cranelift_codegen/machinst/buffer.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
//! In-memory representation of compiled machine code, with labels and fixups to
//! refer to those labels. Handles constant-pool island insertion and also
//! veneer insertion for out-of-range jumps.
//!
//! This code exists to solve three problems:
//!
//! - Branch targets for forward branches are not known until later, when we
//! emit code in a single pass through the instruction structs.
//!
//! - On many architectures, address references or offsets have limited range.
//! For example, on AArch64, conditional branches can only target code +/- 1MB
//! from the branch itself.
//!
//! - The lowering of control flow from the CFG-with-edges produced by
//! [BlockLoweringOrder](super::BlockLoweringOrder), combined with many empty
//! edge blocks when the register allocator does not need to insert any
//! spills/reloads/moves in edge blocks, results in many suboptimal branch
//! patterns. The lowering also pays no attention to block order, and so
//! two-target conditional forms (cond-br followed by uncond-br) can often by
//! avoided because one of the targets is the fallthrough. There are several
//! cases here where we can simplify to use fewer branches.
//!
//! This "buffer" implements a single-pass code emission strategy (with a later
//! "fixup" pass, but only through recorded fixups, not all instructions). The
//! basic idea is:
//!
//! - Emit branches as they are, including two-target (cond/uncond) compound
//! forms, but with zero offsets and optimistically assuming the target will be
//! in range. Record the "fixup" for later. Targets are denoted instead by
//! symbolic "labels" that are then bound to certain offsets in the buffer as
//! we emit code. (Nominally, there is a label at the start of every basic
//! block.)
//!
//! - As we do this, track the offset in the buffer at which the first label
//! reference "goes out of range". We call this the "deadline". If we reach the
//! deadline and we still have not bound the label to which an unresolved branch
//! refers, we have a problem!
//!
//! - To solve this problem, we emit "islands" full of "veneers". An island is
//! simply a chunk of code inserted in the middle of the code actually produced
//! by the emitter (e.g., vcode iterating over instruction structs). The emitter
//! has some awareness of this: it either asks for an island between blocks, so
//! it is not accidentally executed, or else it emits a branch around the island
//! when all other options fail (see `Inst::EmitIsland` meta-instruction).
//!
//! - A "veneer" is an instruction (or sequence of instructions) in an "island"
//! that implements a longer-range reference to a label. The idea is that, for
//! example, a branch with a limited range can branch to a "veneer" instead,
//! which is simply a branch in a form that can use a longer-range reference. On
//! AArch64, for example, conditionals have a +/- 1 MB range, but a conditional
//! can branch to an unconditional branch which has a +/- 128 MB range. Hence, a
//! conditional branch's label reference can be fixed up with a "veneer" to
//! achieve a longer range.
//!
//! - To implement all of this, we require the backend to provide a `LabelUse`
//! type that implements a trait. This is nominally an enum that records one of
//! several kinds of references to an offset in code -- basically, a relocation
//! type -- and will usually correspond to different instruction formats. The
//! `LabelUse` implementation specifies the maximum range, how to patch in the
//! actual label location when known, and how to generate a veneer to extend the
//! range.
//!
//! That satisfies label references, but we still may have suboptimal branch
//! patterns. To clean up the branches, we do a simple "peephole"-style
//! optimization on the fly. To do so, the emitter (e.g., `Inst::emit()`)
//! informs the buffer of branches in the code and, in the case of conditionals,
//! the code that would have been emitted to invert this branch's condition. We
//! track the "latest branches": these are branches that are contiguous up to
//! the current offset. (If any code is emitted after a branch, that branch or
//! run of contiguous branches is no longer "latest".) The latest branches are
//! those that we can edit by simply truncating the buffer and doing something
//! else instead.
//!
//! To optimize branches, we implement several simple rules, and try to apply
//! them to the "latest branches" when possible:
//!
//! - A branch with a label target, when that label is bound to the ending
//! offset of the branch (the fallthrough location), can be removed altogether,
//! because the branch would have no effect).
//!
//! - An unconditional branch that starts at a label location, and branches to
//! another label, results in a "label alias": all references to the label bound
//! *to* this branch instruction are instead resolved to the *target* of the
//! branch instruction. This effectively removes empty blocks that just
//! unconditionally branch to the next block. We call this "branch threading".
//!
//! - A conditional followed by an unconditional, when the conditional branches
//! to the unconditional's fallthrough, results in (i) the truncation of the
//! unconditional, (ii) the inversion of the condition's condition, and (iii)
//! replacement of the conditional's target (using the original target of the
//! unconditional). This is a fancy way of saying "we can flip a two-target
//! conditional branch's taken/not-taken targets if it works better with our
//! fallthrough". To make this work, the emitter actually gives the buffer
//! *both* forms of every conditional branch: the true form is emitted into the
//! buffer, and the "inverted" machine-code bytes are provided as part of the
//! branch-fixup metadata.
//!
//! - An unconditional B preceded by another unconditional P, when B's label(s) have
//! been redirected to target(B), can be removed entirely. This is an extension
//! of the branch-threading optimization, and is valid because if we know there
//! will be no fallthrough into this branch instruction (the prior instruction
//! is an unconditional jump), and if we know we have successfully redirected
//! all labels, then this branch instruction is unreachable. Note that this
//! works because the redirection happens before the label is ever resolved
//! (fixups happen at island emission time, at which point latest-branches are
//! cleared, or at the end of emission), so we are sure to catch and redirect
//! all possible paths to this instruction.
//!
//! # Branch-optimization Correctness
//!
//! The branch-optimization mechanism depends on a few data structures with
//! invariants, which are always held outside the scope of top-level public
//! methods:
//!
//! - The latest-branches list. Each entry describes a span of the buffer
//! (start/end offsets), the label target, the corresponding fixup-list entry
//! index, and the bytes (must be the same length) for the inverted form, if
//! conditional. The list of labels that are bound to the start-offset of this
//! branch is *complete* (if any label has a resolved offset equal to `start`
//! and is not an alias, it must appear in this list) and *precise* (no label
//! in this list can be bound to another offset). No label in this list should
//! be an alias. No two branch ranges can overlap, and branches are in
//! ascending-offset order.
//!
//! - The labels-at-tail list. This contains all MachLabels that have been bound
//! to (whose resolved offsets are equal to) the tail offset of the buffer.
//! No label in this list should be an alias.
//!
//! - The label_offsets array, containing the bound offset of a label or
//! UNKNOWN. No label can be bound at an offset greater than the current
//! buffer tail.
//!
//! - The label_aliases array, containing another label to which a label is
//! bound or UNKNOWN. A label's resolved offset is the resolved offset
//! of the label it is aliased to, if this is set.
//!
//! We argue below, at each method, how the invariants in these data structures
//! are maintained (grep for "Post-invariant").
//!
//! Given these invariants, we argue why each optimization preserves execution
//! semantics below (grep for "Preserves execution semantics").
//!
//! # Avoiding Quadratic Behavior
//!
//! There are two cases where we've had to take some care to avoid
//! quadratic worst-case behavior:
//!
//! - The "labels at this branch" list can grow unboundedly if the
//! code generator binds many labels at one location. If the count
//! gets too high (defined by the `LABEL_LIST_THRESHOLD` constant), we
//! simply abort an optimization early in a way that is always correct
//! but is conservative.
//!
//! - The fixup list can interact with island emission to create
//! "quadratic island behvior". In a little more detail, one can hit
//! this behavior by having some pending fixups (forward label
//! references) with long-range label-use kinds, and some others
//! with shorter-range references that nonetheless still are pending
//! long enough to trigger island generation. In such a case, we
//! process the fixup list, generate veneers to extend some forward
//! references' ranges, but leave the other (longer-range) ones
//! alone. The way this was implemented put them back on a list and
//! resulted in quadratic behavior.
//!
//! To avoid this fixups are split into two lists: one "pending" list and one
//! final list. The pending list is kept around for handling fixups related to
//! branches so it can be edited/truncated. When an island is reached, which
//! starts processing fixups, all pending fixups are flushed into the final
//! list. The final list is a `BinaryHeap` which enables fixup processing to
//! only process those which are required during island emission, deferring
//! all longer-range fixups to later.
use crate::binemit::{Addend, CodeOffset, Reloc};
use crate::ir::function::FunctionParameters;
use crate::ir::{ExternalName, RelSourceLoc, SourceLoc, TrapCode};
use crate::isa::unwind::UnwindInst;
use crate::machinst::{
BlockIndex, MachInstLabelUse, TextSectionBuilder, VCodeConstant, VCodeConstants, VCodeInst,
};
use crate::trace;
use crate::{ir, MachInstEmitState};
use crate::{timing, VCodeConstantData};
use cranelift_control::ControlPlane;
use cranelift_entity::{entity_impl, PrimaryMap};
use smallvec::SmallVec;
use std::cmp::Ordering;
use std::collections::BinaryHeap;
use std::mem;
use std::string::String;
use std::vec::Vec;
#[cfg(feature = "enable-serde")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "enable-serde")]
pub trait CompilePhase {
type MachSrcLocType: for<'a> Deserialize<'a> + Serialize + core::fmt::Debug + PartialEq + Clone;
type SourceLocType: for<'a> Deserialize<'a> + Serialize + core::fmt::Debug + PartialEq + Clone;
}
#[cfg(not(feature = "enable-serde"))]
pub trait CompilePhase {
type MachSrcLocType: core::fmt::Debug + PartialEq + Clone;
type SourceLocType: core::fmt::Debug + PartialEq + Clone;
}
/// Status of a compiled artifact that needs patching before being used.
