1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Instruction formats and opcodes.
//!
//! The `instructions` module contains definitions for instruction formats, opcodes, and the
//! in-memory representation of IR instructions.
//!
//! A large part of this module is auto-generated from the instruction descriptions in the meta
//! directory.

use alloc::vec::Vec;
use core::fmt::{self, Display, Formatter};
use core::ops::{Deref, DerefMut};
use core::str::FromStr;

#[cfg(feature = "enable-serde")]
use serde::{Deserialize, Serialize};

use crate::bitset::BitSet;
use crate::entity;
use crate::ir::{
    self,
    condcodes::{FloatCC, IntCC},
    trapcode::TrapCode,
    types, Block, FuncRef, MemFlags, SigRef, StackSlot, Type, Value,
};

/// Some instructions use an external list of argument values because there is not enough space in
/// the 16-byte `InstructionData` struct. These value lists are stored in a memory pool in
/// `dfg.value_lists`.
pub type ValueList = entity::EntityList<Value>;

/// Memory pool for holding value lists. See `ValueList`.
pub type ValueListPool = entity::ListPool<Value>;

/// A pair of a Block and its arguments, stored in a single EntityList internally.
///
/// NOTE: We don't expose either value_to_block or block_to_value outside of this module because
/// this operation is not generally safe. However, as the two share the same underlying layout,
/// they can be stored in the same value pool.
///
/// BlockCall makes use of this shared layout by storing all of its contents (a block and its
/// argument) in a single EntityList. This is a bit better than introducing a new entity type for
/// the pair of a block name and the arguments entity list, as we don't pay any indirection penalty
/// to get to the argument values -- they're stored in-line with the block in the same list.
///
/// The BlockCall::new function guarantees this layout by requiring a block argument that's written
/// in as the first element of the EntityList. Any subsequent entries are always assumed to be real
/// Values.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct BlockCall {
    /// The underlying storage for the BlockCall. The first element of the values EntityList is
    /// guaranteed to always be a Block encoded as a Value via BlockCall::block_to_value.
    /// Consequently, the values entity list is never empty.
    values: entity::EntityList<Value>,
}

impl BlockCall {
    // NOTE: the only uses of this function should be internal to BlockCall. See the block comment
    // on BlockCall for more context.
    fn value_to_block(val: Value) -> Block {
        Block::from_u32(val.as_u32())
    }

    // NOTE: the only uses of this function should be internal to BlockCall. See the block comment
    // on BlockCall for more context.
    fn block_to_value(block: Block) -> Value {
        Value::from_u32(block.as_u32())
    }

    /// Construct a BlockCall with the given block and arguments.
    pub fn new(block: Block, args: &[Value], pool: &mut ValueListPool) -> Self {
        let mut values = ValueList::default();
        values.push(Self::block_to_value(block), pool);
        values.extend(args.iter().copied(), pool);
        Self { values }
    }

    /// Return the block for this BlockCall.
    pub fn block(&self, pool: &ValueListPool) -> Block {
        let val = self.values.first(pool).unwrap();
        Self::value_to_block(val)
    }

    /// Replace the block for this BlockCall.
    pub fn set_block(&mut self, block: Block, pool: &mut ValueListPool) {
        *self.values.get_mut(0, pool).unwrap() = Self::block_to_value(block);
    }

    /// Append an argument to the block args.
    pub fn append_argument(&mut self, arg: Value, pool: &mut ValueListPool) {
        self.values.push(arg, pool);
    }

    /// Return a slice for the arguments of this block.
    pub fn args_slice<'a>(&self, pool: &'a ValueListPool) -> &'a [Value] {
        &self.values.as_slice(pool)[1..]
    }

    /// Return a slice for the arguments of this block.
    pub fn args_slice_mut<'a>(&'a mut self, pool: &'a mut ValueListPool) -> &'a mut [Value] {
        &mut self.values.as_mut_slice(pool)[1..]
    }

    /// Remove the argument at ix from the argument list.
    pub fn remove(&mut self, ix: usize, pool: &mut ValueListPool) {
        self.values.remove(1 + ix, pool)
    }

    /// Clear out the arguments list.
    pub fn clear(&mut self, pool: &mut ValueListPool) {
        self.values.truncate(1, pool)
    }

    /// Appends multiple elements to the arguments.
    pub fn extend<I>(&mut self, elements: I, pool: &mut ValueListPool)
    where
        I: IntoIterator<Item = Value>,
    {
        self.values.extend(elements, pool)
    }

