cranelift_codegen/machinst/vcode.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
//! This implements the VCode container: a CFG of Insts that have been lowered.
//!
//! VCode is virtual-register code. An instruction in VCode is almost a machine
//! instruction; however, its register slots can refer to virtual registers in
//! addition to real machine registers.
//!
//! VCode is structured with traditional basic blocks, and
//! each block must be terminated by an unconditional branch (one target), a
//! conditional branch (two targets), or a return (no targets). Note that this
//! slightly differs from the machine code of most ISAs: in most ISAs, a
//! conditional branch has one target (and the not-taken case falls through).
//! However, we expect that machine backends will elide branches to the following
//! block (i.e., zero-offset jumps), and will be able to codegen a branch-cond /
//! branch-uncond pair if *both* targets are not fallthrough. This allows us to
//! play with layout prior to final binary emission, as well, if we want.
//!
//! See the main module comment in `mod.rs` for more details on the VCode-based
//! backend pipeline.
use crate::ir::pcc::*;
use crate::ir::{self, types, Constant, ConstantData, ValueLabel};
use crate::machinst::*;
use crate::ranges::Ranges;
use crate::timing;
use crate::trace;
use crate::CodegenError;
use crate::{LabelValueLoc, ValueLocRange};
use regalloc2::{
Edit, Function as RegallocFunction, InstOrEdit, InstRange, MachineEnv, Operand,
OperandConstraint, OperandKind, PRegSet, RegClass,
};
use rustc_hash::FxHashMap;
use core::mem::take;
use cranelift_entity::{entity_impl, Keys};
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::fmt;
/// Index referring to an instruction in VCode.
pub type InsnIndex = regalloc2::Inst;
/// Extension trait for `InsnIndex` to allow conversion to a
/// `BackwardsInsnIndex`.
trait ToBackwardsInsnIndex {
fn to_backwards_insn_index(&self, num_insts: usize) -> BackwardsInsnIndex;
}
impl ToBackwardsInsnIndex for InsnIndex {
fn to_backwards_insn_index(&self, num_insts: usize) -> BackwardsInsnIndex {
BackwardsInsnIndex::new(num_insts - self.index() - 1)
}
}
/// An index referring to an instruction in the VCode when it is backwards,
/// during VCode construction.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(
feature = "enable-serde",
derive(::serde::Serialize, ::serde::Deserialize)
)]
pub struct BackwardsInsnIndex(InsnIndex);
impl BackwardsInsnIndex {
pub fn new(i: usize) -> Self {
BackwardsInsnIndex(InsnIndex::new(i))
}
}
/// Index referring to a basic block in VCode.
pub type BlockIndex = regalloc2::Block;
/// VCodeInst wraps all requirements for a MachInst to be in VCode: it must be
/// a `MachInst` and it must be able to emit itself at least to a `SizeCodeSink`.
pub trait VCodeInst: MachInst + MachInstEmit {}
impl<I: MachInst + MachInstEmit> VCodeInst for I {}
/// A function in "VCode" (virtualized-register code) form, after
/// lowering. This is essentially a standard CFG of basic blocks,
/// where each basic block consists of lowered instructions produced
/// by the machine-specific backend.
///
/// Note that the VCode is immutable once produced, and is not
/// modified by register allocation in particular. Rather, register
/// allocation on the `VCode` produces a separate `regalloc2::Output`
/// struct, and this can be passed to `emit`. `emit` in turn does not
/// modify the vcode, but produces an `EmitResult`, which contains the
/// machine code itself, and the associated disassembly and/or
/// metadata as requested.
pub struct VCode<I: VCodeInst> {
/// VReg IR-level types.
vreg_types: Vec<Type>,
/// Lowered machine instructions in order corresponding to the original IR.
insts: Vec<I>,
/// A map from backwards instruction index to the user stack map for that
/// instruction.
///
/// This is a sparse side table that only has entries for instructions that
/// are safepoints, and only for a subset of those that have an associated
/// user stack map.
user_stack_maps: FxHashMap<BackwardsInsnIndex, ir::UserStackMap>,
/// Operands: pre-regalloc references to virtual registers with
/// constraints, in one flattened array. This allows the regalloc
/// to efficiently access all operands without requiring expensive
/// matches or method invocations on insts.
operands: Vec<Operand>,
/// Operand index ranges: for each instruction in `insts`, there
/// is a tuple here providing the range in `operands` for that
/// instruction's operands.
operand_ranges: Ranges,
/// Clobbers: a sparse map from instruction indices to clobber masks.
clobbers: FxHashMap<InsnIndex, PRegSet>,
/// Source locations for each instruction. (`SourceLoc` is a `u32`, so it is
/// reasonable to keep one of these per instruction.)
srclocs: Vec<RelSourceLoc>,
/// Entry block.
entry: BlockIndex,
/// Block instruction indices.
block_ranges: Ranges,
/// Block successors: index range in the `block_succs` list.
block_succ_range: Ranges,
/// Block successor lists, concatenated into one vec. The
/// `block_succ_range` list of tuples above gives (start, end)
/// ranges within this list that correspond to each basic block's
/// successors.
block_succs: Vec<regalloc2::Block>,
/// Block predecessors: index range in the `block_preds` list.
block_pred_range: Ranges,
/// Block predecessor lists, concatenated into one vec. The
/// `block_pred_range` list of tuples above gives (start, end)
/// ranges within this list that correspond to each basic block's
/// predecessors.
block_preds: Vec<regalloc2::Block>,
/// Block parameters: index range in `block_params` below.
block_params_range: Ranges,
/// Block parameter lists, concatenated into one vec. The
/// `block_params_range` list of tuples above gives (start, end)
/// ranges within this list that correspond to each basic block's
/// blockparam vregs.
block_params: Vec<regalloc2::VReg>,
/// Outgoing block arguments on branch instructions, concatenated
/// into one list.
///
/// Note that this is conceptually a 3D array: we have a VReg list
/// per block, per successor. We flatten those three dimensions
/// into this 1D vec, then store index ranges in two levels of
/// indirection.
///
/// Indexed by the indices in `branch_block_arg_succ_range`.
branch_block_args: Vec<regalloc2::VReg>,
/// Array of sequences of (start, end) tuples in
/// `branch_block_args`, one for each successor; these sequences
/// for each block are concatenated.
///
/// Indexed by the indices in `branch_block_arg_succ_range`.
branch_block_arg_range: Ranges,
/// For a given block, indices in `branch_block_arg_range`
/// corresponding to all of its successors.
branch_block_arg_succ_range: Ranges,
/// Block-order information.
block_order: BlockLoweringOrder,
/// ABI object.
pub(crate) abi: Callee<I::ABIMachineSpec>,
/// Constant information used during code emission. This should be
/// immutable across function compilations within the same module.
emit_info: I::Info,
/// Constants.
pub(crate) constants: VCodeConstants,
/// Value labels for debuginfo attached to vregs.
debug_value_labels: Vec<(VReg, InsnIndex, InsnIndex, u32)>,
pub(crate) sigs: SigSet,
/// Facts on VRegs, for proof-carrying code verification.
facts: Vec<Option<Fact>>,
}
/// The result of `VCode::emit`. Contains all information computed
/// during emission: actual machine code, optionally a disassembly,
/// and optionally metadata about the code layout.
pub struct EmitResult {
/// The MachBuffer containing the machine code.
pub buffer: MachBufferFinalized<Stencil>,
/// Offset of each basic block, recorded during emission. Computed
/// only if `debug_value_labels` is non-empty.
pub bb_offsets: Vec<CodeOffset>,
/// Final basic-block edges, in terms of code offsets of
/// bb-starts. Computed only if `debug_value_labels` is non-empty.
pub bb_edges: Vec<(CodeOffset, CodeOffset)>,
/// Final length of function body.
pub func_body_len: CodeOffset,
/// The pretty-printed disassembly, if any. This uses the same
/// pretty-printing for MachInsts as the pre-regalloc VCode Debug
/// implementation, but additionally includes the prologue and
/// epilogue(s), and makes use of the regalloc results.
pub disasm: Option<String>,
/// Offsets of sized stackslots.
pub sized_stackslot_offsets: PrimaryMap<StackSlot, u32>,
/// Offsets of dynamic stackslots.
pub dynamic_stackslot_offsets: PrimaryMap<DynamicStackSlot, u32>,
/// Value-labels information (debug metadata).
pub value_labels_ranges: ValueLabelsRanges,
/// Stack frame size.
pub frame_size: u32,
}
/// A builder for a VCode function body.