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Stencil;
/// Status of a compiled artifact ready to use.
#[derive(Clone, Debug, PartialEq)]
pub struct Final;
impl CompilePhase for Stencil {
type MachSrcLocType = MachSrcLoc<Stencil>;
type SourceLocType = RelSourceLoc;
}
impl CompilePhase for Final {
type MachSrcLocType = MachSrcLoc<Final>;
type SourceLocType = SourceLoc;
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum ForceVeneers {
Yes,
No,
}
/// A buffer of output to be produced, fixed up, and then emitted to a CodeSink
/// in bulk.
///
/// This struct uses `SmallVec`s to support small-ish function bodies without
/// any heap allocation. As such, it will be several kilobytes large. This is
/// likely fine as long as it is stack-allocated for function emission then
/// thrown away; but beware if many buffer objects are retained persistently.
pub struct MachBuffer<I: VCodeInst> {
/// The buffer contents, as raw bytes.
data: SmallVec<[u8; 1024]>,
/// Any relocations referring to this code. Note that only *external*
/// relocations are tracked here; references to labels within the buffer are
/// resolved before emission.
relocs: SmallVec<[MachReloc; 16]>,
/// Any trap records referring to this code.
traps: SmallVec<[MachTrap; 16]>,
/// Any call site records referring to this code.
call_sites: SmallVec<[MachCallSite; 16]>,
/// Any source location mappings referring to this code.
srclocs: SmallVec<[MachSrcLoc<Stencil>; 64]>,
/// Any user stack maps for this code.
///
/// Each entry is an `(offset, span, stack_map)` triple. Entries are sorted
/// by code offset, and each stack map covers `span` bytes on the stack.
user_stack_maps: SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]>,
/// Any unwind info at a given location.
unwind_info: SmallVec<[(CodeOffset, UnwindInst); 8]>,
/// The current source location in progress (after `start_srcloc()` and
/// before `end_srcloc()`). This is a (start_offset, src_loc) tuple.
cur_srcloc: Option<(CodeOffset, RelSourceLoc)>,
/// Known label offsets; `UNKNOWN_LABEL_OFFSET` if unknown.
label_offsets: SmallVec<[CodeOffset; 16]>,
/// Label aliases: when one label points to an unconditional jump, and that
/// jump points to another label, we can redirect references to the first
/// label immediately to the second.
///
/// Invariant: we don't have label-alias cycles. We ensure this by,
/// before setting label A to alias label B, resolving B's alias
/// target (iteratively until a non-aliased label); if B is already
/// aliased to A, then we cannot alias A back to B.
label_aliases: SmallVec<[MachLabel; 16]>,
/// Constants that must be emitted at some point.
pending_constants: SmallVec<[VCodeConstant; 16]>,
/// Byte size of all constants in `pending_constants`.
pending_constants_size: CodeOffset,
/// Traps that must be emitted at some point.
pending_traps: SmallVec<[MachLabelTrap; 16]>,
/// Fixups that haven't yet been flushed into `fixup_records` below and may
/// be related to branches that are chomped. These all get added to
/// `fixup_records` during island emission.
pending_fixup_records: SmallVec<[MachLabelFixup<I>; 16]>,
/// The nearest upcoming deadline for entries in `pending_fixup_records`.
pending_fixup_deadline: CodeOffset,
/// Fixups that must be performed after all code is emitted.
fixup_records: BinaryHeap<MachLabelFixup<I>>,
/// Latest branches, to facilitate in-place editing for better fallthrough
/// behavior and empty-block removal.
latest_branches: SmallVec<[MachBranch; 4]>,
/// All labels at the current offset (emission tail). This is lazily
/// cleared: it is actually accurate as long as the current offset is
/// `labels_at_tail_off`, but if `cur_offset()` has grown larger, it should
/// be considered as empty.
///
/// For correctness, this *must* be complete (i.e., the vector must contain
/// all labels whose offsets are resolved to the current tail), because we
/// rely on it to update labels when we truncate branches.
labels_at_tail: SmallVec<[MachLabel; 4]>,
/// The last offset at which `labels_at_tail` is valid. It is conceptually
/// always describing the tail of the buffer, but we do not clear
/// `labels_at_tail` eagerly when the tail grows, rather we lazily clear it
/// when the offset has grown past this (`labels_at_tail_off`) point.
/// Always <= `cur_offset()`.
labels_at_tail_off: CodeOffset,
/// Metadata about all constants that this function has access to.
///
/// This records the size/alignment of all constants (not the actual data)
/// along with the last available label generated for the constant. This map
/// is consulted when constants are referred to and the label assigned to a
/// constant may change over time as well.
constants: PrimaryMap<VCodeConstant, MachBufferConstant>,
/// All recorded usages of constants as pairs of the constant and where the
/// constant needs to be placed within `self.data`. Note that the same
/// constant may appear in this array multiple times if it was emitted
/// multiple times.
used_constants: SmallVec<[(VCodeConstant, CodeOffset); 4]>,
/// Indicates when a patchable region is currently open, to guard that it's
/// not possible to nest patchable regions.
open_patchable: bool,
}
impl MachBufferFinalized<Stencil> {
/// Get a finalized machine buffer by applying the function's base source location.
pub fn apply_base_srcloc(self, base_srcloc: SourceLoc) -> MachBufferFinalized<Final> {
MachBufferFinalized {
data: self.data,
relocs: self.relocs,
traps: self.traps,
call_sites: self.call_sites,
srclocs: self
.srclocs
.into_iter()
.map(|srcloc| srcloc.apply_base_srcloc(base_srcloc))
.collect(),
user_stack_maps: self.user_stack_maps,
unwind_info: self.unwind_info,
alignment: self.alignment,
}
}
}
/// A `MachBuffer` once emission is completed: holds generated code and records,
/// without fixups. This allows the type to be independent of the backend.
#[derive(PartialEq, Debug, Clone)]
#[cfg_attr(
feature = "enable-serde",
derive(serde_derive::Serialize, serde_derive::Deserialize)
)]
pub struct MachBufferFinalized<T: CompilePhase> {
/// The buffer contents, as raw bytes.
pub(crate) data: SmallVec<[u8; 1024]>,
/// Any relocations referring to this code. Note that only *external*
/// relocations are tracked here; references to labels within the buffer are
/// resolved before emission.
pub(crate) relocs: SmallVec<[FinalizedMachReloc; 16]>,
/// Any trap records referring to this code.
pub(crate) traps: SmallVec<[MachTrap; 16]>,
/// Any call site records referring to this code.
pub(crate) call_sites: SmallVec<[MachCallSite; 16]>,
/// Any source location mappings referring to this code.
pub(crate) srclocs: SmallVec<[T::MachSrcLocType; 64]>,
/// Any user stack maps for this code.
///
/// Each entry is an `(offset, span, stack_map)` triple. Entries are sorted
/// by code offset, and each stack map covers `span` bytes on the stack.
pub(crate) user_stack_maps: SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]>,
/// Any unwind info at a given location.
pub unwind_info: SmallVec<[(CodeOffset, UnwindInst); 8]>,
/// The required alignment of this buffer.
pub alignment: u32,
}
const UNKNOWN_LABEL_OFFSET: CodeOffset = 0xffff_ffff;
const UNKNOWN_LABEL: MachLabel = MachLabel(0xffff_ffff);
/// Threshold on max length of `labels_at_this_branch` list to avoid
/// unbounded quadratic behavior (see comment below at use-site).
const LABEL_LIST_THRESHOLD: usize = 100;
/// A label refers to some offset in a `MachBuffer`. It may not be resolved at
/// the point at which it is used by emitted code; the buffer records "fixups"
/// for references to the label, and will come back and patch the code
/// appropriately when the label's location is eventually known.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct MachLabel(u32);
entity_impl!(MachLabel);
impl MachLabel {
/// Get a label for a block. (The first N MachLabels are always reserved for
/// the N blocks in the vcode.)
pub fn from_block(bindex: BlockIndex) -> MachLabel {
MachLabel(bindex.index() as u32)
}
/// Get the numeric label index.
pub fn get(self) -> u32 {
self.0
}
/// Creates a string representing this label, for convenience.