    /// Return a value that can display this block call.
    pub fn display<'a>(&self, pool: &'a ValueListPool) -> DisplayBlockCall<'a> {
        DisplayBlockCall { block: *self, pool }
    }

    /// Deep-clone the underlying list in the same pool. The returned
    /// list will have identical contents but changes to this list
    /// will not change its contents or vice-versa.
    pub fn deep_clone(&self, pool: &mut ValueListPool) -> Self {
        Self {
            values: self.values.deep_clone(pool),
        }
    }
}

/// Wrapper for the context needed to display a [BlockCall] value.
pub struct DisplayBlockCall<'a> {
    block: BlockCall,
    pool: &'a ValueListPool,
}

impl<'a> Display for DisplayBlockCall<'a> {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.block.block(&self.pool))?;
        let args = self.block.args_slice(&self.pool);
        if !args.is_empty() {
            write!(f, "(")?;
            for (ix, arg) in args.iter().enumerate() {
                if ix > 0 {
                    write!(f, ", ")?;
                }
                write!(f, "{}", arg)?;
            }
            write!(f, ")")?;
        }
        Ok(())
    }
}

// Include code generated by `cranelift-codegen/meta/src/gen_inst.rs`. This file contains:
//
// - The `pub enum InstructionFormat` enum with all the instruction formats.
// - The `pub enum InstructionData` enum with all the instruction data fields.
// - The `pub enum Opcode` definition with all known opcodes,
// - The `const OPCODE_FORMAT: [InstructionFormat; N]` table.
// - The private `fn opcode_name(Opcode) -> &'static str` function, and
// - The hash table `const OPCODE_HASH_TABLE: [Opcode; N]`.
//
// For value type constraints:
//
// - The `const OPCODE_CONSTRAINTS : [OpcodeConstraints; N]` table.
// - The `const TYPE_SETS : [ValueTypeSet; N]` table.
// - The `const OPERAND_CONSTRAINTS : [OperandConstraint; N]` table.
//
include!(concat!(env!("OUT_DIR"), "/opcodes.rs"));

impl Display for Opcode {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        write!(f, "{}", opcode_name(*self))
    }
}

impl Opcode {
    /// Get the instruction format for this opcode.
    pub fn format(self) -> InstructionFormat {
        OPCODE_FORMAT[self as usize - 1]
    }

    /// Get the constraint descriptor for this opcode.
    /// Panic if this is called on `NotAnOpcode`.
    pub fn constraints(self) -> OpcodeConstraints {
        OPCODE_CONSTRAINTS[self as usize - 1]
    }

    /// Returns true if the instruction is a resumable trap.
    pub fn is_resumable_trap(&self) -> bool {
        match self {
            Opcode::ResumableTrap | Opcode::ResumableTrapnz => true,
            _ => false,
        }
    }
}

// This trait really belongs in cranelift-reader where it is used by the `.clif` file parser, but since
// it critically depends on the `opcode_name()` function which is needed here anyway, it lives in
// this module. This also saves us from running the build script twice to generate code for the two
// separate crates.
impl FromStr for Opcode {
    type Err = &'static str;

    /// Parse an Opcode name from a string.
    fn from_str(s: &str) -> Result<Self, &'static str> {
        use crate::constant_hash::{probe, simple_hash, Table};

        impl<'a> Table<&'a str> for [Option<Opcode>] {
            fn len(&self) -> usize {
                self.len()
            }

            fn key(&self, idx: usize) -> Option<&'a str> {
                self[idx].map(opcode_name)
            }
        }

        match probe::<&str, [Option<Self>]>(&OPCODE_HASH_TABLE, s, simple_hash(s)) {
            Err(_) => Err("Unknown opcode"),
            // We unwrap here because probe() should have ensured that the entry
            // at this index is not None.
            Ok(i) => Ok(OPCODE_HASH_TABLE[i].unwrap()),
        }
    }
}

/// A variable list of `Value` operands used for function call arguments and passing arguments to
/// basic blocks.
#[derive(Clone, Debug)]
pub struct VariableArgs(Vec<Value>);

impl VariableArgs {
    /// Create an empty argument list.
    pub fn new() -> Self {
        Self(Vec::new())
    }

    /// Add an argument to the end.
    pub fn push(&mut self, v: Value) {
        self.0.push(v)
    }

    /// Check if the list is empty.
    pub fn is_empty(&self) -> bool {
        self.0.is_empty()
    }

