1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
//! Common types for the Cranelift code generator.
use core::default::Default;
use core::fmt::{self, Debug, Display, Formatter};
use cranelift_codegen_shared::constants;
#[cfg(feature = "enable-serde")]
use serde::{Deserialize, Serialize};
use target_lexicon::{PointerWidth, Triple};
/// The type of an SSA value.
///
/// The `INVALID` type isn't a real type, and is used as a placeholder in the IR where a type
/// field is present put no type is needed, such as the controlling type variable for a
/// non-polymorphic instruction.
///
/// Basic integer types: `I8`, `I16`, `I32`, `I64`, and `I128`. These types are sign-agnostic.
///
/// Basic floating point types: `F32` and `F64`. IEEE single and double precision.
///
/// SIMD vector types have power-of-two lanes, up to 256. Lanes can be any int/float type.
///
/// Note that this is encoded in a `u16` currently for extensibility,
/// but allows only 14 bits to be used due to some bitpacking tricks
/// in the CLIF data structures.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Type(u16);
/// Not a valid type. Can't be loaded or stored. Can't be part of a SIMD vector.
pub const INVALID: Type = Type(0);
// Include code generated by `cranelift-codegen/meta/gen_types.rs`. This file contains constant
// definitions for all the scalar types as well as common vector types for 64, 128, 256, and
// 512-bit SIMD vectors.
include!(concat!(env!("OUT_DIR"), "/types.rs"));
impl Type {
/// Get the lane type of this SIMD vector type.
///
/// A lane type is the same as a SIMD vector type with one lane, so it returns itself.
pub fn lane_type(self) -> Self {
if self.0 < constants::VECTOR_BASE {
self
} else {
Self(constants::LANE_BASE | (self.0 & 0x0f))
}
}
/// The type transformation that returns the lane type of a type variable; it is just a
/// renaming of lane_type() to be used in context where we think in terms of type variable
/// transformations.
pub fn lane_of(self) -> Self {
self.lane_type()
}
/// Get log_2 of the number of bits in a lane.
pub fn log2_lane_bits(self) -> u32 {
match self.lane_type() {
I8 => 3,
I16 => 4,
I32 | F32 | R32 => 5,
I64 | F64 | R64 => 6,
I128 => 7,
_ => 0,
}
}
/// Get the number of bits in a lane.
pub fn lane_bits(self) -> u32 {
match self.lane_type() {
I8 => 8,
I16 => 16,
I32 | F32 | R32 => 32,
I64 | F64 | R64 => 64,
I128 => 128,
_ => 0,
}
}
/// Get the (minimum, maximum) values represented by each lane in the type.
/// Note that these are returned as unsigned 'bit patterns'.
pub fn bounds(self, signed: bool) -> (u128, u128) {
if signed {
match self.lane_type() {
I8 => (i8::MIN as u128, i8::MAX as u128),
I16 => (i16::MIN as u128, i16::MAX as u128),
I32 => (i32::MIN as u128, i32::MAX as u128),
I64 => (i64::MIN as u128, i64::MAX as u128),
I128 => (i128::MIN as u128, i128::MAX as u128),
_ => unimplemented!(),
}
} else {
match self.lane_type() {
I8 => (u8::MIN as u128, u8::MAX as u128),
I16 => (u16::MIN as u128, u16::MAX as u128),
I32 => (u32::MIN as u128, u32::MAX as u128),
I64 => (u64::MIN as u128, u64::MAX as u128),
I128 => (u128::MIN, u128::MAX),
_ => unimplemented!(),
}
}
}
/// Get an integer type with the requested number of bits.
///
/// For the same thing but in *bytes*, use [`Self::int_with_byte_size`].
pub fn int(bits: u16) -> Option<Self> {
match bits {
8 => Some(I8),
16 => Some(I16),
32 => Some(I32),
64 => Some(I64),
128 => Some(I128),
_ => None,
}
}
/// Get an integer type with the requested number of bytes.
///
/// For the same thing but in *bits*, use [`Self::int`].
pub fn int_with_byte_size(bytes: u16) -> Option<Self> {
Self::int(bytes.checked_mul(8)?)