pub fn to_string(&self) -> String {
format!("label{}", self.0)
}
}
impl Default for MachLabel {
fn default() -> Self {
UNKNOWN_LABEL
}
}
/// Represents the beginning of an editable region in the [`MachBuffer`], while code emission is
/// still occurring. An [`OpenPatchRegion`] is closed by [`MachBuffer::end_patchable`], consuming
/// the [`OpenPatchRegion`] token in the process.
pub struct OpenPatchRegion(usize);
/// A region in the [`MachBuffer`] code buffer that can be edited prior to finalization. An example
/// of where you might want to use this is for patching instructions that mention constants that
/// won't be known until later: [`MachBuffer::start_patchable`] can be used to begin the patchable
/// region, instructions can be emitted with placeholder constants, and the [`PatchRegion`] token
/// can be produced by [`MachBuffer::end_patchable`]. Once the values of those constants are known,
/// the [`PatchRegion::patch`] function can be used to get a mutable buffer to the instruction
/// bytes, and the constants uses can be updated directly.
pub struct PatchRegion {
range: std::ops::Range<usize>,
}
impl PatchRegion {
/// Consume the patch region to yield a mutable slice of the [`MachBuffer`] data buffer.
pub fn patch<I: VCodeInst>(self, buffer: &mut MachBuffer<I>) -> &mut [u8] {
&mut buffer.data[self.range]
}
}
impl<I: VCodeInst> MachBuffer<I> {
/// Create a new section, known to start at `start_offset` and with a size limited to
/// `length_limit`.
pub fn new() -> MachBuffer<I> {
MachBuffer {
data: SmallVec::new(),
relocs: SmallVec::new(),
traps: SmallVec::new(),
call_sites: SmallVec::new(),
srclocs: SmallVec::new(),
user_stack_maps: SmallVec::new(),
unwind_info: SmallVec::new(),
cur_srcloc: None,
label_offsets: SmallVec::new(),
label_aliases: SmallVec::new(),
pending_constants: SmallVec::new(),
pending_constants_size: 0,
pending_traps: SmallVec::new(),
pending_fixup_records: SmallVec::new(),
pending_fixup_deadline: u32::MAX,
fixup_records: Default::default(),
latest_branches: SmallVec::new(),
labels_at_tail: SmallVec::new(),
labels_at_tail_off: 0,
constants: Default::default(),
used_constants: Default::default(),
open_patchable: false,
}
}
/// Current offset from start of buffer.
pub fn cur_offset(&self) -> CodeOffset {
self.data.len() as CodeOffset
}
/// Add a byte.
pub fn put1(&mut self, value: u8) {
self.data.push(value);
// Post-invariant: conceptual-labels_at_tail contains a complete and
// precise list of labels bound at `cur_offset()`. We have advanced
// `cur_offset()`, hence if it had been equal to `labels_at_tail_off`
// before, it is not anymore (and it cannot become equal, because
// `labels_at_tail_off` is always <= `cur_offset()`). Thus the list is
// conceptually empty (even though it is only lazily cleared). No labels
// can be bound at this new offset (by invariant on `label_offsets`).
// Hence the invariant holds.
}
/// Add 2 bytes.
pub fn put2(&mut self, value: u16) {
let bytes = value.to_le_bytes();
self.data.extend_from_slice(&bytes[..]);
// Post-invariant: as for `put1()`.
}
/// Add 4 bytes.
pub fn put4(&mut self, value: u32) {
let bytes = value.to_le_bytes();
self.data.extend_from_slice(&bytes[..]);
// Post-invariant: as for `put1()`.
}
/// Add 8 bytes.
pub fn put8(&mut self, value: u64) {
let bytes = value.to_le_bytes();
self.data.extend_from_slice(&bytes[..]);
// Post-invariant: as for `put1()`.
}
/// Add a slice of bytes.
pub fn put_data(&mut self, data: &[u8]) {
self.data.extend_from_slice(data);
// Post-invariant: as for `put1()`.
}
/// Reserve appended space and return a mutable slice referring to it.
pub fn get_appended_space(&mut self, len: usize) -> &mut [u8] {
let off = self.data.len();
let new_len = self.data.len() + len;
self.data.resize(new_len, 0);
&mut self.data[off..]
// Post-invariant: as for `put1()`.
}
/// Align up to the given alignment.
pub fn align_to(&mut self, align_to: CodeOffset) {
trace!("MachBuffer: align to {}", align_to);
assert!(
align_to.is_power_of_two(),
"{align_to} is not a power of two"
);
while self.cur_offset() & (align_to - 1) != 0 {
self.put1(0);
}
// Post-invariant: as for `put1()`.
}
/// Begin a region of patchable code. There is one requirement for the
/// code that is emitted: It must not introduce any instructions that
/// could be chomped (branches are an example of this). In other words,
/// you must not call [`MachBuffer::add_cond_branch`] or
/// [`MachBuffer::add_uncond_branch`] between calls to this method and
/// [`MachBuffer::end_patchable`].
pub fn start_patchable(&mut self) -> OpenPatchRegion {
assert!(!self.open_patchable, "Patchable regions may not be nested");
self.open_patchable = true;
OpenPatchRegion(usize::try_from(self.cur_offset()).unwrap())
}
/// End a region of patchable code, yielding a [`PatchRegion`] value that
/// can be consumed later to produce a one-off mutable slice to the
/// associated region of the data buffer.
pub fn end_patchable(&mut self, open: OpenPatchRegion) -> PatchRegion {
// No need to assert the state of `open_patchable` here, as we take
// ownership of the only `OpenPatchable` value.
self.open_patchable = false;
let end = usize::try_from(self.cur_offset()).unwrap();
PatchRegion { range: open.0..end }
}
/// Allocate a `Label` to refer to some offset. May not be bound to a fixed
/// offset yet.
pub fn get_label(&mut self) -> MachLabel {
let l = self.label_offsets.len() as u32;
self.label_offsets.push(UNKNOWN_LABEL_OFFSET);
self.label_aliases.push(UNKNOWN_LABEL);
trace!("MachBuffer: new label -> {:?}", MachLabel(l));
MachLabel(l)
// Post-invariant: the only mutation is to add a new label; it has no
// bound offset yet, so it trivially satisfies all invariants.
}
/// Reserve the first N MachLabels for blocks.
pub fn reserve_labels_for_blocks(&mut self, blocks: usize) {
trace!("MachBuffer: first {} labels are for blocks", blocks);
debug_assert!(self.label_offsets.is_empty());
self.label_offsets.resize(blocks, UNKNOWN_LABEL_OFFSET);
self.label_aliases.resize(blocks, UNKNOWN_LABEL);
// Post-invariant: as for `get_label()`.
}
/// Registers metadata in this `MachBuffer` about the `constants` provided.
///
/// This will record the size/alignment of all constants which will prepare
/// them for emission later on.
pub fn register_constants(&mut self, constants: &VCodeConstants) {
for (c, val) in constants.iter() {
self.register_constant(&c, val);
}
}
/// Similar to [`MachBuffer::register_constants`] but registers a
/// single constant metadata. This function is useful in
/// situations where not all constants are known at the time of
/// emission.
pub fn register_constant(&mut self, constant: &VCodeConstant, data: &VCodeConstantData) {
let c2 = self.constants.push(MachBufferConstant {
upcoming_label: None,
align: data.alignment(),
size: data.as_slice().len(),
});
assert_eq!(*constant, c2);
}
/// Completes constant emission by iterating over `self.used_constants` and
/// filling in the "holes" with the constant values provided by `constants`.
///
/// Returns the alignment required for this entire buffer. Alignment starts
/// at the ISA's minimum function alignment and can be increased due to
/// constant requirements.
fn finish_constants(&mut self, constants: &VCodeConstants) -> u32 {
let mut alignment = I::function_alignment().minimum;
for (constant, offset) in mem::take(&mut self.used_constants) {
let constant = constants.get(constant);
let data = constant.as_slice();
self.data[offset as usize..][..data.len()].copy_from_slice(data);
alignment = constant.alignment().max(alignment);
}
alignment
}
/// Returns a label that can be used to refer to the `constant` provided.
///
/// This will automatically defer a new constant to be emitted for
/// `constant` if it has not been previously emitted. Note that this
/// function may return a different label for the same constant at
/// different points in time. The label is valid to use only from the
/// current location; the MachBuffer takes care to emit the same constant
/// multiple times if needed so the constant is always in range.
pub fn get_label_for_constant(&mut self, constant: VCodeConstant) -> MachLabel {
let MachBufferConstant {
align,
size,
upcoming_label,
} = self.constants[constant];
if let Some(label) = upcoming_label {
return label;
}
let label = self.get_label();
trace!(
"defer constant: eventually emit {size} bytes aligned \
to {align} at label {label:?}",
);
self.pending_constants.push(constant);
self.pending_constants_size += size as u32;
self.constants[constant].upcoming_label = Some(label);
label
}
/// Bind a label to the current offset. A label can only be bound once.
pub fn bind_label(&mut self, label: MachLabel, ctrl_plane: &mut ControlPlane) {
trace!(
"MachBuffer: bind label {:?} at offset {}",
label,
self.cur_offset()
);
debug_assert_eq!(self.label_offsets[label.0 as usize], UNKNOWN_LABEL_OFFSET);
debug_assert_eq!(self.label_aliases[label.0 as usize], UNKNOWN_LABEL);
let offset = self.cur_offset();
self.label_offsets[label.0 as usize] = offset;
self.lazily_clear_labels_at_tail();
self.labels_at_tail.push(label);
// Invariants hold: bound offset of label is <= cur_offset (in fact it
// is equal). If the `labels_at_tail` list was complete and precise
// before, it is still, because we have bound this label to the current
// offset and added it to the list (which contains all labels at the
// current offset).
self.optimize_branches(ctrl_plane);
// Post-invariant: by `optimize_branches()` (see argument there).