    /// Convert this to a value list in `pool` with `fixed` prepended.
    pub fn into_value_list(self, fixed: &[Value], pool: &mut ValueListPool) -> ValueList {
        let mut vlist = ValueList::default();
        vlist.extend(fixed.iter().cloned(), pool);
        vlist.extend(self.0, pool);
        vlist
    }
}

// Coerce `VariableArgs` into a `&[Value]` slice.
impl Deref for VariableArgs {
    type Target = [Value];

    fn deref(&self) -> &[Value] {
        &self.0
    }
}

impl DerefMut for VariableArgs {
    fn deref_mut(&mut self) -> &mut [Value] {
        &mut self.0
    }
}

impl Display for VariableArgs {
    fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
        for (i, val) in self.0.iter().enumerate() {
            if i == 0 {
                write!(fmt, "{}", val)?;
            } else {
                write!(fmt, ", {}", val)?;
            }
        }
        Ok(())
    }
}

impl Default for VariableArgs {
    fn default() -> Self {
        Self::new()
    }
}

/// Analyzing an instruction.
///
/// Avoid large matches on instruction formats by using the methods defined here to examine
/// instructions.
impl InstructionData {
    /// Get the destinations of this instruction, if it's a branch.
    ///
    /// `br_table` returns the empty slice.
    pub fn branch_destination<'a>(&'a self, jump_tables: &'a ir::JumpTables) -> &[BlockCall] {
        match self {
            Self::Jump {
                ref destination, ..
            } => std::slice::from_ref(destination),
            Self::Brif { blocks, .. } => blocks.as_slice(),
            Self::BranchTable { table, .. } => jump_tables.get(*table).unwrap().all_branches(),
            _ => {
                debug_assert!(!self.opcode().is_branch());
                &[]
            }
        }
    }

    /// Get a mutable slice of the destinations of this instruction, if it's a branch.
    ///
    /// `br_table` returns the empty slice.
    pub fn branch_destination_mut<'a>(
        &'a mut self,
        jump_tables: &'a mut ir::JumpTables,
    ) -> &mut [BlockCall] {
        match self {
            Self::Jump {
                ref mut destination,
                ..
            } => std::slice::from_mut(destination),
            Self::Brif { blocks, .. } => blocks.as_mut_slice(),
            Self::BranchTable { table, .. } => {
                jump_tables.get_mut(*table).unwrap().all_branches_mut()
            }
            _ => {
                debug_assert!(!self.opcode().is_branch());
                &mut []
            }
        }
    }

    /// If this is a trapping instruction, get its trap code. Otherwise, return
    /// `None`.
    pub fn trap_code(&self) -> Option<TrapCode> {
        match *self {
            Self::CondTrap { code, .. } | Self::Trap { code, .. } => Some(code),
            _ => None,
        }
    }

    /// If this is a control-flow instruction depending on an integer condition, gets its
    /// condition.  Otherwise, return `None`.
    pub fn cond_code(&self) -> Option<IntCC> {
        match self {
            &InstructionData::IntCompare { cond, .. }
            | &InstructionData::IntCompareImm { cond, .. } => Some(cond),
            _ => None,
        }
    }

    /// If this is a control-flow instruction depending on a floating-point condition, gets its
    /// condition.  Otherwise, return `None`.
    pub fn fp_cond_code(&self) -> Option<FloatCC> {
        match self {
            &InstructionData::FloatCompare { cond, .. } => Some(cond),
            _ => None,
        }
    }

    /// If this is a trapping instruction, get an exclusive reference to its
    /// trap code. Otherwise, return `None`.
    pub fn trap_code_mut(&mut self) -> Option<&mut TrapCode> {
        match self {
            Self::CondTrap { code, .. } | Self::Trap { code, .. } => Some(code),
            _ => None,
        }
    }

    /// If this is an atomic read/modify/write instruction, return its subopcode.
    pub fn atomic_rmw_op(&self) -> Option<ir::AtomicRmwOp> {
        match self {
            &InstructionData::AtomicRmw { op, .. } => Some(op),
            _ => None,
        }
    }

    /// If this is a load/store instruction, returns its immediate offset.
    pub fn load_store_offset(&self) -> Option<i32> {
        match self {
            &InstructionData::Load { offset, .. }
            | &InstructionData::StackLoad { offset, .. }
            | &InstructionData::Store { offset, .. }
            | &InstructionData::StackStore { offset, .. } => Some(offset.into()),
            _ => None,
        }
    }

