1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
//! Data flow graph tracking Instructions, Values, and blocks.
use crate::entity::{self, PrimaryMap, SecondaryMap};
use crate::ir;
use crate::ir::builder::ReplaceBuilder;
use crate::ir::dynamic_type::{DynamicTypeData, DynamicTypes};
use crate::ir::instructions::{CallInfo, InstructionData};
use crate::ir::{
types, Block, BlockCall, ConstantData, ConstantPool, DynamicType, ExtFuncData, FuncRef,
Immediate, Inst, JumpTables, RelSourceLoc, SigRef, Signature, Type, Value,
ValueLabelAssignments, ValueList, ValueListPool,
};
use crate::packed_option::ReservedValue;
use crate::write::write_operands;
use core::fmt;
use core::iter;
use core::mem;
use core::ops::{Index, IndexMut};
use core::u16;
use alloc::collections::BTreeMap;
#[cfg(feature = "enable-serde")]
use serde::{Deserialize, Serialize};
use smallvec::SmallVec;
/// Storage for instructions within the DFG.
#[derive(Clone, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Insts(PrimaryMap<Inst, InstructionData>);
/// Allow immutable access to instructions via indexing.
impl Index<Inst> for Insts {
type Output = InstructionData;
fn index(&self, inst: Inst) -> &InstructionData {
self.0.index(inst)
}
}
/// Allow mutable access to instructions via indexing.
impl IndexMut<Inst> for Insts {
fn index_mut(&mut self, inst: Inst) -> &mut InstructionData {
self.0.index_mut(inst)
}
}
/// Storage for basic blocks within the DFG.
#[derive(Clone, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Blocks(PrimaryMap<Block, BlockData>);
impl Blocks {
/// Create a new basic block.
pub fn add(&mut self) -> Block {
self.0.push(BlockData::new())
}
/// Get the total number of basic blocks created in this function, whether they are
/// currently inserted in the layout or not.
///
/// This is intended for use with `SecondaryMap::with_capacity`.
pub fn len(&self) -> usize {
self.0.len()
}
/// Returns `true` if the given block reference is valid.
pub fn is_valid(&self, block: Block) -> bool {
self.0.is_valid(block)
}
}
impl Index<Block> for Blocks {
type Output = BlockData;
fn index(&self, block: Block) -> &BlockData {
&self.0[block]
}
}
impl IndexMut<Block> for Blocks {
fn index_mut(&mut self, block: Block) -> &mut BlockData {
&mut self.0[block]
}
}
/// A data flow graph defines all instructions and basic blocks in a function as well as
/// the data flow dependencies between them. The DFG also tracks values which can be either
/// instruction results or block parameters.
///
/// The layout of blocks in the function and of instructions in each block is recorded by the
/// `Layout` data structure which forms the other half of the function representation.
///
#[derive(Clone, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct DataFlowGraph {
/// Data about all of the instructions in the function, including opcodes and operands.
/// The instructions in this map are not in program order. That is tracked by `Layout`, along
/// with the block containing each instruction.
pub insts: Insts,
/// List of result values for each instruction.
///
/// This map gets resized automatically by `make_inst()` so it is always in sync with the
/// primary `insts` map.
results: SecondaryMap<Inst, ValueList>,
/// basic blocks in the function and their parameters.
///
/// This map is not in program order. That is handled by `Layout`, and so is the sequence of
/// instructions contained in each block.
pub blocks: Blocks,
/// Dynamic types created.
pub dynamic_types: DynamicTypes,
/// Memory pool of value lists.
///
/// The `ValueList` references into this pool appear in many places:
///
/// - Instructions in `insts` that don't have room for their entire argument list inline.
/// - Instruction result values in `results`.
/// - block parameters in `blocks`.
pub value_lists: ValueListPool,
/// Primary value table with entries for all values.
values: PrimaryMap<Value, ValueDataPacked>,
/// Function signature table. These signatures are referenced by indirect call instructions as
/// well as the external function references.
pub signatures: PrimaryMap<SigRef, Signature>,
/// The pre-legalization signature for each entry in `signatures`, if any.
pub old_signatures: SecondaryMap<SigRef, Option<Signature>>,
/// External function references. These are functions that can be called directly.
pub ext_funcs: PrimaryMap<FuncRef, ExtFuncData>,
/// Saves Value labels.
pub values_labels: Option<BTreeMap<Value, ValueLabelAssignments>>,
/// Constants used within the function
pub constants: ConstantPool,
/// Stores large immediates that otherwise will not fit on InstructionData
pub immediates: PrimaryMap<Immediate, ConstantData>,
/// Jump tables used in this function.
pub jump_tables: JumpTables,
}
impl DataFlowGraph {
/// Create a new empty `DataFlowGraph`.
pub fn new() -> Self {
Self {
insts: Insts(PrimaryMap::new()),
results: SecondaryMap::new(),
blocks: Blocks(PrimaryMap::new()),
dynamic_types: DynamicTypes::new(),
value_lists: ValueListPool::new(),
values: PrimaryMap::new(),
signatures: PrimaryMap::new(),
old_signatures: SecondaryMap::new(),
ext_funcs: PrimaryMap::new(),
values_labels: None,
constants: ConstantPool::new(),
immediates: PrimaryMap::new(),
jump_tables: JumpTables::new(),
}
}
/// Clear everything.
pub fn clear(&mut self) {
self.insts.0.clear();
self.results.clear();
self.blocks.0.clear();
self.dynamic_types.clear();
self.value_lists.clear();
self.values.clear();
self.signatures.clear();
self.old_signatures.clear();
self.ext_funcs.clear();
self.values_labels = None;
self.constants.clear();
self.immediates.clear();
self.jump_tables.clear();
}
/// Get the total number of instructions created in this function, whether they are currently
/// inserted in the layout or not.
///
/// This is intended for use with `SecondaryMap::with_capacity`.
pub fn num_insts(&self) -> usize {
self.insts.0.len()
}
/// Returns `true` if the given instruction reference is valid.
pub fn inst_is_valid(&self, inst: Inst) -> bool {
self.insts.0.is_valid(inst)
}
/// Get the total number of basic blocks created in this function, whether they are
/// currently inserted in the layout or not.