}
/// Get a type with the same number of lanes as `self`, but using `lane` as the lane type.
fn replace_lanes(self, lane: Self) -> Self {
debug_assert!(lane.is_lane() && !self.is_special());
Self((lane.0 & 0x0f) | (self.0 & 0xf0))
}
/// Get a type with the same number of lanes as this type, but with the lanes replaced by
/// booleans of the same size.
///
/// Lane types are treated as vectors with one lane, so they are converted to the multi-bit
/// boolean types.
pub fn as_bool_pedantic(self) -> Self {
// Replace the low 4 bits with the boolean version, preserve the high 4 bits.
self.replace_lanes(match self.lane_type() {
I8 => I8,
I16 => I16,
I32 | F32 => I32,
I64 | F64 => I64,
R32 | R64 => panic!("Reference types should not convert to bool"),
I128 => I128,
_ => I8,
})
}
/// Get a type with the same number of lanes as this type, but with the lanes replaced by
/// booleans of the same size.
///
/// Scalar types are all converted to `b1` which is usually what you want.
pub fn as_bool(self) -> Self {
if !self.is_vector() {
I8
} else {
self.as_bool_pedantic()
}
}
/// Get a type with the same number of lanes as this type, but with the lanes replaced by
/// integers of the same size.
///
/// Scalar types follow this same rule, but `b1` is converted into `i8`
pub fn as_int(self) -> Self {
self.replace_lanes(match self.lane_type() {
I8 => I8,
I16 => I16,
I32 | F32 => I32,
I64 | F64 => I64,
I128 => I128,
_ => unimplemented!(),
})
}
/// Get a type with the same number of lanes as this type, but with lanes that are half the
/// number of bits.
pub fn half_width(self) -> Option<Self> {
Some(self.replace_lanes(match self.lane_type() {
I16 => I8,
I32 => I16,
I64 => I32,
I128 => I64,
F64 => F32,
_ => return None,
}))
}
/// Get a type with the same number of lanes as this type, but with lanes that are twice the
/// number of bits.
pub fn double_width(self) -> Option<Self> {
Some(self.replace_lanes(match self.lane_type() {
I8 => I16,
I16 => I32,
I32 => I64,
I64 => I128,
F32 => F64,
_ => return None,
}))
}
/// Is this the INVALID type?
pub fn is_invalid(self) -> bool {
self == INVALID
}
/// Is this a special type?
pub fn is_special(self) -> bool {
self.0 < constants::LANE_BASE
}
/// Is this a lane type?
///
/// This is a scalar type that can also appear as the lane type of a SIMD vector.
pub fn is_lane(self) -> bool {
constants::LANE_BASE <= self.0 && self.0 < constants::VECTOR_BASE
}
/// Is this a SIMD vector type?
///
/// A vector type has 2 or more lanes.
pub fn is_vector(self) -> bool {
self.0 >= constants::VECTOR_BASE && !self.is_dynamic_vector()
}
/// Is this a SIMD vector type with a runtime number of lanes?
pub fn is_dynamic_vector(self) -> bool {
self.0 >= constants::DYNAMIC_VECTOR_BASE
}
/// Is this a scalar integer type?
pub fn is_int(self) -> bool {
match self {
I8 | I16 | I32 | I64 | I128 => true,
_ => false,
}
}
/// Is this a scalar floating point type?
pub fn is_float(self) -> bool {
match self {
F32 | F64 => true,
_ => false,
}
}
/// Is this a ref type?
pub fn is_ref(self) -> bool {
match self {
R32 | R64 => true,
_ => false,
}
}
/// Get log_2 of the number of lanes in this SIMD vector type.
///
/// All SIMD types have a lane count that is a power of two and no larger than 256, so this
/// will be a number in the range 0-8.
///
/// A scalar type is the same as a SIMD vector type with one lane, so it returns 0.
pub fn log2_lane_count(self) -> u32 {
if self.is_dynamic_vector() {
0
} else {
(self.0.saturating_sub(constants::LANE_BASE) >> 4) as u32
}
}
/// Get log_2 of the number of lanes in this vector/dynamic type.
pub fn log2_min_lane_count(self) -> u32 {
if self.is_dynamic_vector() {
(self
.0
.saturating_sub(constants::VECTOR_BASE + constants::LANE_BASE)
>> 4) as u32
} else {
self.log2_lane_count()
}
}
/// Get the number of lanes in this SIMD vector type.