    /// If this is a load/store instruction, return its memory flags.
    pub fn memflags(&self) -> Option<MemFlags> {
        match self {
            &InstructionData::Load { flags, .. }
            | &InstructionData::LoadNoOffset { flags, .. }
            | &InstructionData::Store { flags, .. }
            | &InstructionData::StoreNoOffset { flags, .. }
            | &InstructionData::AtomicCas { flags, .. }
            | &InstructionData::AtomicRmw { flags, .. } => Some(flags),
            _ => None,
        }
    }

    /// If this instruction references a stack slot, return it
    pub fn stack_slot(&self) -> Option<StackSlot> {
        match self {
            &InstructionData::StackStore { stack_slot, .. }
            | &InstructionData::StackLoad { stack_slot, .. } => Some(stack_slot),
            _ => None,
        }
    }

    /// Return information about a call instruction.
    ///
    /// Any instruction that can call another function reveals its call signature here.
    pub fn analyze_call<'a>(&'a self, pool: &'a ValueListPool) -> CallInfo<'a> {
        match *self {
            Self::Call {
                func_ref, ref args, ..
            } => CallInfo::Direct(func_ref, args.as_slice(pool)),
            Self::CallIndirect {
                sig_ref, ref args, ..
            } => CallInfo::Indirect(sig_ref, &args.as_slice(pool)[1..]),
            _ => {
                debug_assert!(!self.opcode().is_call());
                CallInfo::NotACall
            }
        }
    }

    #[inline]
    pub(crate) fn sign_extend_immediates(&mut self, ctrl_typevar: Type) {
        if ctrl_typevar.is_invalid() {
            return;
        }

        let bit_width = ctrl_typevar.bits();

        match self {
            Self::BinaryImm64 {
                opcode,
                arg: _,
                imm,
            } => {
                if *opcode == Opcode::SdivImm || *opcode == Opcode::SremImm {
                    imm.sign_extend_from_width(bit_width);
                }
            }
            Self::IntCompareImm {
                opcode,
                arg: _,
                cond,
                imm,
            } => {
                debug_assert_eq!(*opcode, Opcode::IcmpImm);
                if cond.unsigned() != *cond {
                    imm.sign_extend_from_width(bit_width);
                }
            }
            _ => {}
        }
    }
}

/// Information about call instructions.
pub enum CallInfo<'a> {
    /// This is not a call instruction.
    NotACall,

    /// This is a direct call to an external function declared in the preamble. See
    /// `DataFlowGraph.ext_funcs`.
    Direct(FuncRef, &'a [Value]),

    /// This is an indirect call with the specified signature. See `DataFlowGraph.signatures`.
    Indirect(SigRef, &'a [Value]),
}

/// Value type constraints for a given opcode.
///
/// The `InstructionFormat` determines the constraints on most operands, but `Value` operands and
/// results are not determined by the format. Every `Opcode` has an associated
/// `OpcodeConstraints` object that provides the missing details.
#[derive(Clone, Copy)]
pub struct OpcodeConstraints {
    /// Flags for this opcode encoded as a bit field:
    ///
    /// Bits 0-2:
    ///     Number of fixed result values. This does not include `variable_args` results as are
    ///     produced by call instructions.
    ///
    /// Bit 3:
    ///     This opcode is polymorphic and the controlling type variable can be inferred from the
    ///     designated input operand. This is the `typevar_operand` index given to the
    ///     `InstructionFormat` meta language object. When this bit is not set, the controlling
    ///     type variable must be the first output value instead.
    ///
    /// Bit 4:
    ///     This opcode is polymorphic and the controlling type variable does *not* appear as the
    ///     first result type.
    ///
    /// Bits 5-7:
    ///     Number of fixed value arguments. The minimum required number of value operands.
    flags: u8,

    /// Permitted set of types for the controlling type variable as an index into `TYPE_SETS`.
    typeset_offset: u8,

    /// Offset into `OPERAND_CONSTRAINT` table of the descriptors for this opcode. The first
    /// `num_fixed_results()` entries describe the result constraints, then follows constraints for
    /// the fixed `Value` input operands. (`num_fixed_value_arguments()` of them).
    constraint_offset: u16,
}

impl OpcodeConstraints {
    /// Can the controlling type variable for this opcode be inferred from the designated value
    /// input operand?
    /// This also implies that this opcode is polymorphic.
    pub fn use_typevar_operand(self) -> bool {
        (self.flags & 0x8) != 0
    }