///
/// This builder has the ability to accept instructions in either
/// forward or reverse order, depending on the pass direction that
/// produces the VCode. The lowering from CLIF to VCode<MachInst>
/// ordinarily occurs in reverse order (in order to allow instructions
/// to be lowered only if used, and not merged) so a reversal will
/// occur at the end of lowering to ensure the VCode is in machine
/// order.
///
/// If built in reverse, block and instruction indices used once the
/// VCode is built are relative to the final (reversed) order, not the
/// order of construction. Note that this means we do not know the
/// final block or instruction indices when building, so we do not
/// hand them out. (The user is assumed to know them when appending
/// terminator instructions with successor blocks.)
pub struct VCodeBuilder<I: VCodeInst> {
/// In-progress VCode.
pub(crate) vcode: VCode<I>,
/// In what direction is the build occurring?
direction: VCodeBuildDirection,
/// Debug-value label in-progress map, keyed by label. For each
/// label, we keep disjoint ranges mapping to vregs. We'll flatten
/// this into (vreg, range, label) tuples when done.
debug_info: FxHashMap<ValueLabel, Vec<(InsnIndex, InsnIndex, VReg)>>,
}
/// Direction in which a VCodeBuilder builds VCode.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum VCodeBuildDirection {
// TODO: add `Forward` once we need it and can test it adequately.
/// Backward-build pass: we expect the producer to call `emit()`
/// with instructions in reverse program order within each block.
Backward,
}
impl<I: VCodeInst> VCodeBuilder<I> {
/// Create a new VCodeBuilder.
pub fn new(
sigs: SigSet,
abi: Callee<I::ABIMachineSpec>,
emit_info: I::Info,
block_order: BlockLoweringOrder,
constants: VCodeConstants,
direction: VCodeBuildDirection,
) -> Self {
let vcode = VCode::new(sigs, abi, emit_info, block_order, constants);
VCodeBuilder {
vcode,
direction,
debug_info: FxHashMap::default(),
}
}
pub fn init_retval_area(&mut self, vregs: &mut VRegAllocator<I>) -> CodegenResult<()> {
self.vcode.abi.init_retval_area(&self.vcode.sigs, vregs)
}
/// Access the ABI object.
pub fn abi(&self) -> &Callee<I::ABIMachineSpec> {
&self.vcode.abi
}
/// Access the ABI object.
pub fn abi_mut(&mut self) -> &mut Callee<I::ABIMachineSpec> {
&mut self.vcode.abi
}
pub fn sigs(&self) -> &SigSet {
&self.vcode.sigs
}
pub fn sigs_mut(&mut self) -> &mut SigSet {
&mut self.vcode.sigs
}
/// Access to the BlockLoweringOrder object.
pub fn block_order(&self) -> &BlockLoweringOrder {
&self.vcode.block_order
}
/// Set the current block as the entry block.
pub fn set_entry(&mut self, block: BlockIndex) {
self.vcode.entry = block;
}
/// End the current basic block. Must be called after emitting vcode insts
/// for IR insts and prior to ending the function (building the VCode).
pub fn end_bb(&mut self) {
let end_idx = self.vcode.insts.len();
// Add the instruction index range to the list of blocks.
self.vcode.block_ranges.push_end(end_idx);
// End the successors list.
let succ_end = self.vcode.block_succs.len();
self.vcode.block_succ_range.push_end(succ_end);
// End the blockparams list.
let block_params_end = self.vcode.block_params.len();
self.vcode.block_params_range.push_end(block_params_end);
// End the branch blockparam args list.
let branch_block_arg_succ_end = self.vcode.branch_block_arg_range.len();
self.vcode
.branch_block_arg_succ_range
.push_end(branch_block_arg_succ_end);
}
pub fn add_block_param(&mut self, param: VirtualReg) {
self.vcode.block_params.push(param.into());
}
fn add_branch_args_for_succ(&mut self, args: &[Reg]) {
self.vcode
.branch_block_args
.extend(args.iter().map(|&arg| VReg::from(arg)));
let end = self.vcode.branch_block_args.len();
self.vcode.branch_block_arg_range.push_end(end);
}
/// Push an instruction for the current BB and current IR inst
/// within the BB.
pub fn push(&mut self, insn: I, loc: RelSourceLoc) {
self.vcode.insts.push(insn);
self.vcode.srclocs.push(loc);
}
/// Add a successor block with branch args.
pub fn add_succ(&mut self, block: BlockIndex, args: &[Reg]) {
self.vcode.block_succs.push(block);
self.add_branch_args_for_succ(args);
}
/// Add a debug value label to a register.
pub fn add_value_label(&mut self, reg: Reg, label: ValueLabel) {
// We'll fix up labels in reverse(). Because we're generating
// code bottom-to-top, the liverange of the label goes *from*
// the last index at which was defined (or 0, which is the end
// of the eventual function) *to* just this instruction, and
// no further.
let inst = InsnIndex::new(self.vcode.insts.len());
let labels = self.debug_info.entry(label).or_insert_with(|| vec![]);
let last = labels
.last()
.map(|(_start, end, _vreg)| *end)
.unwrap_or(InsnIndex::new(0));
labels.push((last, inst, reg.into()));
}
/// Access the constants.
pub fn constants(&mut self) -> &mut VCodeConstants {
&mut self.vcode.constants
}
fn compute_preds_from_succs(&mut self) {
// Do a linear-time counting sort: first determine how many
// times each block appears as a successor.
let mut starts = vec![0u32; self.vcode.num_blocks()];
for succ in &self.vcode.block_succs {
starts[succ.index()] += 1;
}
// Determine for each block the starting index where that
// block's predecessors should go. This is equivalent to the
// ranges we need to store in block_pred_range.
self.vcode.block_pred_range.reserve(starts.len());
let mut end = 0;
for count in starts.iter_mut() {
let start = end;
end += *count;
*count = start;
self.vcode.block_pred_range.push_end(end as usize);
}
let end = end as usize;
debug_assert_eq!(end, self.vcode.block_succs.len());
// Walk over the successors again, this time grouped by
// predecessor, and push the predecessor at the current
// starting position of each of its successors. We build
// each group of predecessors in whatever order Ranges::iter
// returns them; regalloc2 doesn't care.
self.vcode.block_preds.resize(end, BlockIndex::invalid());
for (pred, range) in self.vcode.block_succ_range.iter() {
let pred = BlockIndex::new(pred);
for succ in &self.vcode.block_succs[range] {
let pos = &mut starts[succ.index()];
self.vcode.block_preds[*pos as usize] = pred;
*pos += 1;
}
}
debug_assert!(self.vcode.block_preds.iter().all(|pred| pred.is_valid()));
}
/// Called once, when a build in Backward order is complete, to
/// perform the overall reversal (into final forward order) and
/// finalize metadata accordingly.
fn reverse_and_finalize(&mut self, vregs: &VRegAllocator<I>) {
let n_insts = self.vcode.insts.len();
if n_insts == 0 {
return;
}
// Reverse the per-block and per-inst sequences.
self.vcode.block_ranges.reverse_index();
self.vcode.block_ranges.reverse_target(n_insts);
// block_params_range is indexed by block (and blocks were
// traversed in reverse) so we reverse it; but block-param
// sequences in the concatenated vec can remain in reverse
// order (it is effectively an arena of arbitrarily-placed
// referenced sequences).
self.vcode.block_params_range.reverse_index();
// Likewise, we reverse block_succ_range, but the block_succ
// concatenated array can remain as-is.
self.vcode.block_succ_range.reverse_index();
self.vcode.insts.reverse();
self.vcode.srclocs.reverse();
// Likewise, branch_block_arg_succ_range is indexed by block
// so must be reversed.
self.vcode.branch_block_arg_succ_range.reverse_index();
// To translate an instruction index *endpoint* in reversed
// order to forward order, compute `n_insts - i`.