}
/// Lazily clear `labels_at_tail` if the tail offset has moved beyond the
/// offset that it applies to.
fn lazily_clear_labels_at_tail(&mut self) {
let offset = self.cur_offset();
if offset > self.labels_at_tail_off {
self.labels_at_tail_off = offset;
self.labels_at_tail.clear();
}
// Post-invariant: either labels_at_tail_off was at cur_offset, and
// state is untouched, or was less than cur_offset, in which case the
// labels_at_tail list was conceptually empty, and is now actually
// empty.
}
/// Resolve a label to an offset, if known. May return `UNKNOWN_LABEL_OFFSET`.
pub(crate) fn resolve_label_offset(&self, mut label: MachLabel) -> CodeOffset {
let mut iters = 0;
while self.label_aliases[label.0 as usize] != UNKNOWN_LABEL {
label = self.label_aliases[label.0 as usize];
// To protect against an infinite loop (despite our assurances to
// ourselves that the invariants make this impossible), assert out
// after 1M iterations. The number of basic blocks is limited
// in most contexts anyway so this should be impossible to hit with
// a legitimate input.
iters += 1;
assert!(iters < 1_000_000, "Unexpected cycle in label aliases");
}
self.label_offsets[label.0 as usize]
// Post-invariant: no mutations.
}
/// Emit a reference to the given label with the given reference type (i.e.,
/// branch-instruction format) at the current offset. This is like a
/// relocation, but handled internally.
///
/// This can be called before the branch is actually emitted; fixups will
/// not happen until an island is emitted or the buffer is finished.
pub fn use_label_at_offset(&mut self, offset: CodeOffset, label: MachLabel, kind: I::LabelUse) {
trace!(
"MachBuffer: use_label_at_offset: offset {} label {:?} kind {:?}",
offset,
label,
kind
);
// Add the fixup, and update the worst-case island size based on a
// veneer for this label use.
let fixup = MachLabelFixup {
label,
offset,
kind,
};
self.pending_fixup_deadline = self.pending_fixup_deadline.min(fixup.deadline());
self.pending_fixup_records.push(fixup);
// Post-invariant: no mutations to branches/labels data structures.
}
/// Inform the buffer of an unconditional branch at the given offset,
/// targeting the given label. May be used to optimize branches.
/// The last added label-use must correspond to this branch.
/// This must be called when the current offset is equal to `start`; i.e.,
/// before actually emitting the branch. This implies that for a branch that
/// uses a label and is eligible for optimizations by the MachBuffer, the
/// proper sequence is:
///
/// - Call `use_label_at_offset()` to emit the fixup record.
/// - Call `add_uncond_branch()` to make note of the branch.
/// - Emit the bytes for the branch's machine code.
///
/// Additional requirement: no labels may be bound between `start` and `end`
/// (exclusive on both ends).
pub fn add_uncond_branch(&mut self, start: CodeOffset, end: CodeOffset, target: MachLabel) {
debug_assert!(
!self.open_patchable,
"Branch instruction inserted within a patchable region"
);
assert!(self.cur_offset() == start);
debug_assert!(end > start);
assert!(!self.pending_fixup_records.is_empty());
let fixup = self.pending_fixup_records.len() - 1;
self.lazily_clear_labels_at_tail();
self.latest_branches.push(MachBranch {
start,
end,
target,
fixup,
inverted: None,
labels_at_this_branch: self.labels_at_tail.clone(),
});
// Post-invariant: we asserted branch start is current tail; the list of
// labels at branch is cloned from list of labels at current tail.
}
/// Inform the buffer of a conditional branch at the given offset,
/// targeting the given label. May be used to optimize branches.
/// The last added label-use must correspond to this branch.
///
/// Additional requirement: no labels may be bound between `start` and `end`
/// (exclusive on both ends).
pub fn add_cond_branch(
&mut self,
start: CodeOffset,
end: CodeOffset,
target: MachLabel,
inverted: &[u8],
) {
debug_assert!(
!self.open_patchable,
"Branch instruction inserted within a patchable region"
);
assert!(self.cur_offset() == start);
debug_assert!(end > start);
assert!(!self.pending_fixup_records.is_empty());
debug_assert!(
inverted.len() == (end - start) as usize,
"branch length = {}, but inverted length = {}",
end - start,
inverted.len()
);
let fixup = self.pending_fixup_records.len() - 1;
let inverted = Some(SmallVec::from(inverted));
self.lazily_clear_labels_at_tail();
self.latest_branches.push(MachBranch {
start,
end,
target,
fixup,
inverted,
labels_at_this_branch: self.labels_at_tail.clone(),
});
// Post-invariant: we asserted branch start is current tail; labels at
// branch list is cloned from list of labels at current tail.
}
fn truncate_last_branch(&mut self) {
debug_assert!(
!self.open_patchable,
"Branch instruction truncated within a patchable region"
);
self.lazily_clear_labels_at_tail();
// Invariants hold at this point.
let b = self.latest_branches.pop().unwrap();
assert!(b.end == self.cur_offset());
// State:
// [PRE CODE]
// Offset b.start, b.labels_at_this_branch:
// [BRANCH CODE]
// cur_off, self.labels_at_tail -->
// (end of buffer)
self.data.truncate(b.start as usize);
self.pending_fixup_records.truncate(b.fixup);
while let Some(last_srcloc) = self.srclocs.last_mut() {
if last_srcloc.end <= b.start {
break;
}
if last_srcloc.start < b.start {
last_srcloc.end = b.start;
break;
}
self.srclocs.pop();
}
// State:
// [PRE CODE]
// cur_off, Offset b.start, b.labels_at_this_branch:
// (end of buffer)
//
// self.labels_at_tail --> (past end of buffer)
let cur_off = self.cur_offset();
self.labels_at_tail_off = cur_off;
// State:
// [PRE CODE]
// cur_off, Offset b.start, b.labels_at_this_branch,
// self.labels_at_tail:
// (end of buffer)
//
// resolve_label_offset(l) for l in labels_at_tail:
// (past end of buffer)
trace!(
"truncate_last_branch: truncated {:?}; off now {}",
b,
cur_off
);
// Fix up resolved label offsets for labels at tail.
for &l in &self.labels_at_tail {
self.label_offsets[l.0 as usize] = cur_off;
}
// Old labels_at_this_branch are now at cur_off.
self.labels_at_tail
.extend(b.labels_at_this_branch.into_iter());
// Post-invariant: this operation is defined to truncate the buffer,
// which moves cur_off backward, and to move labels at the end of the
// buffer back to the start-of-branch offset.
//
// latest_branches satisfies all invariants:
// - it has no branches past the end of the buffer (branches are in
// order, we removed the last one, and we truncated the buffer to just
// before the start of that branch)
// - no labels were moved to lower offsets than the (new) cur_off, so
// the labels_at_this_branch list for any other branch need not change.
//
// labels_at_tail satisfies all invariants:
// - all labels that were at the tail after the truncated branch are
// moved backward to just before the branch, which becomes the new tail;
// thus every element in the list should remain (ensured by `.extend()`
// above).
// - all labels that refer to the new tail, which is the start-offset of
// the truncated branch, must be present. The `labels_at_this_branch`
// list in the truncated branch's record is a complete and precise list
// of exactly these labels; we append these to labels_at_tail.
// - labels_at_tail_off is at cur_off after truncation occurs, so the
// list is valid (not to be lazily cleared).
//
// The stated operation was performed:
// - For each label at the end of the buffer prior to this method, it
// now resolves to the new (truncated) end of the buffer: it must have
// been in `labels_at_tail` (this list is precise and complete, and
// the tail was at the end of the truncated branch on entry), and we
// iterate over this list and set `label_offsets` to the new tail.
// None of these labels could have been an alias (by invariant), so
// `label_offsets` is authoritative for each.
// - No other labels will be past the end of the buffer, because of the
// requirement that no labels be bound to the middle of branch ranges
// (see comments to `add_{cond,uncond}_branch()`).
// - The buffer is truncated to just before the last branch, and the
// fixup record referring to that last branch is removed.