    /// Is it necessary to look at the designated value input operand in order to determine the
    /// controlling type variable, or is it good enough to use the first return type?
    ///
    /// Most polymorphic instructions produce a single result with the type of the controlling type
    /// variable. A few polymorphic instructions either don't produce any results, or produce
    /// results with a fixed type. These instructions return `true`.
    pub fn requires_typevar_operand(self) -> bool {
        (self.flags & 0x10) != 0
    }

    /// Get the number of *fixed* result values produced by this opcode.
    /// This does not include `variable_args` produced by calls.
    pub fn num_fixed_results(self) -> usize {
        (self.flags & 0x7) as usize
    }

    /// Get the number of *fixed* input values required by this opcode.
    ///
    /// This does not include `variable_args` arguments on call and branch instructions.
    ///
    /// The number of fixed input values is usually implied by the instruction format, but
    /// instruction formats that use a `ValueList` put both fixed and variable arguments in the
    /// list. This method returns the *minimum* number of values required in the value list.
    pub fn num_fixed_value_arguments(self) -> usize {
        ((self.flags >> 5) & 0x7) as usize
    }

    /// Get the offset into `TYPE_SETS` for the controlling type variable.
    /// Returns `None` if the instruction is not polymorphic.
    fn typeset_offset(self) -> Option<usize> {
        let offset = usize::from(self.typeset_offset);
        if offset < TYPE_SETS.len() {
            Some(offset)
        } else {
            None
        }
    }

    /// Get the offset into OPERAND_CONSTRAINTS where the descriptors for this opcode begin.
    fn constraint_offset(self) -> usize {
        self.constraint_offset as usize
    }

    /// Get the value type of result number `n`, having resolved the controlling type variable to
    /// `ctrl_type`.
    pub fn result_type(self, n: usize, ctrl_type: Type) -> Type {
        debug_assert!(n < self.num_fixed_results(), "Invalid result index");
        match OPERAND_CONSTRAINTS[self.constraint_offset() + n].resolve(ctrl_type) {
            ResolvedConstraint::Bound(t) => t,
            ResolvedConstraint::Free(ts) => panic!("Result constraints can't be free: {:?}", ts),
        }
    }

    /// Get the value type of input value number `n`, having resolved the controlling type variable
    /// to `ctrl_type`.
    ///
    /// Unlike results, it is possible for some input values to vary freely within a specific
    /// `ValueTypeSet`. This is represented with the `ArgumentConstraint::Free` variant.
    pub fn value_argument_constraint(self, n: usize, ctrl_type: Type) -> ResolvedConstraint {
        debug_assert!(
            n < self.num_fixed_value_arguments(),
            "Invalid value argument index"
        );
        let offset = self.constraint_offset() + self.num_fixed_results();
        OPERAND_CONSTRAINTS[offset + n].resolve(ctrl_type)
    }

    /// Get the typeset of allowed types for the controlling type variable in a polymorphic
    /// instruction.
    pub fn ctrl_typeset(self) -> Option<ValueTypeSet> {
        self.typeset_offset().map(|offset| TYPE_SETS[offset])
    }

    /// Is this instruction polymorphic?
    pub fn is_polymorphic(self) -> bool {
        self.ctrl_typeset().is_some()
    }
}

type BitSet8 = BitSet<u8>;
type BitSet16 = BitSet<u16>;

/// A value type set describes the permitted set of types for a type variable.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq)]
pub struct ValueTypeSet {
    /// Allowed lane sizes
    pub lanes: BitSet16,
    /// Allowed int widths
    pub ints: BitSet8,
    /// Allowed float widths
    pub floats: BitSet8,
    /// Allowed ref widths
    pub refs: BitSet8,
    /// Allowed dynamic vectors minimum lane sizes
    pub dynamic_lanes: BitSet16,
}

impl ValueTypeSet {
    /// Is `scalar` part of the base type set?
    ///
    /// Note that the base type set does not have to be included in the type set proper.
    fn is_base_type(self, scalar: Type) -> bool {
        let l2b = scalar.log2_lane_bits();
        if scalar.is_int() {
            self.ints.contains(l2b)
        } else if scalar.is_float() {
            self.floats.contains(l2b)
        } else if scalar.is_ref() {
            self.refs.contains(l2b)
        } else {
            false
        }
    }