///
/// This is intended for use with `SecondaryMap::with_capacity`.
pub fn num_blocks(&self) -> usize {
self.blocks.len()
}
/// Returns `true` if the given block reference is valid.
pub fn block_is_valid(&self, block: Block) -> bool {
self.blocks.is_valid(block)
}
/// Make a BlockCall, bundling together the block and its arguments.
pub fn block_call(&mut self, block: Block, args: &[Value]) -> BlockCall {
BlockCall::new(block, args, &mut self.value_lists)
}
/// Get the total number of values.
pub fn num_values(&self) -> usize {
self.values.len()
}
/// Get an iterator over all values and their definitions.
pub fn values_and_defs(&self) -> impl Iterator<Item = (Value, ValueDef)> + '_ {
self.values().map(|value| (value, self.value_def(value)))
}
/// Starts collection of debug information.
pub fn collect_debug_info(&mut self) {
if self.values_labels.is_none() {
self.values_labels = Some(Default::default());
}
}
/// Inserts a `ValueLabelAssignments::Alias` for `to_alias` if debug info
/// collection is enabled.
pub fn add_value_label_alias(&mut self, to_alias: Value, from: RelSourceLoc, value: Value) {
if let Some(values_labels) = self.values_labels.as_mut() {
values_labels.insert(to_alias, ir::ValueLabelAssignments::Alias { from, value });
}
}
}
/// Resolve value aliases.
///
/// Find the original SSA value that `value` aliases, or None if an
/// alias cycle is detected.
fn maybe_resolve_aliases(
values: &PrimaryMap<Value, ValueDataPacked>,
value: Value,
) -> Option<Value> {
let mut v = value;
// Note that values may be empty here.
for _ in 0..=values.len() {
if let ValueData::Alias { original, .. } = ValueData::from(values[v]) {
v = original;
} else {
return Some(v);
}
}
None
}
/// Resolve value aliases.
///
/// Find the original SSA value that `value` aliases.
fn resolve_aliases(values: &PrimaryMap<Value, ValueDataPacked>, value: Value) -> Value {
if let Some(v) = maybe_resolve_aliases(values, value) {
v
} else {
panic!("Value alias loop detected for {}", value);
}
}
/// Iterator over all Values in a DFG
pub struct Values<'a> {
inner: entity::Iter<'a, Value, ValueDataPacked>,
}
/// Check for non-values
fn valid_valuedata(data: ValueDataPacked) -> bool {
let data = ValueData::from(data);
if let ValueData::Alias {
ty: types::INVALID,
original,
} = ValueData::from(data)
{
if original == Value::reserved_value() {
return false;
}
}
true
}
impl<'a> Iterator for Values<'a> {
type Item = Value;
fn next(&mut self) -> Option<Self::Item> {
self.inner
.by_ref()
.find(|kv| valid_valuedata(*kv.1))
.map(|kv| kv.0)
}
}
/// Handling values.
///
/// Values are either block parameters or instruction results.
impl DataFlowGraph {
/// Allocate an extended value entry.
fn make_value(&mut self, data: ValueData) -> Value {
self.values.push(data.into())
}
/// Get an iterator over all values.
pub fn values<'a>(&'a self) -> Values {
Values {
inner: self.values.iter(),
}
}
/// Check if a value reference is valid.
pub fn value_is_valid(&self, v: Value) -> bool {
self.values.is_valid(v)
}
/// Get the type of a value.
pub fn value_type(&self, v: Value) -> Type {
self.values[v].ty()
}
/// Get the definition of a value.
///
/// This is either the instruction that defined it or the Block that has the value as an
/// parameter.
pub fn value_def(&self, v: Value) -> ValueDef {
match ValueData::from(self.values[v]) {
ValueData::Inst { inst, num, .. } => ValueDef::Result(inst, num as usize),
ValueData::Param { block, num, .. } => ValueDef::Param(block, num as usize),
ValueData::Alias { original, .. } => {
// Make sure we only recurse one level. `resolve_aliases` has safeguards to
// detect alias loops without overrunning the stack.
self.value_def(self.resolve_aliases(original))
}
ValueData::Union { x, y, .. } => ValueDef::Union(x, y),
}
}
/// Determine if `v` is an attached instruction result / block parameter.
///
/// An attached value can't be attached to something else without first being detached.
///
/// Value aliases are not considered to be attached to anything. Use `resolve_aliases()` to
/// determine if the original aliased value is attached.
pub fn value_is_attached(&self, v: Value) -> bool {
use self::ValueData::*;
match ValueData::from(self.values[v]) {
Inst { inst, num, .. } => Some(&v) == self.inst_results(inst).get(num as usize),
Param { block, num, .. } => Some(&v) == self.block_params(block).get(num as usize),
Alias { .. } => false,
Union { .. } => false,
}
}
/// Resolve value aliases.
///
/// Find the original SSA value that `value` aliases.
pub fn resolve_aliases(&self, value: Value) -> Value {
resolve_aliases(&self.values, value)
}
/// Resolve all aliases among inst's arguments.
///
/// For each argument of inst which is defined by an alias, replace the
/// alias with the aliased value.
pub fn resolve_aliases_in_arguments(&mut self, inst: Inst) {
self.map_inst_values(inst, |dfg, arg| resolve_aliases(&dfg.values, arg));
}
/// Turn a value into an alias of another.
///
/// Change the `dest` value to behave as an alias of `src`. This means that all uses of `dest`
/// will behave as if they used that value `src`.
///
/// The `dest` value can't be attached to an instruction or block.
pub fn change_to_alias(&mut self, dest: Value, src: Value) {
debug_assert!(!self.value_is_attached(dest));
// Try to create short alias chains by finding the original source value.
// This also avoids the creation of loops.
let original = self.resolve_aliases(src);
debug_assert_ne!(
dest, original,
"Aliasing {} to {} would create a loop",
dest, src
);
let ty = self.value_type(original);
debug_assert_eq!(
self.value_type(dest),
ty,
"Aliasing {} to {} would change its type {} to {}",
dest,
src,
self.value_type(dest),
ty
);
debug_assert_ne!(ty, types::INVALID);
self.values[dest] = ValueData::Alias { ty, original }.into();
}
/// Replace the results of one instruction with aliases to the results of another.
///
/// Change all the results of `dest_inst` to behave as aliases of
/// corresponding results of `src_inst`, as if calling change_to_alias for
/// each.
///
/// After calling this instruction, `dest_inst` will have had its results
/// cleared, so it likely needs to be removed from the graph.
///
pub fn replace_with_aliases(&mut self, dest_inst: Inst, src_inst: Inst) {
debug_assert_ne!(
dest_inst, src_inst,
"Replacing {} with itself would create a loop",
dest_inst
);
debug_assert_eq!(
self.results[dest_inst].len(&self.value_lists),
self.results[src_inst].len(&self.value_lists),
"Replacing {} with {} would produce a different number of results.",
dest_inst,
src_inst
);
for (&dest, &src) in self.results[dest_inst]
.as_slice(&self.value_lists)
.iter()
.zip(self.results[src_inst].as_slice(&self.value_lists))
{
let original = src;
let ty = self.value_type(original);
debug_assert_eq!(
self.value_type(dest),
ty,
"Aliasing {} to {} would change its type {} to {}",
dest,
src,
self.value_type(dest),
ty
);
debug_assert_ne!(ty, types::INVALID);
self.values[dest] = ValueData::Alias { ty, original }.into();
}
self.clear_results(dest_inst);
}
}
/// Where did a value come from?