//
// Why not `n_insts - 1 - i`? That would be correct to
// translate an individual instruction index (for ten insts 0
// to 9 inclusive, inst 0 becomes 9, and inst 9 becomes
// 0). But for the usual inclusive-start, exclusive-end range
// idiom, inclusive starts become exclusive ends and
// vice-versa, so e.g. an (inclusive) start of 0 becomes an
// (exclusive) end of 10.
let translate = |inst: InsnIndex| InsnIndex::new(n_insts - inst.index());
// Generate debug-value labels based on per-label maps.
for (label, tuples) in &self.debug_info {
for &(start, end, vreg) in tuples {
let vreg = vregs.resolve_vreg_alias(vreg);
let fwd_start = translate(end);
let fwd_end = translate(start);
self.vcode
.debug_value_labels
.push((vreg, fwd_start, fwd_end, label.as_u32()));
}
}
// Now sort debug value labels by VReg, as required
// by regalloc2.
self.vcode
.debug_value_labels
.sort_unstable_by_key(|(vreg, _, _, _)| *vreg);
}
fn collect_operands(&mut self, vregs: &VRegAllocator<I>) {
let allocatable = PRegSet::from(self.vcode.machine_env());
for (i, insn) in self.vcode.insts.iter_mut().enumerate() {
// Push operands from the instruction onto the operand list.
//
// We rename through the vreg alias table as we collect
// the operands. This is better than a separate post-pass
// over operands, because it has more cache locality:
// operands only need to pass through L1 once. This is
// also better than renaming instructions'
// operands/registers while lowering, because here we only
// need to do the `match` over the instruction to visit
// its register fields (which is slow, branchy code) once.
let mut op_collector =
OperandCollector::new(&mut self.vcode.operands, allocatable, |vreg| {
vregs.resolve_vreg_alias(vreg)
});
insn.get_operands(&mut op_collector);
let (ops, clobbers) = op_collector.finish();
self.vcode.operand_ranges.push_end(ops);
if clobbers != PRegSet::default() {
self.vcode.clobbers.insert(InsnIndex::new(i), clobbers);
}
if let Some((dst, src)) = insn.is_move() {
// We should never see non-virtual registers present in move
// instructions.
assert!(
src.is_virtual(),
"the real register {src:?} was used as the source of a move instruction"
);
assert!(
dst.to_reg().is_virtual(),
"the real register {:?} was used as the destination of a move instruction",
dst.to_reg()
);
}
}
// Translate blockparam args via the vreg aliases table as well.
for arg in &mut self.vcode.branch_block_args {
let new_arg = vregs.resolve_vreg_alias(*arg);
trace!("operandcollector: block arg {:?} -> {:?}", arg, new_arg);
*arg = new_arg;
}
}
/// Build the final VCode.
pub fn build(mut self, mut vregs: VRegAllocator<I>) -> VCode<I> {
self.vcode.vreg_types = take(&mut vregs.vreg_types);
self.vcode.facts = take(&mut vregs.facts);
if self.direction == VCodeBuildDirection::Backward {
self.reverse_and_finalize(&vregs);
}
self.collect_operands(&vregs);
self.compute_preds_from_succs();
self.vcode.debug_value_labels.sort_unstable();
// At this point, nothing in the vcode should mention any
// VReg which has been aliased. All the appropriate rewriting
// should have happened above. Just to be sure, let's
// double-check each field which has vregs.
// Note: can't easily check vcode.insts, resolved in collect_operands.
// Operands are resolved in collect_operands.
vregs.debug_assert_no_vreg_aliases(self.vcode.operands.iter().map(|op| op.vreg()));
// Currently block params are never aliased to another vreg.
vregs.debug_assert_no_vreg_aliases(self.vcode.block_params.iter().copied());
// Branch block args are resolved in collect_operands.
vregs.debug_assert_no_vreg_aliases(self.vcode.branch_block_args.iter().copied());
// Debug value labels are resolved in reverse_and_finalize.
vregs.debug_assert_no_vreg_aliases(
self.vcode.debug_value_labels.iter().map(|&(vreg, ..)| vreg),
);
// Facts are resolved eagerly during set_vreg_alias.
vregs.debug_assert_no_vreg_aliases(
self.vcode
.facts
.iter()
.zip(&vregs.vreg_types)
.enumerate()
.filter(|(_, (fact, _))| fact.is_some())
.map(|(vreg, (_, &ty))| {
let (regclasses, _) = I::rc_for_type(ty).unwrap();
VReg::new(vreg, regclasses[0])
}),
);
self.vcode
}
/// Add a user stack map for the associated instruction.
pub fn add_user_stack_map(
&mut self,
inst: BackwardsInsnIndex,
entries: &[ir::UserStackMapEntry],
) {
let stack_map = ir::UserStackMap::new(entries, self.vcode.abi.sized_stackslot_offsets());
let old_entry = self.vcode.user_stack_maps.insert(inst, stack_map);
debug_assert!(old_entry.is_none());
}
}
const NO_INST_OFFSET: CodeOffset = u32::MAX;
impl<I: VCodeInst> VCode<I> {
/// New empty VCode.
fn new(
sigs: SigSet,
abi: Callee<I::ABIMachineSpec>,
emit_info: I::Info,
block_order: BlockLoweringOrder,
constants: VCodeConstants,
) -> Self {
let n_blocks = block_order.lowered_order().len();
VCode {
sigs,
vreg_types: vec![],
insts: Vec::with_capacity(10 * n_blocks),
user_stack_maps: FxHashMap::default(),
operands: Vec::with_capacity(30 * n_blocks),
operand_ranges: Ranges::with_capacity(10 * n_blocks),
clobbers: FxHashMap::default(),
srclocs: Vec::with_capacity(10 * n_blocks),
entry: BlockIndex::new(0),
block_ranges: Ranges::with_capacity(n_blocks),
block_succ_range: Ranges::with_capacity(n_blocks),
block_succs: Vec::with_capacity(n_blocks),
block_pred_range: Ranges::default(),
block_preds: Vec::new(),
block_params_range: Ranges::with_capacity(n_blocks),
block_params: Vec::with_capacity(5 * n_blocks),
branch_block_args: Vec::with_capacity(10 * n_blocks),
branch_block_arg_range: Ranges::with_capacity(2 * n_blocks),
branch_block_arg_succ_range: Ranges::with_capacity(n_blocks),
block_order,
abi,
emit_info,
constants,
debug_value_labels: vec![],
facts: vec![],
}
}
/// Get the ABI-dependent MachineEnv for managing register allocation.
pub fn machine_env(&self) -> &MachineEnv {
self.abi.machine_env(&self.sigs)
}
/// Get the number of blocks. Block indices will be in the range `0 ..