    /// Does `typ` belong to this set?
    pub fn contains(self, typ: Type) -> bool {
        if typ.is_dynamic_vector() {
            let l2l = typ.log2_min_lane_count();
            self.dynamic_lanes.contains(l2l) && self.is_base_type(typ.lane_type())
        } else {
            let l2l = typ.log2_lane_count();
            self.lanes.contains(l2l) && self.is_base_type(typ.lane_type())
        }
    }

    /// Get an example member of this type set.
    ///
    /// This is used for error messages to avoid suggesting invalid types.
    pub fn example(self) -> Type {
        let t = if self.ints.max().unwrap_or(0) > 5 {
            types::I32
        } else if self.floats.max().unwrap_or(0) > 5 {
            types::F32
        } else {
            types::I8
        };
        t.by(1 << self.lanes.min().unwrap()).unwrap()
    }
}

/// Operand constraints. This describes the value type constraints on a single `Value` operand.
enum OperandConstraint {
    /// This operand has a concrete value type.
    Concrete(Type),

    /// This operand can vary freely within the given type set.
    /// The type set is identified by its index into the TYPE_SETS constant table.
    Free(u8),

    /// This operand is the same type as the controlling type variable.
    Same,

    /// This operand is `ctrlType.lane_of()`.
    LaneOf,

    /// This operand is `ctrlType.as_truthy()`.
    AsTruthy,

    /// This operand is `ctrlType.half_width()`.
    HalfWidth,

    /// This operand is `ctrlType.double_width()`.
    DoubleWidth,

    /// This operand is `ctrlType.split_lanes()`.
    SplitLanes,

    /// This operand is `ctrlType.merge_lanes()`.
    MergeLanes,

    /// This operands is `ctrlType.dynamic_to_vector()`.
    DynamicToVector,

    /// This operand is `ctrlType.narrower()`.
    Narrower,

    /// This operand is `ctrlType.wider()`.
    Wider,
}

impl OperandConstraint {
    /// Resolve this operand constraint into a concrete value type, given the value of the
    /// controlling type variable.
    pub fn resolve(&self, ctrl_type: Type) -> ResolvedConstraint {
        use self::OperandConstraint::*;
        use self::ResolvedConstraint::Bound;
        match *self {
            Concrete(t) => Bound(t),
            Free(vts) => ResolvedConstraint::Free(TYPE_SETS[vts as usize]),
            Same => Bound(ctrl_type),
            LaneOf => Bound(ctrl_type.lane_of()),
            AsTruthy => Bound(ctrl_type.as_truthy()),
            HalfWidth => Bound(ctrl_type.half_width().expect("invalid type for half_width")),
            DoubleWidth => Bound(
                ctrl_type
                    .double_width()
                    .expect("invalid type for double_width"),
            ),
            SplitLanes => {
                if ctrl_type.is_dynamic_vector() {
                    Bound(
                        ctrl_type
                            .dynamic_to_vector()
                            .expect("invalid type for dynamic_to_vector")
                            .split_lanes()
                            .expect("invalid type for split_lanes")
                            .vector_to_dynamic()
                            .expect("invalid dynamic type"),
                    )
                } else {
                    Bound(
                        ctrl_type
                            .split_lanes()
                            .expect("invalid type for split_lanes"),
                    )
                }
            }
            MergeLanes => {
                if ctrl_type.is_dynamic_vector() {
                    Bound(
                        ctrl_type
                            .dynamic_to_vector()
                            .expect("invalid type for dynamic_to_vector")
                            .merge_lanes()
                            .expect("invalid type for merge_lanes")
                            .vector_to_dynamic()
                            .expect("invalid dynamic type"),
                    )
                } else {
                    Bound(
                        ctrl_type
                            .merge_lanes()
                            .expect("invalid type for merge_lanes"),
                    )
                }
            }
            DynamicToVector => Bound(
                ctrl_type
                    .dynamic_to_vector()
                    .expect("invalid type for dynamic_to_vector"),
            ),
            Narrower => {
                let ctrl_type_bits = ctrl_type.log2_lane_bits();
                let mut tys = ValueTypeSet::default();