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ValueDef {
/// Value is the n'th result of an instruction.
Result(Inst, usize),
/// Value is the n'th parameter to a block.
Param(Block, usize),
/// Value is a union of two other values.
Union(Value, Value),
}
impl ValueDef {
/// Unwrap the instruction where the value was defined, or panic.
pub fn unwrap_inst(&self) -> Inst {
self.inst().expect("Value is not an instruction result")
}
/// Get the instruction where the value was defined, if any.
pub fn inst(&self) -> Option<Inst> {
match *self {
Self::Result(inst, _) => Some(inst),
_ => None,
}
}
/// Unwrap the block there the parameter is defined, or panic.
pub fn unwrap_block(&self) -> Block {
match *self {
Self::Param(block, _) => block,
_ => panic!("Value is not a block parameter"),
}
}
/// Get the number component of this definition.
///
/// When multiple values are defined at the same program point, this indicates the index of
/// this value.
pub fn num(self) -> usize {
match self {
Self::Result(_, n) | Self::Param(_, n) => n,
Self::Union(_, _) => 0,
}
}
}
/// Internal table storage for extended values.
#[derive(Clone, Debug, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
enum ValueData {
/// Value is defined by an instruction.
Inst { ty: Type, num: u16, inst: Inst },
/// Value is a block parameter.
Param { ty: Type, num: u16, block: Block },
/// Value is an alias of another value.
/// An alias value can't be linked as an instruction result or block parameter. It is used as a
/// placeholder when the original instruction or block has been rewritten or modified.
Alias { ty: Type, original: Value },
/// Union is a "fork" in representation: the value can be
/// represented as either of the values named here. This is used
/// for aegraph (acyclic egraph) representation in the DFG.
Union { ty: Type, x: Value, y: Value },
}
/// Bit-packed version of ValueData, for efficiency.
///
/// Layout:
///
/// ```plain
/// | tag:2 | type:14 | x:24 | y:24 |
///
/// Inst 00 ty inst output inst index
/// Param 01 ty blockparam num block index
/// Alias 10 ty 0 value index
/// Union 11 ty first value second value
/// ```
#[derive(Clone, Copy, Debug, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
struct ValueDataPacked(u64);
/// Encodes a value in 0..2^32 into 0..2^n, where n is less than 32
/// (and is implied by `mask`), by translating 2^32-1 (0xffffffff)
/// into 2^n-1 and panic'ing on 2^n..2^32-1.
fn encode_narrow_field(x: u32, bits: u8) -> u32 {
if x == 0xffff_ffff {
(1 << bits) - 1
} else {
debug_assert!(x < (1 << bits));
x
}
}
/// The inverse of the above `encode_narrow_field`: unpacks 2^n-1 into
/// 2^32-1.
fn decode_narrow_field(x: u32, bits: u8) -> u32 {
if x == (1 << bits) - 1 {
0xffff_ffff
} else {
x
}
}
impl ValueDataPacked {
const Y_SHIFT: u8 = 0;
const Y_BITS: u8 = 24;
const X_SHIFT: u8 = Self::Y_SHIFT + Self::Y_BITS;
const X_BITS: u8 = 24;
const TYPE_SHIFT: u8 = Self::X_SHIFT + Self::X_BITS;
const TYPE_BITS: u8 = 14;
const TAG_SHIFT: u8 = Self::TYPE_SHIFT + Self::TYPE_BITS;
const TAG_BITS: u8 = 2;
const TAG_INST: u64 = 0;
const TAG_PARAM: u64 = 1;
const TAG_ALIAS: u64 = 2;
const TAG_UNION: u64 = 3;
fn make(tag: u64, ty: Type, x: u32, y: u32) -> ValueDataPacked {
debug_assert!(tag < (1 << Self::TAG_BITS));
debug_assert!(ty.repr() < (1 << Self::TYPE_BITS));
let x = encode_narrow_field(x, Self::X_BITS);
let y = encode_narrow_field(y, Self::Y_BITS);
ValueDataPacked(
(tag << Self::TAG_SHIFT)
| ((ty.repr() as u64) << Self::TYPE_SHIFT)
| ((x as u64) << Self::X_SHIFT)
| ((y as u64) << Self::Y_SHIFT),
)
}
#[inline(always)]
fn field(self, shift: u8, bits: u8) -> u64 {
(self.0 >> shift) & ((1 << bits) - 1)
}
#[inline(always)]
fn ty(self) -> Type {
let ty = self.field(ValueDataPacked::TYPE_SHIFT, ValueDataPacked::TYPE_BITS) as u16;
Type::from_repr(ty)
}
#[inline(always)]
fn set_type(&mut self, ty: Type) {
self.0 &= !(((1 << Self::TYPE_BITS) - 1) << Self::TYPE_SHIFT);
self.0 |= (ty.repr() as u64) << Self::TYPE_SHIFT;
}
}
impl From<ValueData> for ValueDataPacked {
fn from(data: ValueData) -> Self {
match data {
ValueData::Inst { ty, num, inst } => {
Self::make(Self::TAG_INST, ty, num.into(), inst.as_bits())
}
ValueData::Param { ty, num, block } => {
Self::make(Self::TAG_PARAM, ty, num.into(), block.as_bits())
}
ValueData::Alias { ty, original } => {
Self::make(Self::TAG_ALIAS, ty, 0, original.as_bits())
}
ValueData::Union { ty, x, y } => {
Self::make(Self::TAG_ALIAS, ty, x.as_bits(), y.as_bits())
}
}
}
}
impl From<ValueDataPacked> for ValueData {
fn from(data: ValueDataPacked) -> Self {
let tag = data.field(ValueDataPacked::TAG_SHIFT, ValueDataPacked::TAG_BITS);
let ty = u16::try_from(data.field(ValueDataPacked::TYPE_SHIFT, ValueDataPacked::TYPE_BITS))
.expect("Mask should ensure result fits in a u16");
let x = u32::try_from(data.field(ValueDataPacked::X_SHIFT, ValueDataPacked::X_BITS))
.expect("Mask should ensure result fits in a u32");
let y = u32::try_from(data.field(ValueDataPacked::Y_SHIFT, ValueDataPacked::Y_BITS))
.expect("Mask should ensure result fits in a u32");
let ty = Type::from_repr(ty);
match tag {
ValueDataPacked::TAG_INST => ValueData::Inst {
ty,
num: u16::try_from(x).expect("Inst result num should fit in u16"),
inst: Inst::from_bits(decode_narrow_field(y, ValueDataPacked::Y_BITS)),
},
ValueDataPacked::TAG_PARAM => ValueData::Param {
ty,
num: u16::try_from(x).expect("Blockparam index should fit in u16"),
block: Block::from_bits(decode_narrow_field(y, ValueDataPacked::Y_BITS)),
},
ValueDataPacked::TAG_ALIAS => ValueData::Alias {
ty,
original: Value::from_bits(decode_narrow_field(y, ValueDataPacked::Y_BITS)),
},
ValueDataPacked::TAG_UNION => ValueData::Union {
ty,
x: Value::from_bits(decode_narrow_field(x, ValueDataPacked::X_BITS)),
y: Value::from_bits(decode_narrow_field(y, ValueDataPacked::Y_BITS)),
},
_ => panic!("Invalid tag {} in ValueDataPacked 0x{:x}", tag, data.0),
}
}
}
/// Instructions.