/// (self.num_blocks() - 1)`.
pub fn num_blocks(&self) -> usize {
self.block_ranges.len()
}
/// The number of lowered instructions.
pub fn num_insts(&self) -> usize {
self.insts.len()
}
fn compute_clobbers(&self, regalloc: ®alloc2::Output) -> Vec<Writable<RealReg>> {
let mut clobbered = PRegSet::default();
// All moves are included in clobbers.
for (_, Edit::Move { to, .. }) in ®alloc.edits {
if let Some(preg) = to.as_reg() {
clobbered.add(preg);
}
}
for (i, range) in self.operand_ranges.iter() {
// Skip this instruction if not "included in clobbers" as
// per the MachInst. (Some backends use this to implement
// ABI specifics; e.g., excluding calls of the same ABI as
// the current function from clobbers, because by
// definition everything clobbered by the call can be
// clobbered by this function without saving as well.)
if !self.insts[i].is_included_in_clobbers() {
continue;
}
let operands = &self.operands[range.clone()];
let allocs = ®alloc.allocs[range];
for (operand, alloc) in operands.iter().zip(allocs.iter()) {
if operand.kind() == OperandKind::Def {
if let Some(preg) = alloc.as_reg() {
clobbered.add(preg);
}
}
}
// Also add explicitly-clobbered registers.
if let Some(&inst_clobbered) = self.clobbers.get(&InsnIndex::new(i)) {
clobbered.union_from(inst_clobbered);
}
}
clobbered
.into_iter()
.map(|preg| Writable::from_reg(RealReg::from(preg)))
.collect()
}
/// Emit the instructions to a `MachBuffer`, containing fixed-up
/// code and external reloc/trap/etc. records ready for use. Takes
/// the regalloc results as well.
///
/// Returns the machine code itself, and optionally metadata
/// and/or a disassembly, as an `EmitResult`. The `VCode` itself
/// is consumed by the emission process.
pub fn emit(
mut self,
regalloc: ®alloc2::Output,
want_disasm: bool,
flags: &settings::Flags,
ctrl_plane: &mut ControlPlane,
) -> EmitResult
where
I: VCodeInst,
{
// To write into disasm string.
use core::fmt::Write;
let _tt = timing::vcode_emit();
let mut buffer = MachBuffer::new();
let mut bb_starts: Vec<Option<CodeOffset>> = vec![];
// The first M MachLabels are reserved for block indices.
buffer.reserve_labels_for_blocks(self.num_blocks());
// Register all allocated constants with the `MachBuffer` to ensure that
// any references to the constants during instructions can be handled
// correctly.
buffer.register_constants(&self.constants);
// Construct the final order we emit code in: cold blocks at the end.
let mut final_order: SmallVec<[BlockIndex; 16]> = smallvec![];
let mut cold_blocks: SmallVec<[BlockIndex; 16]> = smallvec![];
for block in 0..self.num_blocks() {
let block = BlockIndex::new(block);
if self.block_order.is_cold(block) {
cold_blocks.push(block);
} else {
final_order.push(block);
}
}
final_order.extend(cold_blocks.clone());
// Compute/save info we need for the prologue: clobbers and
// number of spillslots.
//
// We clone `abi` here because we will mutate it as we
// generate the prologue and set other info, but we can't
// mutate `VCode`. The info it usually carries prior to
// setting clobbers is fairly minimal so this should be
// relatively cheap.
let clobbers = self.compute_clobbers(regalloc);
self.abi
.compute_frame_layout(&self.sigs, regalloc.num_spillslots, clobbers);
// Emit blocks.
let mut cur_srcloc = None;
let mut last_offset = None;
let mut inst_offsets = vec![];
let mut state = I::State::new(&self.abi, std::mem::take(ctrl_plane));
let mut disasm = String::new();
if !self.debug_value_labels.is_empty() {
inst_offsets.resize(self.insts.len(), NO_INST_OFFSET);
}
// Count edits per block ahead of time; this is needed for
// lookahead island emission. (We could derive it per-block
// with binary search in the edit list, but it's more
// efficient to do it in one pass here.)
let mut ra_edits_per_block: SmallVec<[u32; 64]> = smallvec![];
let mut edit_idx = 0;
for block in 0..self.num_blocks() {
let end_inst = InsnIndex::new(self.block_ranges.get(block).end);
let start_edit_idx = edit_idx;
while edit_idx < regalloc.edits.len() && regalloc.edits[edit_idx].0.inst() < end_inst {
edit_idx += 1;
}
let end_edit_idx = edit_idx;
ra_edits_per_block.push((end_edit_idx - start_edit_idx) as u32);
}
let is_forward_edge_cfi_enabled = self.abi.is_forward_edge_cfi_enabled();
let mut bb_padding = match flags.bb_padding_log2_minus_one() {
0 => Vec::new(),
n => vec![0; 1 << (n - 1)],
};
let mut total_bb_padding = 0;
for (block_order_idx, &block) in final_order.iter().enumerate() {
trace!("emitting block {:?}", block);
// Call the new block hook for state
state.on_new_block();
// Emit NOPs to align the block.
let new_offset = I::align_basic_block(buffer.cur_offset());
while new_offset > buffer.cur_offset() {
// Pad with NOPs up to the aligned block offset.
let nop = I::gen_nop((new_offset - buffer.cur_offset()) as usize);
nop.emit(&mut buffer, &self.emit_info, &mut Default::default());
}
assert_eq!(buffer.cur_offset(), new_offset);
let do_emit = |inst: &I,
disasm: &mut String,
buffer: &mut MachBuffer<I>,
state: &mut I::State| {
if want_disasm && !inst.is_args() {
let mut s = state.clone();
writeln!(disasm, " {}", inst.pretty_print_inst(&mut s)).unwrap();
}
inst.emit(buffer, &self.emit_info, state);
};
// Is this the first block? Emit the prologue directly if so.
if block == self.entry {
trace!(" -> entry block");
buffer.start_srcloc(Default::default());
for inst in &self.abi.gen_prologue() {
do_emit(&inst, &mut disasm, &mut buffer, &mut state);
}
buffer.end_srcloc();
}
// Now emit the regular block body.
buffer.bind_label(MachLabel::from_block(block), state.ctrl_plane_mut());
if want_disasm {
writeln!(&mut disasm, "block{}:", block.index()).unwrap();
}
if flags.machine_code_cfg_info() {
// Track BB starts. If we have backed up due to MachBuffer
// branch opts, note that the removed blocks were removed.
let cur_offset = buffer.cur_offset();
if last_offset.is_some() && cur_offset <= last_offset.unwrap() {
for i in (0..bb_starts.len()).rev() {
if bb_starts[i].is_some() && cur_offset > bb_starts[i].unwrap() {
break;
}
bb_starts[i] = None;
}
}
bb_starts.push(Some(cur_offset));
last_offset = Some(cur_offset);
}
if let Some(block_start) = I::gen_block_start(
self.block_order.is_indirect_branch_target(block),
is_forward_edge_cfi_enabled,
) {
do_emit(&block_start, &mut disasm, &mut buffer, &mut state);
}
for inst_or_edit in regalloc.block_insts_and_edits(&self, block) {
match inst_or_edit {
InstOrEdit::Inst(iix) => {
if !self.debug_value_labels.is_empty() {
// If we need to produce debug info,
// record the offset of each instruction
// so that we can translate value-label
// ranges to machine-code offsets.