}
/// Performs various optimizations on branches pointing at the current label.
pub fn optimize_branches(&mut self, ctrl_plane: &mut ControlPlane) {
if ctrl_plane.get_decision() {
return;
}
self.lazily_clear_labels_at_tail();
// Invariants valid at this point.
trace!(
"enter optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
self.latest_branches,
self.labels_at_tail,
self.pending_fixup_records
);
// We continue to munch on branches at the tail of the buffer until no
// more rules apply. Note that the loop only continues if a branch is
// actually truncated (or if labels are redirected away from a branch),
// so this always makes progress.
while let Some(b) = self.latest_branches.last() {
let cur_off = self.cur_offset();
trace!("optimize_branches: last branch {:?} at off {}", b, cur_off);
// If there has been any code emission since the end of the last branch or
// label definition, then there's nothing we can edit (because we
// don't move code once placed, only back up and overwrite), so
// clear the records and finish.
if b.end < cur_off {
break;
}
// If the "labels at this branch" list on this branch is
// longer than a threshold, don't do any simplification,
// and let the branch remain to separate those labels from
// the current tail. This avoids quadratic behavior (see
// #3468): otherwise, if a long string of "goto next;
// next:" patterns are emitted, all of the labels will
// coalesce into a long list of aliases for the current
// buffer tail. We must track all aliases of the current
// tail for correctness, but we are also allowed to skip
// optimization (removal) of any branch, so we take the
// escape hatch here and let it stand. In effect this
// "spreads" the many thousands of labels in the
// pathological case among an actual (harmless but
// suboptimal) instruction once per N labels.
if b.labels_at_this_branch.len() > LABEL_LIST_THRESHOLD {
break;
}
// Invariant: we are looking at a branch that ends at the tail of
// the buffer.
// For any branch, conditional or unconditional:
// - If the target is a label at the current offset, then remove
// the conditional branch, and reset all labels that targeted
// the current offset (end of branch) to the truncated
// end-of-code.
//
// Preserves execution semantics: a branch to its own fallthrough
// address is equivalent to a no-op; in both cases, nextPC is the
// fallthrough.
if self.resolve_label_offset(b.target) == cur_off {
trace!("branch with target == cur off; truncating");
self.truncate_last_branch();
continue;
}
// If latest is an unconditional branch:
//
// - If the branch's target is not its own start address, then for
// each label at the start of branch, make the label an alias of the
// branch target, and remove the label from the "labels at this
// branch" list.
//
// - Preserves execution semantics: an unconditional branch's
// only effect is to set PC to a new PC; this change simply
// collapses one step in the step-semantics.
//
// - Post-invariant: the labels that were bound to the start of
// this branch become aliases, so they must not be present in any
// labels-at-this-branch list or the labels-at-tail list. The
// labels are removed form the latest-branch record's
// labels-at-this-branch list, and are never placed in the
// labels-at-tail list. Furthermore, it is correct that they are
// not in either list, because they are now aliases, and labels
// that are aliases remain aliases forever.
//
// - If there is a prior unconditional branch that ends just before
// this one begins, and this branch has no labels bound to its
// start, then we can truncate this branch, because it is entirely
// unreachable (we have redirected all labels that make it
// reachable otherwise). Do so and continue around the loop.
//
// - Preserves execution semantics: the branch is unreachable,
// because execution can only flow into an instruction from the
// prior instruction's fallthrough or from a branch bound to that
// instruction's start offset. Unconditional branches have no
// fallthrough, so if the prior instruction is an unconditional
// branch, no fallthrough entry can happen. The
// labels-at-this-branch list is complete (by invariant), so if it
// is empty, then the instruction is entirely unreachable. Thus,
// it can be removed.
//
// - Post-invariant: ensured by truncate_last_branch().
//
// - If there is a prior conditional branch whose target label
// resolves to the current offset (branches around the
// unconditional branch), then remove the unconditional branch,
// and make the target of the unconditional the target of the
// conditional instead.
//
// - Preserves execution semantics: previously we had:
//
// L1:
// cond_br L2
// br L3
// L2:
// (end of buffer)
//
// by removing the last branch, we have:
//
// L1:
// cond_br L2
// L2:
// (end of buffer)
//
// we then fix up the records for the conditional branch to
// have:
//
// L1:
// cond_br.inverted L3
// L2:
//
// In the original code, control flow reaches L2 when the
// conditional branch's predicate is true, and L3 otherwise. In
// the optimized code, the same is true.
//
// - Post-invariant: all edits to latest_branches and
// labels_at_tail are performed by `truncate_last_branch()`,
// which maintains the invariants at each step.
if b.is_uncond() {
// Set any label equal to current branch's start as an alias of
// the branch's target, if the target is not the branch itself
// (i.e., an infinite loop).
//
// We cannot perform this aliasing if the target of this branch
// ultimately aliases back here; if so, we need to keep this
// branch, so break out of this loop entirely (and clear the
// latest-branches list below).
//
// Note that this check is what prevents cycles from forming in
// `self.label_aliases`. To see why, consider an arbitrary start
// state:
//
// label_aliases[L1] = L2, label_aliases[L2] = L3, ..., up to
// Ln, which is not aliased.
//
// We would create a cycle if we assigned label_aliases[Ln]
// = L1. Note that the below assignment is the only write
// to label_aliases.
//
// By our other invariants, we have that Ln (`l` below)
// resolves to the offset `b.start`, because it is in the
// set `b.labels_at_this_branch`.
//
// If L1 were already aliased, through some arbitrarily deep
// chain, to Ln, then it must also resolve to this offset
// `b.start`.
//
// By checking the resolution of `L1` against this offset,
// and aborting this branch-simplification if they are
// equal, we prevent the below assignment from ever creating
// a cycle.
if self.resolve_label_offset(b.target) != b.start {
let redirected = b.labels_at_this_branch.len();
for &l in &b.labels_at_this_branch {
trace!(
" -> label at start of branch {:?} redirected to target {:?}",
l,
b.target
);
self.label_aliases[l.0 as usize] = b.target;
// NOTE: we continue to ensure the invariant that labels
// pointing to tail of buffer are in `labels_at_tail`
// because we already ensured above that the last branch
// cannot have a target of `cur_off`; so we never have
// to put the label into `labels_at_tail` when moving it
// here.
}
// Maintain invariant: all branches have been redirected
// and are no longer pointing at the start of this branch.
let mut_b = self.latest_branches.last_mut().unwrap();
mut_b.labels_at_this_branch.clear();
if redirected > 0 {
trace!(" -> after label redirects, restarting loop");
continue;
}
} else {
break;
}
let b = self.latest_branches.last().unwrap();
// Examine any immediately preceding branch.
if self.latest_branches.len() > 1 {
let prev_b = &self.latest_branches[self.latest_branches.len() - 2];
trace!(" -> more than one branch; prev_b = {:?}", prev_b);
// This uncond is immediately after another uncond; we
// should have already redirected labels to this uncond away
// (but check to be sure); so we can truncate this uncond.
if prev_b.is_uncond()
&& prev_b.end == b.start
&& b.labels_at_this_branch.is_empty()
{
trace!(" -> uncond follows another uncond; truncating");
self.truncate_last_branch();
continue;
}
// This uncond is immediately after a conditional, and the
// conditional's target is the end of this uncond, and we've
// already redirected labels to this uncond away; so we can
// truncate this uncond, flip the sense of the conditional, and
// set the conditional's target (in `latest_branches` and in
// `fixup_records`) to the uncond's target.
if prev_b.is_cond()
&& prev_b.end == b.start
&& self.resolve_label_offset(prev_b.target) == cur_off
{
trace!(" -> uncond follows a conditional, and conditional's target resolves to current offset");
// Save the target of the uncond (this becomes the
// target of the cond), and truncate the uncond.
let target = b.target;
let data = prev_b.inverted.clone().unwrap();
self.truncate_last_branch();
// Mutate the code and cond branch.
let off_before_edit = self.cur_offset();
let prev_b = self.latest_branches.last_mut().unwrap();
let not_inverted = SmallVec::from(
&self.data[(prev_b.start as usize)..(prev_b.end as usize)],
);
// Low-level edit: replaces bytes of branch with
// inverted form. cur_off remains the same afterward, so
// we do not need to modify label data structures.
self.data.truncate(prev_b.start as usize);
self.data.extend_from_slice(&data[..]);
// Save the original code as the inversion of the
// inverted branch, in case we later edit this branch
// again.
prev_b.inverted = Some(not_inverted);
self.pending_fixup_records[prev_b.fixup].label = target;
trace!(" -> reassigning target of condbr to {:?}", target);
prev_b.target = target;
debug_assert_eq!(off_before_edit, self.cur_offset());
continue;
}
}
}
// If we couldn't do anything with the last branch, then break.
break;
}
self.purge_latest_branches();
trace!(
"leave optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
self.latest_branches,
self.labels_at_tail,
self.pending_fixup_records
);
}
fn purge_latest_branches(&mut self) {
// All of our branch simplification rules work only if a branch ends at
// the tail of the buffer, with no following code; and branches are in
// order in latest_branches; so if the last entry ends prior to
// cur_offset, then clear all entries.
let cur_off = self.cur_offset();
if let Some(l) = self.latest_branches.last() {
if l.end < cur_off {
trace!("purge_latest_branches: removing branch {:?}", l);
self.latest_branches.clear();
}
}
// Post-invariant: no invariant requires any branch to appear in
// `latest_branches`; it is always optional. The list-clear above thus
// preserves all semantics.