///
impl DataFlowGraph {
/// Create a new instruction.
///
/// The type of the first result is indicated by `data.ty`. If the
/// instruction produces multiple results, also call
/// `make_inst_results` to allocate value table entries. (It is
/// always safe to call `make_inst_results`, regardless of how
/// many results the instruction has.)
pub fn make_inst(&mut self, data: InstructionData) -> Inst {
let n = self.num_insts() + 1;
self.results.resize(n);
self.insts.0.push(data)
}
/// Declares a dynamic vector type
pub fn make_dynamic_ty(&mut self, data: DynamicTypeData) -> DynamicType {
self.dynamic_types.push(data)
}
/// Returns an object that displays `inst`.
pub fn display_inst<'a>(&'a self, inst: Inst) -> DisplayInst<'a> {
DisplayInst(self, inst)
}
/// Returns an object that displays the given `value`'s defining instruction.
///
/// Panics if the value is not defined by an instruction (i.e. it is a basic
/// block argument).
pub fn display_value_inst(&self, value: Value) -> DisplayInst<'_> {
match self.value_def(value) {
ir::ValueDef::Result(inst, _) => self.display_inst(inst),
ir::ValueDef::Param(_, _) => panic!("value is not defined by an instruction"),
ir::ValueDef::Union(_, _) => panic!("value is a union of two other values"),
}
}
/// Construct a read-only visitor context for the values of this instruction.
pub fn inst_values<'dfg>(
&'dfg self,
inst: Inst,
) -> impl DoubleEndedIterator<Item = Value> + 'dfg {
self.inst_args(inst)
.iter()
.chain(
self.insts[inst]
.branch_destination(&self.jump_tables)
.into_iter()
.flat_map(|branch| branch.args_slice(&self.value_lists).iter()),
)
.copied()
}
/// Map a function over the values of the instruction.
pub fn map_inst_values<F>(&mut self, inst: Inst, mut body: F)
where
F: FnMut(&mut DataFlowGraph, Value) -> Value,
{
for i in 0..self.inst_args(inst).len() {
let arg = self.inst_args(inst)[i];
self.inst_args_mut(inst)[i] = body(self, arg);
}
for block_ix in 0..self.insts[inst].branch_destination(&self.jump_tables).len() {
// We aren't changing the size of the args list, so we won't need to write the branch
// back to the instruction.
let mut block = self.insts[inst].branch_destination(&self.jump_tables)[block_ix];
for i in 0..block.args_slice(&self.value_lists).len() {
let arg = block.args_slice(&self.value_lists)[i];
block.args_slice_mut(&mut self.value_lists)[i] = body(self, arg);
}
}
}
/// Overwrite the instruction's value references with values from the iterator.
/// NOTE: the iterator provided is expected to yield at least as many values as the instruction
/// currently has.
pub fn overwrite_inst_values<I>(&mut self, inst: Inst, mut values: I)
where
I: Iterator<Item = Value>,
{
for arg in self.inst_args_mut(inst) {
*arg = values.next().unwrap();
}
for block_ix in 0..self.insts[inst].branch_destination(&self.jump_tables).len() {
let mut block = self.insts[inst].branch_destination(&self.jump_tables)[block_ix];
for arg in block.args_slice_mut(&mut self.value_lists) {
*arg = values.next().unwrap();
}
}
}
/// Get all value arguments on `inst` as a slice.
pub fn inst_args(&self, inst: Inst) -> &[Value] {
self.insts[inst].arguments(&self.value_lists)
}
/// Get all value arguments on `inst` as a mutable slice.
pub fn inst_args_mut(&mut self, inst: Inst) -> &mut [Value] {
self.insts[inst].arguments_mut(&mut self.value_lists)
}
/// Get the fixed value arguments on `inst` as a slice.
pub fn inst_fixed_args(&self, inst: Inst) -> &[Value] {
let num_fixed_args = self.insts[inst]
.opcode()
.constraints()
.num_fixed_value_arguments();
&self.inst_args(inst)[..num_fixed_args]
}
/// Get the fixed value arguments on `inst` as a mutable slice.
pub fn inst_fixed_args_mut(&mut self, inst: Inst) -> &mut [Value] {
let num_fixed_args = self.insts[inst]
.opcode()
.constraints()
.num_fixed_value_arguments();
&mut self.inst_args_mut(inst)[..num_fixed_args]
}
/// Get the variable value arguments on `inst` as a slice.
pub fn inst_variable_args(&self, inst: Inst) -> &[Value] {
let num_fixed_args = self.insts[inst]
.opcode()
.constraints()
.num_fixed_value_arguments();
&self.inst_args(inst)[num_fixed_args..]
}
/// Get the variable value arguments on `inst` as a mutable slice.
pub fn inst_variable_args_mut(&mut self, inst: Inst) -> &mut [Value] {
let num_fixed_args = self.insts[inst]
.opcode()
.constraints()
.num_fixed_value_arguments();
&mut self.inst_args_mut(inst)[num_fixed_args..]
}
/// Create result values for an instruction that produces multiple results.
///
/// Instructions that produce no result values only need to be created with `make_inst`,
/// otherwise call `make_inst_results` to allocate value table entries for the results.
///
/// The result value types are determined from the instruction's value type constraints and the
/// provided `ctrl_typevar` type for polymorphic instructions. For non-polymorphic
/// instructions, `ctrl_typevar` is ignored, and `INVALID` can be used.
///
/// The type of the first result value is also set, even if it was already set in the
/// `InstructionData` passed to `make_inst`. If this function is called with a single-result
/// instruction, that is the only effect.
pub fn make_inst_results(&mut self, inst: Inst, ctrl_typevar: Type) -> usize {
self.make_inst_results_reusing(inst, ctrl_typevar, iter::empty())
}
/// Create result values for `inst`, reusing the provided detached values.