// Cold blocks violate monotonicity
// assumptions elsewhere (that
// instructions in inst-index order are in
// order in machine code), so we omit
// their offsets here. Value-label range
// generation below will skip empty ranges
// and ranges with to-offsets of zero.
if !self.block_order.is_cold(block) {
inst_offsets[iix.index()] = buffer.cur_offset();
}
}
// Update the srcloc at this point in the buffer.
let srcloc = self.srclocs[iix.index()];
if cur_srcloc != Some(srcloc) {
if cur_srcloc.is_some() {
buffer.end_srcloc();
}
buffer.start_srcloc(srcloc);
cur_srcloc = Some(srcloc);
}
// If this is a safepoint, compute a stack map
// and pass it to the emit state.
let stack_map_disasm = if self.insts[iix.index()].is_safepoint() {
let (user_stack_map, user_stack_map_disasm) = {
// The `user_stack_maps` is keyed by reverse
// instruction index, so we must flip the
// index. We can't put this into a helper method
// due to borrowck issues because parts of
// `self` are borrowed mutably elsewhere in this
// function.
let index = iix.to_backwards_insn_index(self.num_insts());
let user_stack_map = self.user_stack_maps.remove(&index);
let user_stack_map_disasm =
user_stack_map.as_ref().map(|m| format!(" ; {m:?}"));
(user_stack_map, user_stack_map_disasm)
};
state.pre_safepoint(user_stack_map);
user_stack_map_disasm
} else {
None
};
// If the instruction we are about to emit is
// a return, place an epilogue at this point
// (and don't emit the return; the actual
// epilogue will contain it).
if self.insts[iix.index()].is_term() == MachTerminator::Ret {
for inst in self.abi.gen_epilogue() {
do_emit(&inst, &mut disasm, &mut buffer, &mut state);
}
} else {
// Update the operands for this inst using the
// allocations from the regalloc result.
let mut allocs = regalloc.inst_allocs(iix).iter();
self.insts[iix.index()].get_operands(
&mut |reg: &mut Reg, constraint, _kind, _pos| {
let alloc = allocs
.next()
.expect("enough allocations for all operands")
.as_reg()
.expect("only register allocations, not stack allocations")
.into();
if let OperandConstraint::FixedReg(rreg) = constraint {
debug_assert_eq!(Reg::from(rreg), alloc);
}
*reg = alloc;
},
);
debug_assert!(allocs.next().is_none());
// Emit the instruction!
do_emit(
&self.insts[iix.index()],
&mut disasm,
&mut buffer,
&mut state,
);
if let Some(stack_map_disasm) = stack_map_disasm {
disasm.push_str(&stack_map_disasm);
disasm.push('\n');
}
}
}
InstOrEdit::Edit(Edit::Move { from, to }) => {
// Create a move/spill/reload instruction and
// immediately emit it.
match (from.as_reg(), to.as_reg()) {
(Some(from), Some(to)) => {
// Reg-to-reg move.
let from_rreg = Reg::from(from);
let to_rreg = Writable::from_reg(Reg::from(to));
debug_assert_eq!(from.class(), to.class());
let ty = I::canonical_type_for_rc(from.class());
let mv = I::gen_move(to_rreg, from_rreg, ty);
do_emit(&mv, &mut disasm, &mut buffer, &mut state);
}
(Some(from), None) => {
// Spill from register to spillslot.
let to = to.as_stack().unwrap();
let from_rreg = RealReg::from(from);
let spill = self.abi.gen_spill(to, from_rreg);
do_emit(&spill, &mut disasm, &mut buffer, &mut state);
}
(None, Some(to)) => {
// Load from spillslot to register.
let from = from.as_stack().unwrap();
let to_rreg = Writable::from_reg(RealReg::from(to));
let reload = self.abi.gen_reload(to_rreg, from);
do_emit(&reload, &mut disasm, &mut buffer, &mut state);
}
(None, None) => {
panic!("regalloc2 should have eliminated stack-to-stack moves!");
}
}
}
}
}
if cur_srcloc.is_some() {
buffer.end_srcloc();
cur_srcloc = None;
}
// Do we need an island? Get the worst-case size of the next BB, add
// it to the optional padding behind the block, and pass this to the
// `MachBuffer` to determine if an island is necessary.
let worst_case_next_bb = if block_order_idx < final_order.len() - 1 {
let next_block = final_order[block_order_idx + 1];
let next_block_range = self.block_ranges.get(next_block.index());
let next_block_size = next_block_range.len() as u32;
let next_block_ra_insertions = ra_edits_per_block[next_block.index()];
I::worst_case_size() * (next_block_size + next_block_ra_insertions)
} else {
0
};
let padding = if bb_padding.is_empty() {
0
} else {
bb_padding.len() as u32 + I::LabelUse::ALIGN - 1
};
if buffer.island_needed(padding + worst_case_next_bb) {
buffer.emit_island(padding + worst_case_next_bb, ctrl_plane);
}
// Insert padding, if configured, to stress the `MachBuffer`'s
// relocation and island calculations.
//
// Padding can get quite large during fuzzing though so place a
// total cap on it where when a per-function threshold is exceeded
// the padding is turned back down to zero. This avoids a small-ish
// test case generating a GB+ memory footprint in Cranelift for
// example.
if !bb_padding.is_empty() {
buffer.put_data(&bb_padding);
buffer.align_to(I::LabelUse::ALIGN);
total_bb_padding += bb_padding.len();
if total_bb_padding > (150 << 20) {
bb_padding = Vec::new();
}
}
}
debug_assert!(
self.user_stack_maps.is_empty(),
"any stack maps should have been consumed by instruction emission, still have: {:#?}",
self.user_stack_maps,
);
// Do any optimizations on branches at tail of buffer, as if we had
// bound one last label.
buffer.optimize_branches(ctrl_plane);
// emission state is not needed anymore, move control plane back out
*ctrl_plane = state.take_ctrl_plane();
let func_body_len = buffer.cur_offset();
// Create `bb_edges` and final (filtered) `bb_starts`.
let mut bb_edges = vec![];
let mut bb_offsets = vec![];
if flags.machine_code_cfg_info() {
for block in 0..self.num_blocks() {
if bb_starts[block].is_none() {
// Block was deleted by MachBuffer; skip.
continue;
}
let from = bb_starts[block].unwrap();
bb_offsets.push(from);
// Resolve each `succ` label and add edges.
let succs = self.block_succs(BlockIndex::new(block));
for &succ in succs.iter() {
let to = buffer.resolve_label_offset(MachLabel::from_block(succ));
bb_edges.push((from, to));
}
}
}
self.monotonize_inst_offsets(&mut inst_offsets[..], func_body_len);
let value_labels_ranges =
self.compute_value_labels_ranges(regalloc, &inst_offsets[..], func_body_len);
let frame_size = self.abi.frame_size();
EmitResult {
buffer: buffer.finish(&self.constants, ctrl_plane),
bb_offsets,
bb_edges,
func_body_len,
disasm: if want_disasm { Some(disasm) } else { None },
sized_stackslot_offsets: self.abi.sized_stackslot_offsets().clone(),
dynamic_stackslot_offsets: self.abi.dynamic_stackslot_offsets().clone(),
value_labels_ranges,
frame_size,
}
}
fn monotonize_inst_offsets(&self, inst_offsets: &mut [CodeOffset], func_body_len: u32) {
if self.debug_value_labels.is_empty() {
return;
}
// During emission, branch removal can make offsets of instructions incorrect.
// Consider the following sequence: [insi][jmp0][jmp1][jmp2][insj]
// It will be recorded as (say): [30] [34] [38] [42] [<would be 46>]
// When the jumps get removed we are left with (in "inst_offsets"):
// [insi][jmp0][jmp1][jmp2][insj][...]
// [30] [34] [38] [42] [34]
// Which violates the monotonicity invariant. This method sets offsets of these
// removed instructions such as to make them appear zero-sized:
// [insi][jmp0][jmp1][jmp2][insj][...]
