1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
//! A control flow graph represented as mappings of basic blocks to their predecessors
//! and successors.
//!
//! Successors are represented as basic blocks while predecessors are represented by basic
//! blocks. Basic blocks are denoted by tuples of block and branch/jump instructions. Each
//! predecessor tuple corresponds to the end of a basic block.
//!
//! ```c
//! Block0:
//! ... ; beginning of basic block
//!
//! ...
//!
//! brif vx, Block1, Block2 ; end of basic block
//!
//! Block1:
//! jump block3
//! ```
//!
//! Here `Block1` and `Block2` would each have a single predecessor denoted as `(Block0, brif)`,
//! while `Block3` would have a single predecessor denoted as `(Block1, jump block3)`.
use crate::bforest;
use crate::entity::SecondaryMap;
use crate::ir::instructions::BranchInfo;
use crate::ir::{Block, Function, Inst};
use crate::timing;
use core::mem;
/// A basic block denoted by its enclosing Block and last instruction.
#[derive(Debug, PartialEq, Eq)]
pub struct BlockPredecessor {
/// Enclosing Block key.
pub block: Block,
/// Last instruction in the basic block.
pub inst: Inst,
}
impl BlockPredecessor {
/// Convenient method to construct new BlockPredecessor.
pub fn new(block: Block, inst: Inst) -> Self {
Self { block, inst }
}
}
/// A container for the successors and predecessors of some Block.
#[derive(Clone, Default)]
struct CFGNode {
/// Instructions that can branch or jump to this block.
///
/// This maps branch instruction -> predecessor block which is redundant since the block containing
/// the branch instruction is available from the `layout.inst_block()` method. We store the
/// redundant information because:
///
/// 1. Many `pred_iter()` consumers want the block anyway, so it is handily available.
/// 2. The `invalidate_block_successors()` may be called *after* branches have been removed from
/// their block, but we still need to remove them form the old block predecessor map.
///
/// The redundant block stored here is always consistent with the CFG successor lists, even after
/// the IR has been edited.
pub predecessors: bforest::Map<Inst, Block>,
/// Set of blocks that are the targets of branches and jumps in this block.
/// The set is ordered by block number, indicated by the `()` comparator type.
pub successors: bforest::Set<Block>,
}
/// The Control Flow Graph maintains a mapping of blocks to their predecessors
/// and successors where predecessors are basic blocks and successors are
/// basic blocks.
pub struct ControlFlowGraph {
data: SecondaryMap<Block, CFGNode>,
pred_forest: bforest::MapForest<Inst, Block>,
succ_forest: bforest::SetForest<Block>,
valid: bool,
}
impl ControlFlowGraph {
/// Allocate a new blank control flow graph.
pub fn new() -> Self {
Self {
data: SecondaryMap::new(),
valid: false,
pred_forest: bforest::MapForest::new(),
succ_forest: bforest::SetForest::new(),
}
}
/// Clear all data structures in this control flow graph.
pub fn clear(&mut self) {
self.data.clear();
self.pred_forest.clear();
self.succ_forest.clear();
self.valid = false;
}
/// Allocate and compute the control flow graph for `func`.
pub fn with_function(func: &Function) -> Self {
let mut cfg = Self::new();
cfg.compute(func);
cfg
}
/// Compute the control flow graph of `func`.
///
/// This will clear and overwrite any information already stored in this data structure.
pub fn compute(&mut self, func: &Function) {
let _tt = timing::flowgraph();
self.clear();
self.data.resize(func.dfg.num_blocks());
for block in &func.layout {
self.compute_block(func, block);
}
self.valid = true;
}
fn compute_block(&mut self, func: &Function, block: Block) {
if let Some(inst) = func.layout.last_inst(block) {
match func.dfg.analyze_branch(inst) {
BranchInfo::SingleDest(dest) => {
self.add_edge(block, inst, dest.block(&func.dfg.value_lists));
}
BranchInfo::Conditional(block_then, block_else) => {
self.add_edge(block, inst, block_then.block(&func.dfg.value_lists));
self.add_edge(block, inst, block_else.block(&func.dfg.value_lists));
}
BranchInfo::Table(jt, dest) => {
self.add_edge(block, inst, dest);
for dest in func.jump_tables[jt].iter() {
self.add_edge(block, inst, *dest);
}
}
BranchInfo::NotABranch => {}
}
}
}
fn invalidate_block_successors(&mut self, block: Block) {
// Temporarily take ownership because we need mutable access to self.data inside the loop.