///
/// Create a new set of result values for `inst` using `ctrl_typevar` to determine the result
/// types. Any values provided by `reuse` will be reused. When `reuse` is exhausted or when it
/// produces `None`, a new value is created.
pub fn make_inst_results_reusing<I>(
&mut self,
inst: Inst,
ctrl_typevar: Type,
reuse: I,
) -> usize
where
I: Iterator<Item = Option<Value>>,
{
self.results[inst].clear(&mut self.value_lists);
let mut reuse = reuse.fuse();
let result_tys: SmallVec<[_; 16]> = self.inst_result_types(inst, ctrl_typevar).collect();
let num_results = result_tys.len();
for ty in result_tys {
if let Some(Some(v)) = reuse.next() {
debug_assert_eq!(self.value_type(v), ty, "Reused {} is wrong type", ty);
self.attach_result(inst, v);
} else {
self.append_result(inst, ty);
}
}
num_results
}
/// Create a `ReplaceBuilder` that will replace `inst` with a new instruction in place.
pub fn replace(&mut self, inst: Inst) -> ReplaceBuilder {
ReplaceBuilder::new(self, inst)
}
/// Detach the list of result values from `inst` and return it.
///
/// This leaves `inst` without any result values. New result values can be created by calling
/// `make_inst_results` or by using a `replace(inst)` builder.
pub fn detach_results(&mut self, inst: Inst) -> ValueList {
self.results[inst].take()
}
/// Clear the list of result values from `inst`.
///
/// This leaves `inst` without any result values. New result values can be created by calling
/// `make_inst_results` or by using a `replace(inst)` builder.
pub fn clear_results(&mut self, inst: Inst) {
self.results[inst].clear(&mut self.value_lists)
}
/// Attach an existing value to the result value list for `inst`.
///
/// The `res` value is appended to the end of the result list.
///
/// This is a very low-level operation. Usually, instruction results with the correct types are
/// created automatically. The `res` value must not be attached to anything else.
pub fn attach_result(&mut self, inst: Inst, res: Value) {
debug_assert!(!self.value_is_attached(res));
let num = self.results[inst].push(res, &mut self.value_lists);
debug_assert!(num <= u16::MAX as usize, "Too many result values");
let ty = self.value_type(res);
self.values[res] = ValueData::Inst {
ty,
num: num as u16,
inst,
}
.into();
}
/// Replace an instruction result with a new value of type `new_type`.
///
/// The `old_value` must be an attached instruction result.
///
/// The old value is left detached, so it should probably be changed into something else.
///
/// Returns the new value.
pub fn replace_result(&mut self, old_value: Value, new_type: Type) -> Value {
let (num, inst) = match ValueData::from(self.values[old_value]) {
ValueData::Inst { num, inst, .. } => (num, inst),
_ => panic!("{} is not an instruction result value", old_value),
};
let new_value = self.make_value(ValueData::Inst {
ty: new_type,
num,
inst,
});
let num = num as usize;
let attached = mem::replace(
self.results[inst]
.get_mut(num, &mut self.value_lists)
.expect("Replacing detached result"),
new_value,
);
debug_assert_eq!(
attached,
old_value,
"{} wasn't detached from {}",
old_value,
self.display_inst(inst)
);
new_value
}
/// Append a new instruction result value to `inst`.
pub fn append_result(&mut self, inst: Inst, ty: Type) -> Value {
let res = self.values.next_key();
let num = self.results[inst].push(res, &mut self.value_lists);
debug_assert!(num <= u16::MAX as usize, "Too many result values");
self.make_value(ValueData::Inst {
ty,
inst,
num: num as u16,
})
}
/// Clone an instruction, attaching new result `Value`s and
/// returning them.
pub fn clone_inst(&mut self, inst: Inst) -> Inst {
// First, add a clone of the InstructionData.
let inst_data = self.insts[inst].clone();
// If the `inst_data` has a reference to a ValueList, clone it
// as well, because we can't share these (otherwise mutating
// one would affect the other).
let inst_data = inst_data.deep_clone(&mut self.value_lists);
let new_inst = self.make_inst(inst_data);
// Get the controlling type variable.
let ctrl_typevar = self.ctrl_typevar(inst);
// Create new result values.
self.make_inst_results(new_inst, ctrl_typevar);
new_inst
}
/// Get the first result of an instruction.
///
/// This function panics if the instruction doesn't have any result.
pub fn first_result(&self, inst: Inst) -> Value {
self.results[inst]
.first(&self.value_lists)
.expect("Instruction has no results")
}
/// Test if `inst` has any result values currently.
pub fn has_results(&self, inst: Inst) -> bool {
!self.results[inst].is_empty()
}
/// Return all the results of an instruction.
pub fn inst_results(&self, inst: Inst) -> &[Value] {
self.results[inst].as_slice(&self.value_lists)
}
/// Return all the results of an instruction as ValueList.
pub fn inst_results_list(&self, inst: Inst) -> ValueList {
self.results[inst]
}
/// Create a union of two values.
pub fn union(&mut self, x: Value, y: Value) -> Value {
// Get the type.
let ty = self.value_type(x);
debug_assert_eq!(ty, self.value_type(y));
self.make_value(ValueData::Union { ty, x, y })
}
/// Get the call signature of a direct or indirect call instruction.
/// Returns `None` if `inst` is not a call instruction.
pub fn call_signature(&self, inst: Inst) -> Option<SigRef> {
match self.insts[inst].analyze_call(&self.value_lists) {
CallInfo::NotACall => None,
CallInfo::Direct(f, _) => Some(self.ext_funcs[f].signature),
CallInfo::Indirect(s, _) => Some(s),
}
}
/// Like `call_signature` but returns none for tail call instructions.
fn non_tail_call_signature(&self, inst: Inst) -> Option<SigRef> {
let sig = self.call_signature(inst)?;
match self.insts[inst].opcode() {
ir::Opcode::ReturnCall | ir::Opcode::ReturnCallIndirect => None,
_ => Some(sig),
}
}
// Only for use by the verifier. Everyone else should just use
// `dfg.inst_results(inst).len()`.
pub(crate) fn num_expected_results_for_verifier(&self, inst: Inst) -> usize {
match self.non_tail_call_signature(inst) {
Some(sig) => self.signatures[sig].returns.len(),
None => {
let constraints = self.insts[inst].opcode().constraints();
constraints.num_fixed_results()
}
}
}
/// Get the result types of the given instruction.
pub fn inst_result_types<'a>(
&'a self,
inst: Inst,
ctrl_typevar: Type,
) -> impl iter::ExactSizeIterator<Item = Type> + 'a {
return match self.non_tail_call_signature(inst) {
Some(sig) => InstResultTypes::Signature(self, sig, 0),
None => {
let constraints = self.insts[inst].opcode().constraints();
InstResultTypes::Constraints(constraints, ctrl_typevar, 0)
}
};
enum InstResultTypes<'a> {
Signature(&'a DataFlowGraph, SigRef, usize),
Constraints(ir::instructions::OpcodeConstraints, Type, usize),
}
impl Iterator for InstResultTypes<'_> {
type Item = Type;
fn next(&mut self) -> Option<Type> {
match self {
InstResultTypes::Signature(dfg, sig, i) => {
let param = dfg.signatures[*sig].returns.get(*i)?;
*i += 1;
Some(param.value_type)
}
InstResultTypes::Constraints(constraints, ctrl_ty, i) => {
if *i < constraints.num_fixed_results() {
let ty = constraints.result_type(*i, *ctrl_ty);
*i += 1;
Some(ty)
} else {
None
}
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = match self {
InstResultTypes::Signature(dfg, sig, i) => {
dfg.signatures[*sig].returns.len() - *i
}
InstResultTypes::Constraints(constraints, _, i) => {
constraints.num_fixed_results() - *i
}
};
(len, Some(len))
}
}
impl ExactSizeIterator for InstResultTypes<'_> {}
}
/// Compute the type of an instruction result from opcode constraints and call signatures.