// [30] [34] [34] [34] [34]
//
let mut next_offset = func_body_len;
for inst_index in (0..(inst_offsets.len() - 1)).rev() {
let inst_offset = inst_offsets[inst_index];
// Not all instructions get their offsets recorded.
if inst_offset == NO_INST_OFFSET {
continue;
}
if inst_offset > next_offset {
trace!(
"Fixing code offset of the removed Inst {}: {} -> {}",
inst_index,
inst_offset,
next_offset
);
inst_offsets[inst_index] = next_offset;
continue;
}
next_offset = inst_offset;
}
}
fn compute_value_labels_ranges(
&self,
regalloc: ®alloc2::Output,
inst_offsets: &[CodeOffset],
func_body_len: u32,
) -> ValueLabelsRanges {
if self.debug_value_labels.is_empty() {
return ValueLabelsRanges::default();
}
let mut value_labels_ranges: ValueLabelsRanges = HashMap::new();
for &(label, from, to, alloc) in ®alloc.debug_locations {
let ranges = value_labels_ranges
.entry(ValueLabel::from_u32(label))
.or_insert_with(|| vec![]);
let from_offset = inst_offsets[from.inst().index()];
let to_offset = if to.inst().index() == inst_offsets.len() {
func_body_len
} else {
inst_offsets[to.inst().index()]
};
// Empty ranges or unavailable offsets can happen
// due to cold blocks and branch removal (see above).
if from_offset == NO_INST_OFFSET
|| to_offset == NO_INST_OFFSET
|| from_offset == to_offset
{
continue;
}
let loc = if let Some(preg) = alloc.as_reg() {
LabelValueLoc::Reg(Reg::from(preg))
} else {
let slot = alloc.as_stack().unwrap();
let slot_offset = self.abi.get_spillslot_offset(slot);
let slot_base_to_caller_sp_offset = self.abi.slot_base_to_caller_sp_offset();
let caller_sp_to_cfa_offset =
crate::isa::unwind::systemv::caller_sp_to_cfa_offset();
// NOTE: this is a negative offset because it's relative to the caller's SP
let cfa_to_sp_offset =
-((slot_base_to_caller_sp_offset + caller_sp_to_cfa_offset) as i64);
LabelValueLoc::CFAOffset(cfa_to_sp_offset + slot_offset)
};
// ValueLocRanges are recorded by *instruction-end
// offset*. `from_offset` is the *start* of the
// instruction; that is the same as the end of another
// instruction, so we only want to begin coverage once
// we are past the previous instruction's end.
let start = from_offset + 1;
// Likewise, `end` is exclusive, but we want to
// *include* the end of the last
// instruction. `to_offset` is the start of the
// `to`-instruction, which is the exclusive end, i.e.,
// the first instruction not covered. That
// instruction's start is the same as the end of the
// last instruction that is included, so we go one
// byte further to be sure to include it.
let end = to_offset + 1;
// Coalesce adjacent ranges that for the same location
// to minimize output size here and for the consumers.
if let Some(last_loc_range) = ranges.last_mut() {
if last_loc_range.loc == loc && last_loc_range.end == start {
trace!(
"Extending debug range for VL{} in {:?} to {}",
label,
loc,
end
);
last_loc_range.end = end;
continue;
}
}
trace!(
"Recording debug range for VL{} in {:?}: [Inst {}..Inst {}) [{}..{})",
label,
loc,
from.inst().index(),
to.inst().index(),
start,
end
);
ranges.push(ValueLocRange { loc, start, end });
}
value_labels_ranges
}
/// Get the IR block for a BlockIndex, if one exists.
pub fn bindex_to_bb(&self, block: BlockIndex) -> Option<ir::Block> {
self.block_order.lowered_order()[block.index()].orig_block()
}
/// Get the type of a VReg.
pub fn vreg_type(&self, vreg: VReg) -> Type {
self.vreg_types[vreg.vreg()]
}
/// Get the fact, if any, for a given VReg.
pub fn vreg_fact(&self, vreg: VReg) -> Option<&Fact> {
self.facts[vreg.vreg()].as_ref()
}
/// Set the fact for a given VReg.
pub fn set_vreg_fact(&mut self, vreg: VReg, fact: Fact) {
trace!("set fact on {}: {:?}", vreg, fact);
self.facts[vreg.vreg()] = Some(fact);
}
/// Does a given instruction define any facts?
pub fn inst_defines_facts(&self, inst: InsnIndex) -> bool {
self.inst_operands(inst)
.iter()
.filter(|o| o.kind() == OperandKind::Def)
.map(|o| o.vreg())
.any(|vreg| self.facts[vreg.vreg()].is_some())
}
/// Get the user stack map associated with the given forward instruction index.
pub fn get_user_stack_map(&self, inst: InsnIndex) -> Option<&ir::UserStackMap> {
let index = inst.to_backwards_insn_index(self.num_insts());
self.user_stack_maps.get(&index)
}
}
impl<I: VCodeInst> std::ops::Index<InsnIndex> for VCode<I> {
type Output = I;
fn index(&self, idx: InsnIndex) -> &Self::Output {
&self.insts[idx.index()]
}
}
impl<I: VCodeInst> RegallocFunction for VCode<I> {
fn num_insts(&self) -> usize {
self.insts.len()
}
fn num_blocks(&self) -> usize {
self.block_ranges.len()
}
fn entry_block(&self) -> BlockIndex {
self.entry
}
fn block_insns(&self, block: BlockIndex) -> InstRange {
let range = self.block_ranges.get(block.index());
InstRange::new(InsnIndex::new(range.start), InsnIndex::new(range.end))
}
fn block_succs(&self, block: BlockIndex) -> &[BlockIndex] {
let range = self.block_succ_range.get(block.index());
&self.block_succs[range]
}
fn block_preds(&self, block: BlockIndex) -> &[BlockIndex] {
let range = self.block_pred_range.get(block.index());
&self.block_preds[range]
}
fn block_params(&self, block: BlockIndex) -> &[VReg] {
// As a special case we don't return block params for the entry block, as all the arguments
// will be defined by the `Inst::Args` instruction.
if block == self.entry {
return &[];
}
let range = self.block_params_range.get(block.index());
&self.block_params[range]
}
fn branch_blockparams(&self, block: BlockIndex, _insn: InsnIndex, succ_idx: usize) -> &[VReg] {
let succ_range = self.branch_block_arg_succ_range.get(block.index());
debug_assert!(succ_idx < succ_range.len());
let branch_block_args = self.branch_block_arg_range.get(succ_range.start + succ_idx);
&self.branch_block_args[branch_block_args]
}
fn is_ret(&self, insn: InsnIndex) -> bool {
match self.insts[insn.index()].is_term() {
// We treat blocks terminated by an unconditional trap like a return for regalloc.