///
/// A scalar type is the same as a SIMD vector type with one lane, so it returns 1.
pub fn lane_count(self) -> u32 {
if self.is_dynamic_vector() {
0
} else {
1 << self.log2_lane_count()
}
}
/// Get the total number of bits used to represent this type.
pub fn bits(self) -> u32 {
if self.is_dynamic_vector() {
0
} else {
self.lane_bits() * self.lane_count()
}
}
/// Get the minimum of lanes in this SIMD vector type, this supports both fixed and
/// dynamic types.
pub fn min_lane_count(self) -> u32 {
if self.is_dynamic_vector() {
1 << self.log2_min_lane_count()
} else {
1 << self.log2_lane_count()
}
}
/// Get the minimum number of bits used to represent this type.
pub fn min_bits(self) -> u32 {
if self.is_dynamic_vector() {
self.lane_bits() * self.min_lane_count()
} else {
self.bits()
}
}
/// Get the number of bytes used to store this type in memory.
pub fn bytes(self) -> u32 {
(self.bits() + 7) / 8
}
/// Get a SIMD vector type with `n` times more lanes than this one.
///
/// If this is a scalar type, this produces a SIMD type with this as a lane type and `n` lanes.
///
/// If this is already a SIMD vector type, this produces a SIMD vector type with `n *
/// self.lane_count()` lanes.
pub fn by(self, n: u32) -> Option<Self> {
if self.is_dynamic_vector() {
return None;
}
if self.lane_bits() == 0 || !n.is_power_of_two() {
return None;
}
let log2_lanes: u32 = n.trailing_zeros();
let new_type = u32::from(self.0) + (log2_lanes << 4);
if new_type < constants::DYNAMIC_VECTOR_BASE as u32
&& (new_type as u16) < constants::DYNAMIC_VECTOR_BASE
{
Some(Self(new_type as u16))
} else {
None
}
}
/// Convert a fixed vector type to a dynamic one.
pub fn vector_to_dynamic(self) -> Option<Self> {
assert!(self.is_vector());
if self.bits() > 256 {
return None;
}
let new_ty = self.0 + constants::VECTOR_BASE;
let ty = Some(Self(new_ty));
assert!(ty.unwrap().is_dynamic_vector());
return ty;
}
/// Convert a dynamic vector type to a fixed one.
pub fn dynamic_to_vector(self) -> Option<Self> {
assert!(self.is_dynamic_vector());
Some(Self(self.0 - constants::VECTOR_BASE))
}
/// Split the lane width in half and double the number of lanes to maintain the same bit-width.
///
/// If this is a scalar type of `n` bits, it produces a SIMD vector type of `(n/2)x2`.
pub fn split_lanes(self) -> Option<Self> {
match self.half_width() {
Some(half_width) => half_width.by(2),
None => None,
}
}
/// Merge lanes to half the number of lanes and double the lane width to maintain the same
/// bit-width.
///
/// If this is a scalar type, it will return `None`.
pub fn merge_lanes(self) -> Option<Self> {
match self.double_width() {
Some(double_width) => {
if double_width.is_vector() && !double_width.is_dynamic_vector() {
Some(Self(double_width.0 - 0x10))
} else {
None
}
}
None => None,
}
}
/// Index of this type, for use with hash tables etc.
pub fn index(self) -> usize {
usize::from(self.0)
}
/// True iff:
///
/// 1. `self.lane_count() == other.lane_count()` and
/// 2. `self.lane_bits() >= other.lane_bits()`
pub fn wider_or_equal(self, other: Self) -> bool {
self.lane_count() == other.lane_count() && self.lane_bits() >= other.lane_bits()
}
/// Return the pointer type for the given target triple.
pub fn triple_pointer_type(triple: &Triple) -> Self {
match triple.pointer_width() {
Ok(PointerWidth::U16) => I16,
Ok(PointerWidth::U32) => I32,
Ok(PointerWidth::U64) => I64,
Err(()) => panic!("unable to determine architecture pointer width"),
}
}
/// Gets a bit-level representation of the type. Used only
/// internally for efficiently storing types.