                // We're testing scalar values, only.
                tys.lanes = BitSet::from_range(0, 1);

                if ctrl_type.is_int() {
                    // The upper bound in from_range is exclusive, and we want to exclude the
                    // control type to construct the interval of [I8, ctrl_type).
                    tys.ints = BitSet8::from_range(3, ctrl_type_bits as u8);
                } else if ctrl_type.is_float() {
                    // The upper bound in from_range is exclusive, and we want to exclude the
                    // control type to construct the interval of [F32, ctrl_type).
                    tys.floats = BitSet8::from_range(5, ctrl_type_bits as u8);
                } else {
                    panic!("The Narrower constraint only operates on floats or ints");
                }
                ResolvedConstraint::Free(tys)
            }
            Wider => {
                let ctrl_type_bits = ctrl_type.log2_lane_bits();
                let mut tys = ValueTypeSet::default();

                // We're testing scalar values, only.
                tys.lanes = BitSet::from_range(0, 1);

                if ctrl_type.is_int() {
                    let lower_bound = ctrl_type_bits as u8 + 1;
                    // The largest integer type we can represent in `BitSet8` is I128, which is
                    // represented by bit 7 in the bit set. Adding one to exclude I128 from the
                    // lower bound would overflow as 2^8 doesn't fit in a u8, but this would
                    // already describe the empty set so instead we leave `ints` in its default
                    // empty state.
                    if lower_bound < BitSet8::bits() as u8 {
                        // The interval should include all types wider than `ctrl_type`, so we use
                        // `2^8` as the upper bound, and add one to the bits of `ctrl_type` to define
                        // the interval `(ctrl_type, I128]`.
                        tys.ints = BitSet8::from_range(lower_bound, 8);
                    }
                } else if ctrl_type.is_float() {
                    // The interval should include all float types wider than `ctrl_type`, so we
                    // use `2^7` as the upper bound, and add one to the bits of `ctrl_type` to
                    // define the interval `(ctrl_type, F64]`.
                    tys.floats = BitSet8::from_range(ctrl_type_bits as u8 + 1, 7);
                } else {
                    panic!("The Wider constraint only operates on floats or ints");
                }

                ResolvedConstraint::Free(tys)
            }
        }
    }
}

/// The type constraint on a value argument once the controlling type variable is known.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ResolvedConstraint {
    /// The operand is bound to a known type.
    Bound(Type),
    /// The operand type can vary freely within the given set.
    Free(ValueTypeSet),
}

#[cfg(test)]
mod tests {
    use super::*;
    use alloc::string::ToString;

    #[test]
    fn inst_data_is_copy() {
        fn is_copy<T: Copy>() {}
        is_copy::<InstructionData>();
    }

    #[test]
    fn inst_data_size() {
        // The size of `InstructionData` is performance sensitive, so make sure
        // we don't regress it unintentionally.
        assert_eq!(std::mem::size_of::<InstructionData>(), 16);
    }

    #[test]
    fn opcodes() {
        use core::mem;

        let x = Opcode::Iadd;
        let mut y = Opcode::Isub;

        assert!(x != y);
        y = Opcode::Iadd;
        assert_eq!(x, y);
        assert_eq!(x.format(), InstructionFormat::Binary);

        assert_eq!(format!("{:?}", Opcode::IaddImm), "IaddImm");
        assert_eq!(Opcode::IaddImm.to_string(), "iadd_imm");

        // Check the matcher.
        assert_eq!("iadd".parse::<Opcode>(), Ok(Opcode::Iadd));
        assert_eq!("iadd_imm".parse::<Opcode>(), Ok(Opcode::IaddImm));
        assert_eq!("iadd\0".parse::<Opcode>(), Err("Unknown opcode"));
        assert_eq!("".parse::<Opcode>(), Err("Unknown opcode"));
        assert_eq!("\0".parse::<Opcode>(), Err("Unknown opcode"));

        // Opcode is a single byte, and because Option<Opcode> originally came to 2 bytes, early on
        // Opcode included a variant NotAnOpcode to avoid the unnecessary bloat. Since then the Rust
        // compiler has brought in NonZero optimization, meaning that an enum not using the 0 value
        // can be optional for no size cost. We want to ensure Option<Opcode> remains small.
        assert_eq!(mem::size_of::<Opcode>(), mem::size_of::<Option<Opcode>>());
    }

    #[test]
    fn instruction_data() {
        use core::mem;
        // The size of the `InstructionData` enum is important for performance. It should not
        // exceed 16 bytes. Use `Box<FooData>` out-of-line payloads for instruction formats that
        // require more space than that. It would be fine with a data structure smaller than 16
        // bytes, but what are the odds of that?
        assert_eq!(mem::size_of::<InstructionData>(), 16);
    }