MachTerminator::None => self.insts[insn.index()].is_trap(),
MachTerminator::Ret | MachTerminator::RetCall => true,
MachTerminator::Uncond | MachTerminator::Cond | MachTerminator::Indirect => false,
}
}
fn is_branch(&self, insn: InsnIndex) -> bool {
match self.insts[insn.index()].is_term() {
MachTerminator::Cond | MachTerminator::Uncond | MachTerminator::Indirect => true,
_ => false,
}
}
fn inst_operands(&self, insn: InsnIndex) -> &[Operand] {
let range = self.operand_ranges.get(insn.index());
&self.operands[range]
}
fn inst_clobbers(&self, insn: InsnIndex) -> PRegSet {
self.clobbers.get(&insn).cloned().unwrap_or_default()
}
fn num_vregs(&self) -> usize {
self.vreg_types.len()
}
fn debug_value_labels(&self) -> &[(VReg, InsnIndex, InsnIndex, u32)] {
&self.debug_value_labels
}
fn spillslot_size(&self, regclass: RegClass) -> usize {
self.abi.get_spillslot_size(regclass) as usize
}
fn allow_multiple_vreg_defs(&self) -> bool {
// At least the s390x backend requires this, because the
// `Loop` pseudo-instruction aggregates all Operands so pinned
// vregs (RealRegs) may occur more than once.
true
}
}
impl<I: VCodeInst> Debug for VRegAllocator<I> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
writeln!(f, "VRegAllocator {{")?;
let mut alias_keys = self.vreg_aliases.keys().cloned().collect::<Vec<_>>();
alias_keys.sort_unstable();
for key in alias_keys {
let dest = self.vreg_aliases.get(&key).unwrap();
writeln!(f, " {:?} := {:?}", Reg::from(key), Reg::from(*dest))?;
}
for (vreg, fact) in self.facts.iter().enumerate() {
if let Some(fact) = fact {
writeln!(f, " v{vreg} ! {fact}")?;
}
}
writeln!(f, "}}")
}
}
impl<I: VCodeInst> fmt::Debug for VCode<I> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
writeln!(f, "VCode {{")?;
writeln!(f, " Entry block: {}", self.entry.index())?;
let mut state = Default::default();
for block in 0..self.num_blocks() {
let block = BlockIndex::new(block);
writeln!(
f,
"Block {}({:?}):",
block.index(),
self.block_params(block)
)?;
if let Some(bb) = self.bindex_to_bb(block) {
writeln!(f, " (original IR block: {bb})")?;
}
for (succ_idx, succ) in self.block_succs(block).iter().enumerate() {
writeln!(
f,
" (successor: Block {}({:?}))",
succ.index(),
self.branch_blockparams(block, InsnIndex::new(0) /* dummy */, succ_idx)
)?;
}
for inst in self.block_ranges.get(block.index()) {
writeln!(
f,
" Inst {}: {}",
inst,
self.insts[inst].pretty_print_inst(&mut state)
)?;
if !self.operands.is_empty() {
for operand in self.inst_operands(InsnIndex::new(inst)) {
if operand.kind() == OperandKind::Def {
if let Some(fact) = &self.facts[operand.vreg().vreg()] {
writeln!(f, " v{} ! {}", operand.vreg().vreg(), fact)?;
}
}
}
}
if let Some(user_stack_map) = self.get_user_stack_map(InsnIndex::new(inst)) {
writeln!(f, " {user_stack_map:?}")?;
}
}
}
writeln!(f, "}}")?;
Ok(())
}
}
/// This structure manages VReg allocation during the lifetime of the VCodeBuilder.
pub struct VRegAllocator<I> {
/// VReg IR-level types.
vreg_types: Vec<Type>,
/// VReg aliases. When the final VCode is built we rewrite all
/// uses of the keys in this table to their replacement values.
///
/// We use these aliases to rename an instruction's expected
/// result vregs to the returned vregs from lowering, which are
/// usually freshly-allocated temps.
vreg_aliases: FxHashMap<regalloc2::VReg, regalloc2::VReg>,
/// A deferred error, to be bubbled up to the top level of the
/// lowering algorithm. We take this approach because we cannot
/// currently propagate a `Result` upward through ISLE code (the
/// lowering rules) or some ABI code.
deferred_error: Option<CodegenError>,
/// Facts on VRegs, for proof-carrying code.
facts: Vec<Option<Fact>>,
/// The type of instruction that this allocator makes registers for.
_inst: core::marker::PhantomData<I>,
}
impl<I: VCodeInst> VRegAllocator<I> {
/// Make a new VRegAllocator.
pub fn with_capacity(capacity: usize) -> Self {
let capacity = first_user_vreg_index() + capacity;
let mut vreg_types = Vec::with_capacity(capacity);
vreg_types.resize(first_user_vreg_index(), types::INVALID);
Self {
vreg_types,
vreg_aliases: FxHashMap::with_capacity_and_hasher(capacity, Default::default()),
deferred_error: None,
facts: Vec::with_capacity(capacity),
_inst: core::marker::PhantomData::default(),
}
}
/// Allocate a fresh ValueRegs.
pub fn alloc(&mut self, ty: Type) -> CodegenResult<ValueRegs<Reg>> {
if self.deferred_error.is_some() {
return Err(CodegenError::CodeTooLarge);
}
let v = self.vreg_types.len();
let (regclasses, tys) = I::rc_for_type(ty)?;
if v + regclasses.len() >= VReg::MAX {
return Err(CodegenError::CodeTooLarge);
}
let regs: ValueRegs<Reg> = match regclasses {
&[rc0] => ValueRegs::one(VReg::new(v, rc0).into()),
&[rc0, rc1] => ValueRegs::two(VReg::new(v, rc0).into(), VReg::new(v + 1, rc1).into()),
// We can extend this if/when we support 32-bit targets; e.g.,
// an i128 on a 32-bit machine will need up to four machine regs
// for a `Value`.
_ => panic!("Value must reside in 1 or 2 registers"),
};
for (®_ty, ®) in tys.iter().zip(regs.regs().iter()) {
let vreg = reg.to_virtual_reg().unwrap();
debug_assert_eq!(self.vreg_types.len(), vreg.index());
self.vreg_types.push(reg_ty);
}
// Create empty facts for each allocated vreg.
self.facts.resize(self.vreg_types.len(), None);
Ok(regs)
}
/// Allocate a fresh ValueRegs, deferring any out-of-vregs
/// errors. This is useful in places where we cannot bubble a
/// `CodegenResult` upward easily, and which are known to be
/// invoked from within the lowering loop that checks the deferred
/// error status below.
pub fn alloc_with_deferred_error(&mut self, ty: Type) -> ValueRegs<Reg> {
match self.alloc(ty) {
Ok(x) => x,
Err(e) => {
self.deferred_error = Some(e);
self.bogus_for_deferred_error(ty)
}
}
}
/// Take any deferred error that was accumulated by `alloc_with_deferred_error`.
pub fn take_deferred_error(&mut self) -> Option<CodegenError> {
self.deferred_error.take()
}
/// Produce an bogus VReg placeholder with the proper number of
/// registers for the given type. This is meant to be used with
/// deferred allocation errors (see `Lower::alloc_tmp()`).
fn bogus_for_deferred_error(&self, ty: Type) -> ValueRegs<Reg> {
let (regclasses, _tys) = I::rc_for_type(ty).expect("must have valid type");
match regclasses {
&[rc0] => ValueRegs::one(VReg::new(0, rc0).into()),
&[rc0, rc1] => ValueRegs::two(VReg::new(0, rc0).into(), VReg::new(1, rc1).into()),
_ => panic!("Value must reside in 1 or 2 registers"),
}
}
/// Rewrite any mention of `from` into `to`.
pub fn set_vreg_alias(&mut self, from: Reg, to: Reg) {
let from = from.into();
let resolved_to = self.resolve_vreg_alias(to.into());
// Disallow cycles (see below).
assert_ne!(resolved_to, from);
// Maintain the invariant that PCC facts only exist on vregs
// which aren't aliases. We want to preserve whatever was
// stated about the vreg before its producer was lowered.
if let Some(fact) = self.facts[from.vreg()].take() {
self.set_fact(resolved_to, fact);
}
let old_alias = self.vreg_aliases.insert(from, resolved_to);
debug_assert_eq!(old_alias, None);
}
fn resolve_vreg_alias(&self, mut vreg: regalloc2::VReg) -> regalloc2::VReg {
// We prevent cycles from existing by resolving targets of
// aliases eagerly before setting them. If the target resolves
// to the origin of the alias, then a cycle would be created
// and the alias is disallowed. Because of the structure of
// SSA code (one instruction can refer to another's defs but
// not vice-versa, except indirectly through
// phis/blockparams), cycles should not occur as we use
// aliases to redirect vregs to the temps that actually define
// them.
while let Some(to) = self.vreg_aliases.get(&vreg) {
vreg = *to;
}
vreg
}
#[inline]
fn debug_assert_no_vreg_aliases(&self, mut list: impl Iterator<Item = VReg>) {
debug_assert!(list.all(|vreg| !self.vreg_aliases.contains_key(&vreg)));
}
/// Set the proof-carrying code fact on a given virtual register.