// Unfortunately borrowck cannot see that our mut accesses to predecessors don't alias
// our iteration over successors.
let mut successors = mem::replace(&mut self.data[block].successors, Default::default());
for succ in successors.iter(&self.succ_forest) {
self.data[succ]
.predecessors
.retain(&mut self.pred_forest, |_, &mut e| e != block);
}
successors.clear(&mut self.succ_forest);
}
/// Recompute the control flow graph of `block`.
///
/// This is for use after modifying instructions within a specific block. It recomputes all edges
/// from `block` while leaving edges to `block` intact. Its functionality a subset of that of the
/// more expensive `compute`, and should be used when we know we don't need to recompute the CFG
/// from scratch, but rather that our changes have been restricted to specific blocks.
pub fn recompute_block(&mut self, func: &Function, block: Block) {
debug_assert!(self.is_valid());
self.invalidate_block_successors(block);
self.compute_block(func, block);
}
fn add_edge(&mut self, from: Block, from_inst: Inst, to: Block) {
self.data[from]
.successors
.insert(to, &mut self.succ_forest, &());
self.data[to]
.predecessors
.insert(from_inst, from, &mut self.pred_forest, &());
}
/// Get an iterator over the CFG predecessors to `block`.
pub fn pred_iter(&self, block: Block) -> PredIter {
PredIter(self.data[block].predecessors.iter(&self.pred_forest))
}
/// Get an iterator over the CFG successors to `block`.
pub fn succ_iter(&self, block: Block) -> SuccIter {
debug_assert!(self.is_valid());
self.data[block].successors.iter(&self.succ_forest)
}
/// Check if the CFG is in a valid state.
///
/// Note that this doesn't perform any kind of validity checks. It simply checks if the
/// `compute()` method has been called since the last `clear()`. It does not check that the
/// CFG is consistent with the function.
pub fn is_valid(&self) -> bool {
self.valid
}
}
/// An iterator over block predecessors. The iterator type is `BlockPredecessor`.
///
/// Each predecessor is an instruction that branches to the block.
pub struct PredIter<'a>(bforest::MapIter<'a, Inst, Block>);
impl<'a> Iterator for PredIter<'a> {
type Item = BlockPredecessor;
fn next(&mut self) -> Option<BlockPredecessor> {
self.0.next().map(|(i, e)| BlockPredecessor::new(e, i))
}
}
/// An iterator over block successors. The iterator type is `Block`.