///
/// This computes the same sequence of result types that `make_inst_results()` above would
/// assign to the created result values, but it does not depend on `make_inst_results()` being
/// called first.
///
/// Returns `None` if asked about a result index that is too large.
pub fn compute_result_type(
&self,
inst: Inst,
result_idx: usize,
ctrl_typevar: Type,
) -> Option<Type> {
self.inst_result_types(inst, ctrl_typevar).nth(result_idx)
}
/// Get the controlling type variable, or `INVALID` if `inst` isn't polymorphic.
pub fn ctrl_typevar(&self, inst: Inst) -> Type {
let constraints = self.insts[inst].opcode().constraints();
if !constraints.is_polymorphic() {
types::INVALID
} else if constraints.requires_typevar_operand() {
// Not all instruction formats have a designated operand, but in that case
// `requires_typevar_operand()` should never be true.
self.value_type(
self.insts[inst]
.typevar_operand(&self.value_lists)
.unwrap_or_else(|| {
panic!(
"Instruction format for {:?} doesn't have a designated operand",
self.insts[inst]
)
}),
)
} else {
self.value_type(self.first_result(inst))
}
}
}
/// basic blocks.
impl DataFlowGraph {
/// Create a new basic block.
pub fn make_block(&mut self) -> Block {
self.blocks.add()
}
/// Get the number of parameters on `block`.
pub fn num_block_params(&self, block: Block) -> usize {
self.blocks[block].params(&self.value_lists).len()
}
/// Get the parameters on `block`.
pub fn block_params(&self, block: Block) -> &[Value] {
self.blocks[block].params(&self.value_lists)
}
/// Get the types of the parameters on `block`.
pub fn block_param_types(&self, block: Block) -> impl Iterator<Item = Type> + '_ {
self.block_params(block).iter().map(|&v| self.value_type(v))
}
/// Append a parameter with type `ty` to `block`.
pub fn append_block_param(&mut self, block: Block, ty: Type) -> Value {
let param = self.values.next_key();
let num = self.blocks[block].params.push(param, &mut self.value_lists);
debug_assert!(num <= u16::MAX as usize, "Too many parameters on block");
self.make_value(ValueData::Param {
ty,
num: num as u16,
block,
})
}
/// Removes `val` from `block`'s parameters by swapping it with the last parameter on `block`.
/// Returns the position of `val` before removal.
///
/// *Important*: to ensure O(1) deletion, this method swaps the removed parameter with the
/// last `block` parameter. This can disrupt all the branch instructions jumping to this
/// `block` for which you have to change the branch argument order if necessary.
///
/// Panics if `val` is not a block parameter.
pub fn swap_remove_block_param(&mut self, val: Value) -> usize {
let (block, num) =
if let ValueData::Param { num, block, .. } = ValueData::from(self.values[val]) {
(block, num)
} else {
panic!("{} must be a block parameter", val);
};
self.blocks[block]
.params
.swap_remove(num as usize, &mut self.value_lists);
if let Some(last_arg_val) = self.blocks[block]
.params
.get(num as usize, &self.value_lists)
{
// We update the position of the old last arg.
let mut last_arg_data = ValueData::from(self.values[last_arg_val]);
if let ValueData::Param {
num: ref mut old_num,
..
} = &mut last_arg_data
{
*old_num = num;
self.values[last_arg_val] = last_arg_data.into();
} else {
panic!("{} should be a Block parameter", last_arg_val);
}
}
num as usize
}
/// Removes `val` from `block`'s parameters by a standard linear time list removal which
/// preserves ordering. Also updates the values' data.
pub fn remove_block_param(&mut self, val: Value) {
let (block, num) =
if let ValueData::Param { num, block, .. } = ValueData::from(self.values[val]) {
(block, num)
} else {
panic!("{} must be a block parameter", val);
};
self.blocks[block]
.params
.remove(num as usize, &mut self.value_lists);
for index in num..(self.num_block_params(block) as u16) {
let packed = &mut self.values[self.blocks[block]
.params
.get(index as usize, &self.value_lists)
.unwrap()];
let mut data = ValueData::from(*packed);
match &mut data {
ValueData::Param { ref mut num, .. } => {
*num -= 1;
*packed = data.into();
}
_ => panic!(
"{} must be a block parameter",
self.blocks[block]
.params
.get(index as usize, &self.value_lists)
.unwrap()
),
}
}
}
/// Append an existing value to `block`'s parameters.
///
/// The appended value can't already be attached to something else.
///
/// In almost all cases, you should be using `append_block_param()` instead of this method.
pub fn attach_block_param(&mut self, block: Block, param: Value) {
debug_assert!(!self.value_is_attached(param));
let num = self.blocks[block].params.push(param, &mut self.value_lists);
debug_assert!(num <= u16::MAX as usize, "Too many parameters on block");
let ty = self.value_type(param);
self.values[param] = ValueData::Param {
ty,
num: num as u16,
block,
}
.into();
}
/// Replace a block parameter with a new value of type `ty`.
///
/// The `old_value` must be an attached block parameter. It is removed from its place in the list
/// of parameters and replaced by a new value of type `new_type`. The new value gets the same
/// position in the list, and other parameters are not disturbed.
///
/// The old value is left detached, so it should probably be changed into something else.
///
/// Returns the new value.
pub fn replace_block_param(&mut self, old_value: Value, new_type: Type) -> Value {
// Create new value identical to the old one except for the type.
let (block, num) =
if let ValueData::Param { num, block, .. } = ValueData::from(self.values[old_value]) {
(block, num)
} else {
panic!("{} must be a block parameter", old_value);
};
let new_arg = self.make_value(ValueData::Param {
ty: new_type,
num,
block,
});
self.blocks[block]
.params
.as_mut_slice(&mut self.value_lists)[num as usize] = new_arg;
new_arg
}
/// Detach all the parameters from `block` and return them as a `ValueList`.
///
/// This is a quite low-level operation. Sensible things to do with the detached block parameters
/// is to put them back on the same block with `attach_block_param()` or change them into aliases
/// with `change_to_alias()`.
pub fn detach_block_params(&mut self, block: Block) -> ValueList {
self.blocks[block].params.take()
}
}
/// Contents of a basic block.