}
/// Emit a trap at some point in the future with the specified code and
/// stack map.
///
/// This function returns a [`MachLabel`] which will be the future address
/// of the trap. Jumps should refer to this label, likely by using the
/// [`MachBuffer::use_label_at_offset`] method, to get a relocation
/// patched in once the address of the trap is known.
///
/// This will batch all traps into the end of the function.
pub fn defer_trap(&mut self, code: TrapCode) -> MachLabel {
let label = self.get_label();
self.pending_traps.push(MachLabelTrap {
label,
code,
loc: self.cur_srcloc.map(|(_start, loc)| loc),
});
label
}
/// Is an island needed within the next N bytes?
pub fn island_needed(&self, distance: CodeOffset) -> bool {
let deadline = match self.fixup_records.peek() {
Some(fixup) => fixup.deadline().min(self.pending_fixup_deadline),
None => self.pending_fixup_deadline,
};
deadline < u32::MAX && self.worst_case_end_of_island(distance) > deadline
}
/// Returns the maximal offset that islands can reach if `distance` more
/// bytes are appended.
///
/// This is used to determine if veneers need insertions since jumps that
/// can't reach past this point must get a veneer of some form.
fn worst_case_end_of_island(&self, distance: CodeOffset) -> CodeOffset {
// Assume that all fixups will require veneers and that the veneers are
// the worst-case size for each platform. This is an over-generalization
// to avoid iterating over the `fixup_records` list or maintaining
// information about it as we go along.
let island_worst_case_size = ((self.fixup_records.len() + self.pending_fixup_records.len())
as u32)
* (I::LabelUse::worst_case_veneer_size())
+ self.pending_constants_size
+ (self.pending_traps.len() * I::TRAP_OPCODE.len()) as u32;
self.cur_offset()
.saturating_add(distance)
.saturating_add(island_worst_case_size)
}
/// Emit all pending constants and required pending veneers.
///
/// Should only be called if `island_needed()` returns true, i.e., if we
/// actually reach a deadline. It's not necessarily a problem to do so
/// otherwise but it may result in unnecessary work during emission.
pub fn emit_island(&mut self, distance: CodeOffset, ctrl_plane: &mut ControlPlane) {
self.emit_island_maybe_forced(ForceVeneers::No, distance, ctrl_plane);
}
/// Same as `emit_island`, but an internal API with a `force_veneers`
/// argument to force all veneers to always get emitted for debugging.
fn emit_island_maybe_forced(
&mut self,
force_veneers: ForceVeneers,
distance: CodeOffset,
ctrl_plane: &mut ControlPlane,
) {
// We're going to purge fixups, so no latest-branch editing can happen
// anymore.
self.latest_branches.clear();
// End the current location tracking since anything emitted during this
// function shouldn't be attributed to whatever the current source
// location is.
//
// Note that the current source location, if it's set right now, will be
// restored at the end of this island emission.
let cur_loc = self.cur_srcloc.map(|(_, loc)| loc);
if cur_loc.is_some() {
self.end_srcloc();
}
let forced_threshold = self.worst_case_end_of_island(distance);
// First flush out all traps/constants so we have more labels in case
// fixups are applied against these labels.
//
// Note that traps are placed first since this typically happens at the
// end of the function and for disassemblers we try to keep all the code
// contiguously together.
for MachLabelTrap { label, code, loc } in mem::take(&mut self.pending_traps) {
// If this trap has source information associated with it then
// emit this information for the trap instruction going out now too.
if let Some(loc) = loc {
self.start_srcloc(loc);
}
self.align_to(I::LabelUse::ALIGN);
self.bind_label(label, ctrl_plane);
self.add_trap(code);
self.put_data(I::TRAP_OPCODE);
if loc.is_some() {
self.end_srcloc();
}
}
for constant in mem::take(&mut self.pending_constants) {
let MachBufferConstant { align, size, .. } = self.constants[constant];
let label = self.constants[constant].upcoming_label.take().unwrap();
self.align_to(align);
self.bind_label(label, ctrl_plane);
self.used_constants.push((constant, self.cur_offset()));
self.get_appended_space(size);
}
// Either handle all pending fixups because they're ready or move them
// onto the `BinaryHeap` tracking all pending fixups if they aren't
// ready.
assert!(self.latest_branches.is_empty());
for fixup in mem::take(&mut self.pending_fixup_records) {
if self.should_apply_fixup(&fixup, forced_threshold) {
self.handle_fixup(fixup, force_veneers, forced_threshold);
} else {
self.fixup_records.push(fixup);
}
}
self.pending_fixup_deadline = u32::MAX;
while let Some(fixup) = self.fixup_records.peek() {
trace!("emit_island: fixup {:?}", fixup);
// If this fixup shouldn't be applied, that means its label isn't
// defined yet and there'll be remaining space to apply a veneer if
// necessary in the future after this island. In that situation
// because `fixup_records` is sorted by deadline this loop can
// exit.
if !self.should_apply_fixup(fixup, forced_threshold) {
break;
}
let fixup = self.fixup_records.pop().unwrap();
self.handle_fixup(fixup, force_veneers, forced_threshold);
}
if let Some(loc) = cur_loc {
self.start_srcloc(loc);
}
}
fn should_apply_fixup(&self, fixup: &MachLabelFixup<I>, forced_threshold: CodeOffset) -> bool {
let label_offset = self.resolve_label_offset(fixup.label);
label_offset != UNKNOWN_LABEL_OFFSET || fixup.deadline() < forced_threshold
}
fn handle_fixup(
&mut self,
fixup: MachLabelFixup<I>,
force_veneers: ForceVeneers,
forced_threshold: CodeOffset,
) {
let MachLabelFixup {
label,
offset,
kind,
} = fixup;
let start = offset as usize;
let end = (offset + kind.patch_size()) as usize;
let label_offset = self.resolve_label_offset(label);
if label_offset != UNKNOWN_LABEL_OFFSET {
// If the offset of the label for this fixup is known then
// we're going to do something here-and-now. We're either going
// to patch the original offset because it's an in-bounds jump,
// or we're going to generate a veneer, patch the fixup to jump
// to the veneer, and then keep going.
//
// If the label comes after the original fixup, then we should
// be guaranteed that the jump is in-bounds. Otherwise there's
// a bug somewhere because this method wasn't called soon
// enough. All forward-jumps are tracked and should get veneers
// before their deadline comes and they're unable to jump
// further.
//
// Otherwise if the label is before the fixup, then that's a
// backwards jump. If it's past the maximum negative range
// then we'll emit a veneer that to jump forward to which can
// then jump backwards.
let veneer_required = if label_offset >= offset {
assert!((label_offset - offset) <= kind.max_pos_range());
false
} else {
(offset - label_offset) > kind.max_neg_range()
};
trace!(
" -> label_offset = {}, known, required = {} (pos {} neg {})",
label_offset,
veneer_required,
kind.max_pos_range(),
kind.max_neg_range()
);
if (force_veneers == ForceVeneers::Yes && kind.supports_veneer()) || veneer_required {
self.emit_veneer(label, offset, kind);
} else {
let slice = &mut self.data[start..end];
trace!("patching in-range! slice = {slice:?}; offset = {offset:#x}; label_offset = {label_offset:#x}");
kind.patch(slice, offset, label_offset);
}
} else {
// If the offset of this label is not known at this time then
// that means that a veneer is required because after this
// island the target can't be in range of the original target.
assert!(forced_threshold - offset > kind.max_pos_range());
self.emit_veneer(label, offset, kind);
}
}
/// Emits a "veneer" the `kind` code at `offset` to jump to `label`.