pub(crate) fn repr(self) -> u16 {
self.0
}
/// Converts from a bit-level representation of the type back to a
/// `Type`.
pub(crate) fn from_repr(bits: u16) -> Type {
Type(bits)
}
}
impl Display for Type {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
if self.is_int() {
write!(f, "i{}", self.lane_bits())
} else if self.is_float() {
write!(f, "f{}", self.lane_bits())
} else if self.is_vector() {
write!(f, "{}x{}", self.lane_type(), self.lane_count())
} else if self.is_dynamic_vector() {
write!(f, "{:?}x{}xN", self.lane_type(), self.min_lane_count())
} else if self.is_ref() {
write!(f, "r{}", self.lane_bits())
} else {
match *self {
INVALID => panic!("INVALID encountered"),
_ => panic!("Unknown Type(0x{:x})", self.0),
}
}
}
}
impl Debug for Type {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
if self.is_int() {
write!(f, "types::I{}", self.lane_bits())
} else if self.is_float() {
write!(f, "types::F{}", self.lane_bits())
} else if self.is_vector() {
write!(f, "{:?}X{}", self.lane_type(), self.lane_count())
} else if self.is_dynamic_vector() {
write!(f, "{:?}X{}XN", self.lane_type(), self.min_lane_count())
} else if self.is_ref() {
write!(f, "types::R{}", self.lane_bits())
} else {
match *self {
INVALID => write!(f, "types::INVALID"),
_ => write!(f, "Type(0x{:x})", self.0),
}
}
}
}
impl Default for Type {
fn default() -> Self {
INVALID
}
}
#[cfg(test)]
mod tests {
use super::*;
use alloc::string::ToString;
#[test]
fn basic_scalars() {
assert_eq!(INVALID, INVALID.lane_type());
assert_eq!(0, INVALID.bits());
assert_eq!(I8, I8.lane_type());
assert_eq!(I16, I16.lane_type());
assert_eq!(I32, I32.lane_type());
assert_eq!(I64, I64.lane_type());
assert_eq!(I128, I128.lane_type());
assert_eq!(F32, F32.lane_type());
assert_eq!(F64, F64.lane_type());
assert_eq!(I32, I32X4.lane_type());
assert_eq!(F64, F64X2.lane_type());
assert_eq!(R32, R32.lane_type());
assert_eq!(R64, R64.lane_type());
assert_eq!(INVALID.lane_bits(), 0);
assert_eq!(I8.lane_bits(), 8);
assert_eq!(I16.lane_bits(), 16);
assert_eq!(I32.lane_bits(), 32);
assert_eq!(I64.lane_bits(), 64);
assert_eq!(I128.lane_bits(), 128);
assert_eq!(F32.lane_bits(), 32);
assert_eq!(F64.lane_bits(), 64);
assert_eq!(R32.lane_bits(), 32);
assert_eq!(R64.lane_bits(), 64);
}
#[test]
fn typevar_functions() {
assert_eq!(INVALID.half_width(), None);
assert_eq!(INVALID.half_width(), None);
assert_eq!(I8.half_width(), None);
assert_eq!(I16.half_width(), Some(I8));
assert_eq!(I32.half_width(), Some(I16));
assert_eq!(I32X4.half_width(), Some(I16X4));
assert_eq!(I64.half_width(), Some(I32));
assert_eq!(I128.half_width(), Some(I64));
assert_eq!(F32.half_width(), None);
assert_eq!(F64.half_width(), Some(F32));
assert_eq!(INVALID.double_width(), None);
assert_eq!(I8.double_width(), Some(I16));
assert_eq!(I16.double_width(), Some(I32));
assert_eq!(I32.double_width(), Some(I64));
assert_eq!(I32X4.double_width(), Some(I64X4));
assert_eq!(I64.double_width(), Some(I128));
assert_eq!(I128.double_width(), None);
assert_eq!(F32.double_width(), Some(F64));
assert_eq!(F64.double_width(), None);
}
#[test]
fn vectors() {
let big = F64.by(256).unwrap();
assert_eq!(big.lane_bits(), 64);
assert_eq!(big.lane_count(), 256);
assert_eq!(big.bits(), 64 * 256);
// Check that the generated constants match the computed vector types.