///
/// Parameters on a basic block are values that dominate everything in the block. All
/// branches to this block must provide matching arguments, and the arguments to the entry block must
/// match the function arguments.
#[derive(Clone, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct BlockData {
/// List of parameters to this block.
params: ValueList,
}
impl BlockData {
fn new() -> Self {
Self {
params: ValueList::new(),
}
}
/// Get the parameters on `block`.
pub fn params<'a>(&self, pool: &'a ValueListPool) -> &'a [Value] {
self.params.as_slice(pool)
}
}
/// Object that can display an instruction.
pub struct DisplayInst<'a>(&'a DataFlowGraph, Inst);
impl<'a> fmt::Display for DisplayInst<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let dfg = self.0;
let inst = self.1;
if let Some((first, rest)) = dfg.inst_results(inst).split_first() {
write!(f, "{}", first)?;
for v in rest {
write!(f, ", {}", v)?;
}
write!(f, " = ")?;
}
let typevar = dfg.ctrl_typevar(inst);
if typevar.is_invalid() {
write!(f, "{}", dfg.insts[inst].opcode())?;
} else {
write!(f, "{}.{}", dfg.insts[inst].opcode(), typevar)?;
}
write_operands(f, dfg, inst)
}
}
/// Parser routines. These routines should not be used outside the parser.
impl DataFlowGraph {
/// Set the type of a value. This is only for use in the parser, which needs
/// to create invalid values for index padding which may be reassigned later.
#[cold]
fn set_value_type_for_parser(&mut self, v: Value, t: Type) {
assert_eq!(
self.value_type(v),
types::INVALID,
"this function is only for assigning types to previously invalid values"
);
self.values[v].set_type(t);
}
/// Check that the given concrete `Type` has been defined in the function.
pub fn check_dynamic_type(&mut self, ty: Type) -> Option<Type> {
debug_assert!(ty.is_dynamic_vector());
if self
.dynamic_types
.values()
.any(|dyn_ty_data| dyn_ty_data.concrete().unwrap() == ty)
{
Some(ty)
} else {
None
}
}
/// Create result values for `inst`, reusing the provided detached values.
/// This is similar to `make_inst_results_reusing` except it's only for use
/// in the parser, which needs to reuse previously invalid values.
#[cold]
pub fn make_inst_results_for_parser(
&mut self,
inst: Inst,
ctrl_typevar: Type,
reuse: &[Value],
) -> usize {
let mut reuse_iter = reuse.iter().copied();
let result_tys: SmallVec<[_; 16]> = self.inst_result_types(inst, ctrl_typevar).collect();
for ty in result_tys {
if ty.is_dynamic_vector() {
self.check_dynamic_type(ty)
.unwrap_or_else(|| panic!("Use of undeclared dynamic type: {}", ty));
}
if let Some(v) = reuse_iter.next() {
self.set_value_type_for_parser(v, ty);
}
}
self.make_inst_results_reusing(inst, ctrl_typevar, reuse.iter().map(|x| Some(*x)))
}
/// Similar to `append_block_param`, append a parameter with type `ty` to
/// `block`, but using value `val`. This is only for use by the parser to
/// create parameters with specific values.
#[cold]
pub fn append_block_param_for_parser(&mut self, block: Block, ty: Type, val: Value) {
let num = self.blocks[block].params.push(val, &mut self.value_lists);
assert!(num <= u16::MAX as usize, "Too many parameters on block");
self.values[val] = ValueData::Param {
ty,
num: num as u16,
block,
}
.into();
}
/// Create a new value alias. This is only for use by the parser to create
/// aliases with specific values, and the printer for testing.
#[cold]
pub fn make_value_alias_for_serialization(&mut self, src: Value, dest: Value) {
assert_ne!(src, Value::reserved_value());
assert_ne!(dest, Value::reserved_value());
let ty = if self.values.is_valid(src) {
self.value_type(src)
} else {
// As a special case, if we can't resolve the aliasee yet, use INVALID
// temporarily. It will be resolved later in parsing.
types::INVALID
};
let data = ValueData::Alias { ty, original: src };
self.values[dest] = data.into();
}
/// If `v` is already defined as an alias, return its destination value.
/// Otherwise return None. This allows the parser to coalesce identical
/// alias definitions, and the printer to identify an alias's immediate target.
#[cold]
pub fn value_alias_dest_for_serialization(&self, v: Value) -> Option<Value> {
if let ValueData::Alias { original, .. } = ValueData::from(self.values[v]) {
Some(original)
} else {
None
}
}
/// Compute the type of an alias. This is only for use in the parser.
/// Returns false if an alias cycle was encountered.
#[cold]
pub fn set_alias_type_for_parser(&mut self, v: Value) -> bool {
if let Some(resolved) = maybe_resolve_aliases(&self.values, v) {
let old_ty = self.value_type(v);
let new_ty = self.value_type(resolved);
if old_ty == types::INVALID {
self.set_value_type_for_parser(v, new_ty);
} else {
assert_eq!(old_ty, new_ty);
}
true
} else {
false
}
}
/// Create an invalid value, to pad the index space. This is only for use by
/// the parser to pad out the value index space.
#[cold]
pub fn make_invalid_value_for_parser(&mut self) {
let data = ValueData::Alias {
ty: types::INVALID,
original: Value::reserved_value(),
};
self.make_value(data);
}
/// Check if a value reference is valid, while being aware of aliases which
/// may be unresolved while parsing.
#[cold]
pub fn value_is_valid_for_parser(&self, v: Value) -> bool {
if !self.value_is_valid(v) {
return false;
}
if let ValueData::Alias { ty, .. } = ValueData::from(self.values[v]) {
ty != types::INVALID
} else {
true
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::cursor::{Cursor, FuncCursor};
use crate::ir::types;
use crate::ir::{Function, InstructionData, Opcode, TrapCode};
use alloc::string::ToString;
#[test]
fn make_inst() {
let mut dfg = DataFlowGraph::new();
let idata = InstructionData::UnaryImm {
opcode: Opcode::Iconst,
imm: 0.into(),
};
let inst = dfg.make_inst(idata);
dfg.make_inst_results(inst, types::I32);
assert_eq!(inst.to_string(), "inst0");
assert_eq!(dfg.display_inst(inst).to_string(), "v0 = iconst.i32 0");
// Immutable reference resolution.