///
/// Returns the old fact, if any (only one fact can be stored).
fn set_fact(&mut self, vreg: regalloc2::VReg, fact: Fact) -> Option<Fact> {
trace!("vreg {:?} has fact: {:?}", vreg, fact);
debug_assert!(!self.vreg_aliases.contains_key(&vreg));
self.facts[vreg.vreg()].replace(fact)
}
/// Set a fact only if one doesn't already exist.
pub fn set_fact_if_missing(&mut self, vreg: VirtualReg, fact: Fact) {
let vreg = self.resolve_vreg_alias(vreg.into());
if self.facts[vreg.vreg()].is_none() {
self.set_fact(vreg, fact);
}
}
/// Allocate a fresh ValueRegs, with a given fact to apply if
/// the value fits in one VReg.
pub fn alloc_with_maybe_fact(
&mut self,
ty: Type,
fact: Option<Fact>,
) -> CodegenResult<ValueRegs<Reg>> {
let result = self.alloc(ty)?;
// Ensure that we don't lose a fact on a value that splits
// into multiple VRegs.
assert!(result.len() == 1 || fact.is_none());
if let Some(fact) = fact {
self.set_fact(result.regs()[0].into(), fact);
}
Ok(result)
}
}
/// This structure tracks the large constants used in VCode that will be emitted separately by the
/// [MachBuffer].
///
/// First, during the lowering phase, constants are inserted using
/// [VCodeConstants.insert]; an intermediate handle, `VCodeConstant`, tracks what constants are
/// used in this phase. Some deduplication is performed, when possible, as constant
/// values are inserted.
///
/// Secondly, during the emission phase, the [MachBuffer] assigns [MachLabel]s for each of the
/// constants so that instructions can refer to the value's memory location. The [MachBuffer]
/// then writes the constant values to the buffer.
#[derive(Default)]
pub struct VCodeConstants {
constants: PrimaryMap<VCodeConstant, VCodeConstantData>,
pool_uses: HashMap<Constant, VCodeConstant>,
well_known_uses: HashMap<*const [u8], VCodeConstant>,
u64s: HashMap<[u8; 8], VCodeConstant>,
}
impl VCodeConstants {
/// Initialize the structure with the expected number of constants.
pub fn with_capacity(expected_num_constants: usize) -> Self {
Self {
constants: PrimaryMap::with_capacity(expected_num_constants),
pool_uses: HashMap::with_capacity(expected_num_constants),
well_known_uses: HashMap::new(),
u64s: HashMap::new(),
}
}
/// Insert a constant; using this method indicates that a constant value will be used and thus
/// will be emitted to the `MachBuffer`. The current implementation can deduplicate constants
/// that are [VCodeConstantData::Pool] or [VCodeConstantData::WellKnown] but not
/// [VCodeConstantData::Generated].
pub fn insert(&mut self, data: VCodeConstantData) -> VCodeConstant {
match data {
VCodeConstantData::Generated(_) => self.constants.push(data),
VCodeConstantData::Pool(constant, _) => match self.pool_uses.get(&constant) {
None => {
let vcode_constant = self.constants.push(data);
self.pool_uses.insert(constant, vcode_constant);
vcode_constant
}
Some(&vcode_constant) => vcode_constant,
},
VCodeConstantData::WellKnown(data_ref) => {
match self.well_known_uses.entry(data_ref as *const [u8]) {
Entry::Vacant(v) => {
let vcode_constant = self.constants.push(data);
v.insert(vcode_constant);
vcode_constant
}
Entry::Occupied(o) => *o.get(),
}
}
VCodeConstantData::U64(value) => match self.u64s.entry(value) {
Entry::Vacant(v) => {
let vcode_constant = self.constants.push(data);
v.insert(vcode_constant);
vcode_constant
}
Entry::Occupied(o) => *o.get(),
},
}
}
/// Return the number of constants inserted.
pub fn len(&self) -> usize {
self.constants.len()
}
/// Iterate over the `VCodeConstant` keys inserted in this structure.
pub fn keys(&self) -> Keys<VCodeConstant> {
self.constants.keys()
}
/// Iterate over the `VCodeConstant` keys and the data (as a byte slice) inserted in this
/// structure.
pub fn iter(&self) -> impl Iterator<Item = (VCodeConstant, &VCodeConstantData)> {
self.constants.iter()
}
/// Returns the data associated with the specified constant.
pub fn get(&self, c: VCodeConstant) -> &VCodeConstantData {
&self.constants[c]
}
/// Checks if the given [VCodeConstantData] is registered as
/// used by the pool.
pub fn pool_uses(&self, constant: &VCodeConstantData) -> bool {
match constant {
VCodeConstantData::Pool(c, _) => self.pool_uses.contains_key(c),
_ => false,
}
}
}
/// A use of a constant by one or more VCode instructions; see [VCodeConstants].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct VCodeConstant(u32);
entity_impl!(VCodeConstant);
/// Identify the different types of constant that can be inserted into [VCodeConstants]. Tracking
/// these separately instead of as raw byte buffers allows us to avoid some duplication.
pub enum VCodeConstantData {
/// A constant already present in the Cranelift IR
/// [ConstantPool](crate::ir::constant::ConstantPool).
Pool(Constant, ConstantData),
/// A reference to a well-known constant value that is statically encoded within the compiler.
WellKnown(&'static [u8]),
/// A constant value generated during lowering; the value may depend on the instruction context
/// which makes it difficult to de-duplicate--if possible, use other variants.
Generated(ConstantData),
/// A constant of at most 64 bits. These are deduplicated as
/// well. Stored as a fixed-size array of `u8` so that we do not
/// encounter endianness problems when cross-compiling.
U64([u8; 8]),
}
impl VCodeConstantData {
/// Retrieve the constant data as a byte slice.
pub fn as_slice(&self) -> &[u8] {
match self {
VCodeConstantData::Pool(_, d) | VCodeConstantData::Generated(d) => d.as_slice(),
VCodeConstantData::WellKnown(d) => d,
VCodeConstantData::U64(value) => &value[..],
}
}
/// Calculate the alignment of the constant data.
pub fn alignment(&self) -> u32 {
if self.as_slice().len() <= 8 {
8
} else {
16
}
}
}
#[cfg(test)]
mod test {
use super::*;
use std::mem::size_of;
#[test]
fn size_of_constant_structs() {
assert_eq!(size_of::<Constant>(), 4);
assert_eq!(size_of::<VCodeConstant>(), 4);
assert_eq!(size_of::<ConstantData>(), 24);
assert_eq!(size_of::<VCodeConstantData>(), 32);
assert_eq!(
size_of::<PrimaryMap<VCodeConstant, VCodeConstantData>>(),
24
);
// TODO The VCodeConstants structure's memory size could be further optimized.
// With certain versions of Rust, each `HashMap` in `VCodeConstants` occupied at
// least 48 bytes, making an empty `VCodeConstants` cost 120 bytes.
}
}