///
/// This will generate extra machine code, using `kind`, to get a
/// larger-jump-kind than `kind` allows. The code at `offset` is then
/// patched to jump to our new code, and then the new code is enqueued for
/// a fixup to get processed at some later time.
fn emit_veneer(&mut self, label: MachLabel, offset: CodeOffset, kind: I::LabelUse) {
// If this `kind` doesn't support a veneer then that's a bug in the
// backend because we need to implement support for such a veneer.
assert!(
kind.supports_veneer(),
"jump beyond the range of {kind:?} but a veneer isn't supported",
);
// Allocate space for a veneer in the island.
self.align_to(I::LabelUse::ALIGN);
let veneer_offset = self.cur_offset();
trace!("making a veneer at {}", veneer_offset);
let start = offset as usize;
let end = (offset + kind.patch_size()) as usize;
let slice = &mut self.data[start..end];
// Patch the original label use to refer to the veneer.
trace!(
"patching original at offset {} to veneer offset {}",
offset,
veneer_offset
);
kind.patch(slice, offset, veneer_offset);
// Generate the veneer.
let veneer_slice = self.get_appended_space(kind.veneer_size() as usize);
let (veneer_fixup_off, veneer_label_use) =
kind.generate_veneer(veneer_slice, veneer_offset);
trace!(
"generated veneer; fixup offset {}, label_use {:?}",
veneer_fixup_off,
veneer_label_use
);
// Register a new use of `label` with our new veneer fixup and
// offset. This'll recalculate deadlines accordingly and
// enqueue this fixup to get processed at some later
// time.
self.use_label_at_offset(veneer_fixup_off, label, veneer_label_use);
}
fn finish_emission_maybe_forcing_veneers(
&mut self,
force_veneers: ForceVeneers,
ctrl_plane: &mut ControlPlane,
) {
while !self.pending_constants.is_empty()
|| !self.pending_traps.is_empty()
|| !self.fixup_records.is_empty()
|| !self.pending_fixup_records.is_empty()
{
// `emit_island()` will emit any pending veneers and constants, and
// as a side-effect, will also take care of any fixups with resolved
// labels eagerly.
self.emit_island_maybe_forced(force_veneers, u32::MAX, ctrl_plane);
}
// Ensure that all labels have been fixed up after the last island is emitted. This is a
// full (release-mode) assert because an unresolved label means the emitted code is
// incorrect.
assert!(self.fixup_records.is_empty());
assert!(self.pending_fixup_records.is_empty());
}
/// Finish any deferred emissions and/or fixups.
pub fn finish(
mut self,
constants: &VCodeConstants,
ctrl_plane: &mut ControlPlane,
) -> MachBufferFinalized<Stencil> {
let _tt = timing::vcode_emit_finish();
self.finish_emission_maybe_forcing_veneers(ForceVeneers::No, ctrl_plane);
let alignment = self.finish_constants(constants);
// Resolve all labels to their offsets.
let finalized_relocs = self
.relocs
.iter()
.map(|reloc| FinalizedMachReloc {
offset: reloc.offset,
kind: reloc.kind,
addend: reloc.addend,
target: match &reloc.target {
RelocTarget::ExternalName(name) => {
FinalizedRelocTarget::ExternalName(name.clone())
}
RelocTarget::Label(label) => {
FinalizedRelocTarget::Func(self.resolve_label_offset(*label))
}
},
})
.collect();
let mut srclocs = self.srclocs;
srclocs.sort_by_key(|entry| entry.start);
MachBufferFinalized {
data: self.data,
relocs: finalized_relocs,
traps: self.traps,
call_sites: self.call_sites,
srclocs,
user_stack_maps: self.user_stack_maps,
unwind_info: self.unwind_info,
alignment,
}
}
/// Add an external relocation at the given offset from current offset.
pub fn add_reloc_at_offset<T: Into<RelocTarget> + Clone>(
&mut self,
offset: CodeOffset,
kind: Reloc,
target: &T,
addend: Addend,
) {
let target: RelocTarget = target.clone().into();
// FIXME(#3277): This should use `I::LabelUse::from_reloc` to optionally
// generate a label-use statement to track whether an island is possibly
// needed to escape this function to actually get to the external name.
// This is most likely to come up on AArch64 where calls between
// functions use a 26-bit signed offset which gives +/- 64MB. This means
// that if a function is 128MB in size and there's a call in the middle
// it's impossible to reach the actual target. Also, while it's
// technically possible to jump to the start of a function and then jump
// further, island insertion below always inserts islands after
// previously appended code so for Cranelift's own implementation this
// is also a problem for 64MB functions on AArch64 which start with a
// call instruction, those won't be able to escape.
//
// Ideally what needs to happen here is that a `LabelUse` is
// transparently generated (or call-sites of this function are audited
// to generate a `LabelUse` instead) and tracked internally. The actual
// relocation would then change over time if and when a veneer is
// inserted, where the relocation here would be patched by this
// `MachBuffer` to jump to the veneer. The problem, though, is that all
// this still needs to end up, in the case of a singular function,
// generating a final relocation pointing either to this particular
// relocation or to the veneer inserted. Additionally
// `MachBuffer` needs the concept of a label which will never be
// resolved, so `emit_island` doesn't trip over not actually ever
// knowning what some labels are. Currently the loop in
// `finish_emission_maybe_forcing_veneers` would otherwise infinitely
// loop.
//
// For now this means that because relocs aren't tracked at all that
// AArch64 functions have a rough size limits of 64MB. For now that's
// somewhat reasonable and the failure mode is a panic in `MachBuffer`
// when a relocation can't otherwise be resolved later, so it shouldn't
// actually result in any memory unsafety or anything like that.
self.relocs.push(MachReloc {
offset: self.data.len() as CodeOffset + offset,
kind,
target,
addend,
});
}
/// Add an external relocation at the current offset.
pub fn add_reloc<T: Into<RelocTarget> + Clone>(
&mut self,
kind: Reloc,
target: &T,
addend: Addend,
) {
self.add_reloc_at_offset(0, kind, target, addend);
}
/// Add a trap record at the current offset.
pub fn add_trap(&mut self, code: TrapCode) {
self.traps.push(MachTrap {
offset: self.data.len() as CodeOffset,
code,
});
}
/// Add a call-site record at the current offset.
pub fn add_call_site(&mut self) {
self.call_sites.push(MachCallSite {
ret_addr: self.data.len() as CodeOffset,
});
}
/// Add an unwind record at the current offset.
pub fn add_unwind(&mut self, unwind: UnwindInst) {
self.unwind_info.push((self.cur_offset(), unwind));
}
/// Set the `SourceLoc` for code from this offset until the offset at the
/// next call to `end_srcloc()`.
/// Returns the current [CodeOffset] and [RelSourceLoc].
pub fn start_srcloc(&mut self, loc: RelSourceLoc) -> (CodeOffset, RelSourceLoc) {
let cur = (self.cur_offset(), loc);
self.cur_srcloc = Some(cur);
cur
}
/// Mark the end of the `SourceLoc` segment started at the last
/// `start_srcloc()` call.
pub fn end_srcloc(&mut self) {
let (start, loc) = self
.cur_srcloc
.take()
.expect("end_srcloc() called without start_srcloc()");
let end = self.cur_offset();
// Skip zero-length extends.
debug_assert!(end >= start);
if end > start {
self.srclocs.push(MachSrcLoc { start, end, loc });
}
}
/// Push a user stack map onto this buffer.
///
/// The stack map is associated with the given `return_addr` code
/// offset. This must be the PC for the instruction just *after* this stack
/// map's associated instruction. For example in the sequence `call $foo;
/// add r8, rax`, the `return_addr` must be the offset of the start of the
/// `add` instruction.
///
/// Stack maps must be pushed in sorted `return_addr` order.
pub fn push_user_stack_map(
&mut self,
emit_state: &I::State,
return_addr: CodeOffset,
mut stack_map: ir::UserStackMap,
) {
let span = emit_state.frame_layout().active_size();
trace!("Adding user stack map @ {return_addr:#x} spanning {span} bytes: {stack_map:?}");
debug_assert!(
self.user_stack_maps
.last()
.map_or(true, |(prev_addr, _, _)| *prev_addr < return_addr),
"pushed stack maps out of order: {} is not less than {}",
self.user_stack_maps.last().unwrap().0,
return_addr,
);
stack_map.finalize(emit_state.frame_layout().sp_to_sized_stack_slots());
self.user_stack_maps.push((return_addr, span, stack_map));
}
}
impl<I: VCodeInst> Extend<u8> for MachBuffer<I> {
fn extend<T: IntoIterator<Item = u8>>(&mut self, iter: T) {
for b in iter {
self.put1(b);
}
}
}
impl<T: CompilePhase> MachBufferFinalized<T> {
/// Get a list of source location mapping tuples in sorted-by-start-offset order.
pub fn get_srclocs_sorted(&self) -> &[T::MachSrcLocType] {
&self.srclocs[..]
}
/// Get the total required size for the code.
pub fn total_size(&self) -> CodeOffset {
self.data.len() as CodeOffset
}
/// Return the code in this mach buffer as a hex string for testing purposes.
pub fn stringify_code_bytes(&self) -> String {
// This is pretty lame, but whatever ..
use std::fmt::Write;
let mut s = String::with_capacity(self.data.len() * 2);
for b in &self.data {
write!(&mut s, "{b:02X}").unwrap();
}
s
}
/// Get the code bytes.
pub fn data(&self) -> &[u8] {
// N.B.: we emit every section into the .text section as far as
// the `CodeSink` is concerned; we do not bother to segregate
// the contents into the actual program text, the jumptable and the
// rodata (constant pool). This allows us to generate code assuming
// that these will not be relocated relative to each other, and avoids
// having to designate each section as belonging in one of the three
// fixed categories defined by `CodeSink`. If this becomes a problem
// later (e.g. because of memory permissions or similar), we can
// add this designation and segregate the output; take care, however,
// to add the appropriate relocations in this case.
