gap(i1, e1), false);
        assert_eq!(layout.is_block_gap(i2, e1), false);
    }
}