    #[test]
    fn constraints() {
        let a = Opcode::Iadd.constraints();
        assert!(a.use_typevar_operand());
        assert!(!a.requires_typevar_operand());
        assert_eq!(a.num_fixed_results(), 1);
        assert_eq!(a.num_fixed_value_arguments(), 2);
        assert_eq!(a.result_type(0, types::I32), types::I32);
        assert_eq!(a.result_type(0, types::I8), types::I8);
        assert_eq!(
            a.value_argument_constraint(0, types::I32),
            ResolvedConstraint::Bound(types::I32)
        );
        assert_eq!(
            a.value_argument_constraint(1, types::I32),
            ResolvedConstraint::Bound(types::I32)
        );

        let b = Opcode::Bitcast.constraints();
        assert!(!b.use_typevar_operand());
        assert!(!b.requires_typevar_operand());
        assert_eq!(b.num_fixed_results(), 1);
        assert_eq!(b.num_fixed_value_arguments(), 1);
        assert_eq!(b.result_type(0, types::I32), types::I32);
        assert_eq!(b.result_type(0, types::I8), types::I8);
        match b.value_argument_constraint(0, types::I32) {
            ResolvedConstraint::Free(vts) => assert!(vts.contains(types::F32)),
            _ => panic!("Unexpected constraint from value_argument_constraint"),
        }

        let c = Opcode::Call.constraints();
        assert_eq!(c.num_fixed_results(), 0);
        assert_eq!(c.num_fixed_value_arguments(), 0);

        let i = Opcode::CallIndirect.constraints();
        assert_eq!(i.num_fixed_results(), 0);
        assert_eq!(i.num_fixed_value_arguments(), 1);

        let cmp = Opcode::Icmp.constraints();
        assert!(cmp.use_typevar_operand());
        assert!(cmp.requires_typevar_operand());
        assert_eq!(cmp.num_fixed_results(), 1);
        assert_eq!(cmp.num_fixed_value_arguments(), 2);
        assert_eq!(cmp.result_type(0, types::I64), types::I8);
    }

    #[test]
    fn value_set() {
        use crate::ir::types::*;

        let vts = ValueTypeSet {
            lanes: BitSet16::from_range(0, 8),
            ints: BitSet8::from_range(4, 7),
            floats: BitSet8::from_range(0, 0),
            refs: BitSet8::from_range(5, 7),
            dynamic_lanes: BitSet16::from_range(0, 4),
        };
        assert!(!vts.contains(I8));
        assert!(vts.contains(I32));
        assert!(vts.contains(I64));
        assert!(vts.contains(I32X4));
        assert!(vts.contains(I32X4XN));
        assert!(!vts.contains(F32));
        assert!(vts.contains(R32));
        assert!(vts.contains(R64));
        assert_eq!(vts.example().to_string(), "i32");

        let vts = ValueTypeSet {
            lanes: BitSet16::from_range(0, 8),
            ints: BitSet8::from_range(0, 0),
            floats: BitSet8::from_range(5, 7),
            refs: BitSet8::from_range(0, 0),
            dynamic_lanes: BitSet16::from_range(0, 8),
        };
        assert_eq!(vts.example().to_string(), "f32");

        let vts = ValueTypeSet {
            lanes: BitSet16::from_range(1, 8),
            ints: BitSet8::from_range(0, 0),
            floats: BitSet8::from_range(5, 7),
            refs: BitSet8::from_range(0, 0),
            dynamic_lanes: BitSet16::from_range(0, 8),
        };
        assert_eq!(vts.example().to_string(), "f32x2");

        let vts = ValueTypeSet {
            lanes: BitSet16::from_range(2, 8),
            ints: BitSet8::from_range(3, 7),
            floats: BitSet8::from_range(0, 0),
            refs: BitSet8::from_range(0, 0),
            dynamic_lanes: BitSet16::from_range(0, 8),
        };
        assert_eq!(vts.example().to_string(), "i32x4");

        let vts = ValueTypeSet {
            // TypeSet(lanes=(1, 256), ints=(8, 64))
            lanes: BitSet16::from_range(0, 9),
            ints: BitSet8::from_range(3, 7),
            floats: BitSet8::from_range(0, 0),
            refs: BitSet8::from_range(0, 0),
            dynamic_lanes: BitSet16::from_range(0, 8),
        };
        assert!(vts.contains(I32));
        assert!(vts.contains(I32X4));
        assert!(!vts.contains(R32));
        assert!(!vts.contains(R64));
    }
}