assert_eq!(I32.by(4), Some(I32X4));
assert_eq!(F64.by(8), Some(F64X8));
}
#[test]
fn dynamic_vectors() {
// Identification.
assert_eq!(I8X16XN.is_dynamic_vector(), true);
assert_eq!(F32X8XN.is_dynamic_vector(), true);
assert_eq!(F64X4XN.is_dynamic_vector(), true);
assert_eq!(I128X2XN.is_dynamic_vector(), true);
// Lane counts.
assert_eq!(I16X8XN.lane_count(), 0);
assert_eq!(I16X8XN.min_lane_count(), 8);
// Change lane counts
assert_eq!(I8X8XN.by(2), None);
// Conversions to and from vectors.
assert_eq!(I8.by(16).unwrap().vector_to_dynamic(), Some(I8X16XN));
assert_eq!(I16.by(8).unwrap().vector_to_dynamic(), Some(I16X8XN));
assert_eq!(I32.by(4).unwrap().vector_to_dynamic(), Some(I32X4XN));
assert_eq!(F32.by(4).unwrap().vector_to_dynamic(), Some(F32X4XN));
assert_eq!(F64.by(2).unwrap().vector_to_dynamic(), Some(F64X2XN));
assert_eq!(I128.by(2).unwrap().vector_to_dynamic(), Some(I128X2XN));
assert_eq!(I128X2XN.dynamic_to_vector(), Some(I128X2));
assert_eq!(F32X4XN.dynamic_to_vector(), Some(F32X4));
assert_eq!(F64X4XN.dynamic_to_vector(), Some(F64X4));
assert_eq!(I32X2XN.dynamic_to_vector(), Some(I32X2));
assert_eq!(I32X8XN.dynamic_to_vector(), Some(I32X8));
assert_eq!(I16X16XN.dynamic_to_vector(), Some(I16X16));
assert_eq!(I8X32XN.dynamic_to_vector(), Some(I8X32));
assert_eq!(I8X64.vector_to_dynamic(), None);
assert_eq!(F32X16.vector_to_dynamic(), None);
assert_eq!(I64X8.vector_to_dynamic(), None);
assert_eq!(I128X4.vector_to_dynamic(), None);
}
#[test]
fn format_scalars() {
assert_eq!(I8.to_string(), "i8");
assert_eq!(I16.to_string(), "i16");
assert_eq!(I32.to_string(), "i32");
assert_eq!(I64.to_string(), "i64");
assert_eq!(I128.to_string(), "i128");
assert_eq!(F32.to_string(), "f32");
assert_eq!(F64.to_string(), "f64");
assert_eq!(R32.to_string(), "r32");
assert_eq!(R64.to_string(), "r64");
}
#[test]
fn format_vectors() {
assert_eq!(I8.by(64).unwrap().to_string(), "i8x64");
assert_eq!(F64.by(2).unwrap().to_string(), "f64x2");
assert_eq!(I8.by(3), None);
assert_eq!(I8.by(512), None);
assert_eq!(INVALID.by(4), None);
}
#[test]
fn as_bool() {
assert_eq!(I32X4.as_bool(), I32X4);
assert_eq!(I32.as_bool(), I8);
assert_eq!(I32X4.as_bool_pedantic(), I32X4);
assert_eq!(I32.as_bool_pedantic(), I32);
}
#[test]
fn int_from_size() {
assert_eq!(Type::int(0), None);
assert_eq!(Type::int(8), Some(I8));
assert_eq!(Type::int(33), None);
assert_eq!(Type::int(64), Some(I64));
assert_eq!(Type::int_with_byte_size(0), None);
assert_eq!(Type::int_with_byte_size(2), Some(I16));
assert_eq!(Type::int_with_byte_size(6), None);
assert_eq!(Type::int_with_byte_size(16), Some(I128));
// Ensure `int_with_byte_size` handles overflow properly
let evil = 0xE001_u16;
assert_eq!(evil.wrapping_mul(8), 8, "check the constant is correct");
assert_eq!(Type::int_with_byte_size(evil), None);
}
}