{
let immdfg = &dfg;
let ins = &immdfg.insts[inst];
assert_eq!(ins.opcode(), Opcode::Iconst);
}
// Results.
let val = dfg.first_result(inst);
assert_eq!(dfg.inst_results(inst), &[val]);
assert_eq!(dfg.value_def(val), ValueDef::Result(inst, 0));
assert_eq!(dfg.value_type(val), types::I32);
// Replacing results.
assert!(dfg.value_is_attached(val));
let v2 = dfg.replace_result(val, types::F64);
assert!(!dfg.value_is_attached(val));
assert!(dfg.value_is_attached(v2));
assert_eq!(dfg.inst_results(inst), &[v2]);
assert_eq!(dfg.value_def(v2), ValueDef::Result(inst, 0));
assert_eq!(dfg.value_type(v2), types::F64);
}
#[test]
fn no_results() {
let mut dfg = DataFlowGraph::new();
let idata = InstructionData::Trap {
opcode: Opcode::Trap,
code: TrapCode::User(0),
};
let inst = dfg.make_inst(idata);
assert_eq!(dfg.display_inst(inst).to_string(), "trap user0");
// Result slice should be empty.
assert_eq!(dfg.inst_results(inst), &[]);
}
#[test]
fn block() {
let mut dfg = DataFlowGraph::new();
let block = dfg.make_block();
assert_eq!(block.to_string(), "block0");
assert_eq!(dfg.num_block_params(block), 0);
assert_eq!(dfg.block_params(block), &[]);
assert!(dfg.detach_block_params(block).is_empty());
assert_eq!(dfg.num_block_params(block), 0);
assert_eq!(dfg.block_params(block), &[]);
let arg1 = dfg.append_block_param(block, types::F32);
assert_eq!(arg1.to_string(), "v0");
assert_eq!(dfg.num_block_params(block), 1);
assert_eq!(dfg.block_params(block), &[arg1]);
let arg2 = dfg.append_block_param(block, types::I16);
assert_eq!(arg2.to_string(), "v1");
assert_eq!(dfg.num_block_params(block), 2);
assert_eq!(dfg.block_params(block), &[arg1, arg2]);
assert_eq!(dfg.value_def(arg1), ValueDef::Param(block, 0));
assert_eq!(dfg.value_def(arg2), ValueDef::Param(block, 1));
assert_eq!(dfg.value_type(arg1), types::F32);
assert_eq!(dfg.value_type(arg2), types::I16);
// Swap the two block parameters.
let vlist = dfg.detach_block_params(block);
assert_eq!(dfg.num_block_params(block), 0);
assert_eq!(dfg.block_params(block), &[]);
assert_eq!(vlist.as_slice(&dfg.value_lists), &[arg1, arg2]);
dfg.attach_block_param(block, arg2);
let arg3 = dfg.append_block_param(block, types::I32);
dfg.attach_block_param(block, arg1);
assert_eq!(dfg.block_params(block), &[arg2, arg3, arg1]);
}
#[test]
fn replace_block_params() {
let mut dfg = DataFlowGraph::new();
let block = dfg.make_block();
let arg1 = dfg.append_block_param(block, types::F32);
let new1 = dfg.replace_block_param(arg1, types::I64);
assert_eq!(dfg.value_type(arg1), types::F32);
assert_eq!(dfg.value_type(new1), types::I64);
assert_eq!(dfg.block_params(block), &[new1]);
dfg.attach_block_param(block, arg1);
assert_eq!(dfg.block_params(block), &[new1, arg1]);
let new2 = dfg.replace_block_param(arg1, types::I8);
assert_eq!(dfg.value_type(arg1), types::F32);
assert_eq!(dfg.value_type(new2), types::I8);
assert_eq!(dfg.block_params(block), &[new1, new2]);
dfg.attach_block_param(block, arg1);
assert_eq!(dfg.block_params(block), &[new1, new2, arg1]);
let new3 = dfg.replace_block_param(new2, types::I16);
assert_eq!(dfg.value_type(new1), types::I64);
assert_eq!(dfg.value_type(new2), types::I8);
assert_eq!(dfg.value_type(new3), types::I16);
assert_eq!(dfg.block_params(block), &[new1, new3, arg1]);
}
#[test]
fn swap_remove_block_params() {
let mut dfg = DataFlowGraph::new();
let block = dfg.make_block();
let arg1 = dfg.append_block_param(block, types::F32);
let arg2 = dfg.append_block_param(block, types::F32);
let arg3 = dfg.append_block_param(block, types::F32);
assert_eq!(dfg.block_params(block), &[arg1, arg2, arg3]);
dfg.swap_remove_block_param(arg1);
assert_eq!(dfg.value_is_attached(arg1), false);
assert_eq!(dfg.value_is_attached(arg2), true);
assert_eq!(dfg.value_is_attached(arg3), true);
assert_eq!(dfg.block_params(block), &[arg3, arg2]);
dfg.swap_remove_block_param(arg2);
assert_eq!(dfg.value_is_attached(arg2), false);
assert_eq!(dfg.value_is_attached(arg3), true);
assert_eq!(dfg.block_params(block), &[arg3]);
dfg.swap_remove_block_param(arg3);
assert_eq!(dfg.value_is_attached(arg3), false);
assert_eq!(dfg.block_params(block), &[]);
}
#[test]
fn aliases() {
use crate::ir::condcodes::IntCC;
use crate::ir::InstBuilder;
let mut func = Function::new();
let block0 = func.dfg.make_block();
let mut pos = FuncCursor::new(&mut func);
pos.insert_block(block0);
// Build a little test program.
let v1 = pos.ins().iconst(types::I32, 42);
// Make sure we can resolve value aliases even when values is empty.
assert_eq!(pos.func.dfg.resolve_aliases(v1), v1);
let arg0 = pos.func.dfg.append_block_param(block0, types::I32);
let (s, c) = pos.ins().iadd_cout(v1, arg0);
let iadd = match pos.func.dfg.value_def(s) {
ValueDef::Result(i, 0) => i,
_ => panic!(),
};
// Remove `c` from the result list.
pos.func.dfg.clear_results(iadd);
pos.func.dfg.attach_result(iadd, s);
// Replace `iadd_cout` with a normal `iadd` and an `icmp`.
pos.func.dfg.replace(iadd).iadd(v1, arg0);
let c2 = pos.ins().icmp(IntCC::Equal, s, v1);
pos.func.dfg.change_to_alias(c, c2);
assert_eq!(pos.func.dfg.resolve_aliases(c2), c2);
assert_eq!(pos.func.dfg.resolve_aliases(c), c2);
}
#[test]
fn cloning() {
use crate::ir::InstBuilder;
let mut func = Function::new();
let mut sig = Signature::new(crate::isa::CallConv::SystemV);
sig.params.push(ir::AbiParam::new(types::I32));
let sig = func.import_signature(sig);
let block0 = func.dfg.make_block();
let mut pos = FuncCursor::new(&mut func);
pos.insert_block(block0);
let v1 = pos.ins().iconst(types::I32, 0);
let v2 = pos.ins().iconst(types::I32, 1);
let call_inst = pos.ins().call_indirect(sig, v1, &[v1]);
let func = pos.func;
let call_inst_dup = func.dfg.clone_inst(call_inst);
func.dfg.inst_args_mut(call_inst)[0] = v2;
assert_eq!(v1, func.dfg.inst_args(call_inst_dup)[0]);
}
}