pub type SuccIter<'a> = bforest::SetIter<'a, Block>;
#[cfg(test)]
mod tests {
use super::*;
use crate::cursor::{Cursor, FuncCursor};
use crate::ir::{types, Function, InstBuilder};
use alloc::vec::Vec;
#[test]
fn empty() {
let func = Function::new();
ControlFlowGraph::with_function(&func);
}
#[test]
fn no_predecessors() {
let mut func = Function::new();
let block0 = func.dfg.make_block();
let block1 = func.dfg.make_block();
let block2 = func.dfg.make_block();
func.layout.append_block(block0);
func.layout.append_block(block1);
func.layout.append_block(block2);
let cfg = ControlFlowGraph::with_function(&func);
let mut fun_blocks = func.layout.blocks();
for block in func.layout.blocks() {
assert_eq!(block, fun_blocks.next().unwrap());
assert_eq!(cfg.pred_iter(block).count(), 0);
assert_eq!(cfg.succ_iter(block).count(), 0);
}
}
#[test]
fn branches_and_jumps() {
let mut func = Function::new();
let block0 = func.dfg.make_block();
let cond = func.dfg.append_block_param(block0, types::I32);
let block1 = func.dfg.make_block();
let block2 = func.dfg.make_block();
let br_block0_block2_block1;
let br_block1_block1_block2;
{
let mut cur = FuncCursor::new(&mut func);
cur.insert_block(block0);
br_block0_block2_block1 = cur.ins().brif(cond, block2, &[], block1, &[]);
cur.insert_block(block1);
br_block1_block1_block2 = cur.ins().brif(cond, block1, &[], block2, &[]);
cur.insert_block(block2);
}
let mut cfg = ControlFlowGraph::with_function(&func);
{
let block0_predecessors = cfg.pred_iter(block0).collect::<Vec<_>>();
let block1_predecessors = cfg.pred_iter(block1).collect::<Vec<_>>();
let block2_predecessors = cfg.pred_iter(block2).collect::<Vec<_>>();
let block0_successors = cfg.succ_iter(block0).collect::<Vec<_>>();
let block1_successors = cfg.succ_iter(block1).collect::<Vec<_>>();
let block2_successors = cfg.succ_iter(block2).collect::<Vec<_>>();
assert_eq!(block0_predecessors.len(), 0);
assert_eq!(block1_predecessors.len(), 2);
assert_eq!(block2_predecessors.len(), 2);
assert_eq!(
block1_predecessors
.contains(&BlockPredecessor::new(block0, br_block0_block2_block1)),
true
);
assert_eq!(
block1_predecessors
.contains(&BlockPredecessor::new(block1, br_block1_block1_block2)),
true
);
assert_eq!(
block2_predecessors
.contains(&BlockPredecessor::new(block0, br_block0_block2_block1)),
true
);
assert_eq!(
block2_predecessors
.contains(&BlockPredecessor::new(block1, br_block1_block1_block2)),
true
);
assert_eq!(block0_successors, [block1, block2]);
assert_eq!(block1_successors, [block1, block2]);
assert_eq!(block2_successors, []);
}
// Add a new block to hold a return instruction
let ret_block = func.dfg.make_block();
{
let mut cur = FuncCursor::new(&mut func);
cur.insert_block(ret_block);
cur.ins().return_(&[]);
}
// Change some instructions and recompute block0 and ret_block
func.dfg
.replace(br_block0_block2_block1)
.brif(cond, block1, &[], ret_block, &[]);
cfg.recompute_block(&mut func, block0);
cfg.recompute_block(&mut func, ret_block);
let br_block0_block1_ret_block = br_block0_block2_block1;
{
let block0_predecessors = cfg.pred_iter(block0).collect::<Vec<_>>();
let block1_predecessors = cfg.pred_iter(block1).collect::<Vec<_>>();
let block2_predecessors = cfg.pred_iter(block2).collect::<Vec<_>>();
let block0_successors = cfg.succ_iter(block0);
let block1_successors = cfg.succ_iter(block1);
let block2_successors = cfg.succ_iter(block2);
assert_eq!(block0_predecessors.len(), 0);
assert_eq!(block1_predecessors.len(), 2);
assert_eq!(block2_predecessors.len(), 1);
assert_eq!(
block1_predecessors
.contains(&BlockPredecessor::new(block0, br_block0_block1_ret_block)),
true
);
assert_eq!(
block1_predecessors
.contains(&BlockPredecessor::new(block1, br_block1_block1_block2)),
true
);
assert_eq!(
block2_predecessors
.contains(&BlockPredecessor::new(block0, br_block0_block1_ret_block)),
false
);
assert_eq!(
block2_predecessors
.contains(&BlockPredecessor::new(block1, br_block1_block1_block2)),
true
);
assert_eq!(block0_successors.collect::<Vec<_>>(), [block1, ret_block]);
assert_eq!(block1_successors.collect::<Vec<_>>(), [block1, block2]);
assert_eq!(block2_successors.collect::<Vec<_>>(), []);
}
}
}