&self.data[..]
}
/// Get the list of external relocations for this code.
pub fn relocs(&self) -> &[FinalizedMachReloc] {
&self.relocs[..]
}
/// Get the list of trap records for this code.
pub fn traps(&self) -> &[MachTrap] {
&self.traps[..]
}
/// Get the user stack map metadata for this code.
pub fn user_stack_maps(&self) -> &[(CodeOffset, u32, ir::UserStackMap)] {
&self.user_stack_maps
}
/// Take this buffer's user strack map metadata.
pub fn take_user_stack_maps(&mut self) -> SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]> {
mem::take(&mut self.user_stack_maps)
}
/// Get the list of call sites for this code.
pub fn call_sites(&self) -> &[MachCallSite] {
&self.call_sites[..]
}
}
/// Metadata about a constant.
struct MachBufferConstant {
/// A label which has not yet been bound which can be used for this
/// constant.
///
/// This is lazily created when a label is requested for a constant and is
/// cleared when a constant is emitted.
upcoming_label: Option<MachLabel>,
/// Required alignment.
align: CodeOffset,
/// The byte size of this constant.
size: usize,
}
/// A trap that is deferred to the next time an island is emitted for either
/// traps, constants, or fixups.
struct MachLabelTrap {
/// This label will refer to the trap's offset.
label: MachLabel,
/// The code associated with this trap.
code: TrapCode,
/// An optional source location to assign for this trap.
loc: Option<RelSourceLoc>,
}
/// A fixup to perform on the buffer once code is emitted. Fixups always refer
/// to labels and patch the code based on label offsets. Hence, they are like
/// relocations, but internal to one buffer.
#[derive(Debug)]
struct MachLabelFixup<I: VCodeInst> {
/// The label whose offset controls this fixup.
label: MachLabel,
/// The offset to fix up / patch to refer to this label.
offset: CodeOffset,
/// The kind of fixup. This is architecture-specific; each architecture may have,
/// e.g., several types of branch instructions, each with differently-sized
/// offset fields and different places within the instruction to place the
/// bits.
kind: I::LabelUse,
}
impl<I: VCodeInst> MachLabelFixup<I> {
fn deadline(&self) -> CodeOffset {
self.offset.saturating_add(self.kind.max_pos_range())
}
}
impl<I: VCodeInst> PartialEq for MachLabelFixup<I> {
fn eq(&self, other: &Self) -> bool {
self.deadline() == other.deadline()
}
}
impl<I: VCodeInst> Eq for MachLabelFixup<I> {}
impl<I: VCodeInst> PartialOrd for MachLabelFixup<I> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<I: VCodeInst> Ord for MachLabelFixup<I> {
fn cmp(&self, other: &Self) -> Ordering {
other.deadline().cmp(&self.deadline())
}
}
/// A relocation resulting from a compilation.
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(
feature = "enable-serde",
derive(serde_derive::Serialize, serde_derive::Deserialize)
)]
pub struct MachRelocBase<T> {
/// The offset at which the relocation applies, *relative to the
/// containing section*.
pub offset: CodeOffset,
/// The kind of relocation.
pub kind: Reloc,
/// The external symbol / name to which this relocation refers.
pub target: T,
/// The addend to add to the symbol value.
pub addend: i64,
}
type MachReloc = MachRelocBase<RelocTarget>;
/// A relocation resulting from a compilation.
pub type FinalizedMachReloc = MachRelocBase<FinalizedRelocTarget>;
/// A Relocation target
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum RelocTarget {
/// Points to an [ExternalName] outside the current function.
ExternalName(ExternalName),
/// Points to a [MachLabel] inside this function.
/// This is different from [MachLabelFixup] in that both the relocation and the
/// label will be emitted and are only resolved at link time.
///
/// There is no reason to prefer this over [MachLabelFixup] unless the ABI requires it.
Label(MachLabel),
}
impl From<ExternalName> for RelocTarget {
fn from(name: ExternalName) -> Self {
Self::ExternalName(name)
}
}
impl From<MachLabel> for RelocTarget {
fn from(label: MachLabel) -> Self {
Self::Label(label)
}
}
/// A Relocation target
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
#[cfg_attr(
feature = "enable-serde",
derive(serde_derive::Serialize, serde_derive::Deserialize)
)]
pub enum FinalizedRelocTarget {
/// Points to an [ExternalName] outside the current function.
ExternalName(ExternalName),
/// Points to a [CodeOffset] from the start of the current function.
Func(CodeOffset),
}
impl FinalizedRelocTarget {
/// Returns a display for the current [FinalizedRelocTarget], with extra context to prettify the
/// output.
pub fn display<'a>(&'a self, params: Option<&'a FunctionParameters>) -> String {
match self {
FinalizedRelocTarget::ExternalName(name) => format!("{}", name.display(params)),
FinalizedRelocTarget::Func(offset) => format!("func+{offset}"),
}
}
}
/// A trap record resulting from a compilation.
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(
feature = "enable-serde",
derive(serde_derive::Serialize, serde_derive::Deserialize)
)]
pub struct MachTrap {
/// The offset at which the trap instruction occurs, *relative to the
/// containing section*.
pub offset: CodeOffset,
/// The trap code.
pub code: TrapCode,
}
/// A call site record resulting from a compilation.
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(
feature = "enable-serde",
derive(serde_derive::Serialize, serde_derive::Deserialize)
)]
pub struct MachCallSite {
/// The offset of the call's return address, *relative to the containing section*.
pub ret_addr: CodeOffset,
}
/// A source-location mapping resulting from a compilation.
#[derive(PartialEq, Debug, Clone)]
#[cfg_attr(
feature = "enable-serde",
derive(serde_derive::Serialize, serde_derive::Deserialize)
)]
pub struct MachSrcLoc<T: CompilePhase> {
/// The start of the region of code corresponding to a source location.
/// This is relative to the start of the function, not to the start of the
/// section.
pub start: CodeOffset,
/// The end of the region of code corresponding to a source location.
/// This is relative to the start of the section, not to the start of the
/// section.
pub end: CodeOffset,
/// The source location.
pub loc: T::SourceLocType,
}
impl MachSrcLoc<Stencil> {
fn apply_base_srcloc(self, base_srcloc: SourceLoc) -> MachSrcLoc<Final> {
MachSrcLoc {
start: self.start,
end: self.end,
loc: self.loc.expand(base_srcloc),
}
}
}
/// Record of branch instruction in the buffer, to facilitate editing.
#[derive(Clone, Debug)]
struct MachBranch {
start: CodeOffset,
end: CodeOffset,
target: MachLabel,
fixup: usize,
inverted: Option<SmallVec<[u8; 8]>>,
/// All labels pointing to the start of this branch. For correctness, this
/// *must* be complete (i.e., must contain all labels whose resolved offsets
/// are at the start of this branch): we rely on being able to redirect all
/// labels that could jump to this branch before removing it, if it is
/// otherwise unreachable.
labels_at_this_branch: SmallVec<[MachLabel; 4]>,
}
impl MachBranch {
fn is_cond(&self) -> bool {
self.inverted.is_some()
}
fn is_uncond(&self) -> bool {
self.inverted.is_none()
}
}
/// Implementation of the `TextSectionBuilder` trait backed by `MachBuffer`.
///
/// Note that `MachBuffer` was primarily written for intra-function references
/// of jumps between basic blocks, but it's also quite usable for entire text
/// sections and resolving references between functions themselves. This
/// builder interprets "blocks" as labeled functions for the purposes of
/// resolving labels internally in the buffer.
pub struct MachTextSectionBuilder<I: VCodeInst> {
buf: MachBuffer<I>,
next_func: usize,
force_veneers: ForceVeneers,
}
impl<I: VCodeInst> MachTextSectionBuilder<I> {
/// Creates a new text section builder which will have `num_funcs` functions
/// pushed into it.
pub fn new(num_funcs: usize) -> MachTextSectionBuilder<I> {
let mut buf = MachBuffer::new();
buf.reserve_labels_for_blocks(num_funcs);
MachTextSectionBuilder {
buf,
next_func: 0,
force_veneers: ForceVeneers::No,
}
}
}
impl<I: VCodeInst> TextSectionBuilder for MachTextSectionBuilder<I> {
fn append(
&mut self,
labeled: bool,
func: &[u8],
align: u32,
ctrl_plane: &mut ControlPlane,
) -> u64 {
// Conditionally emit an island if it's necessary to resolve jumps
// between functions which are too far away.
let size = func.len() as u32;
if self.force_veneers == ForceVeneers::Yes || self.buf.island_needed(size) {
self.buf
.emit_island_maybe_forced(self.force_veneers, size, ctrl_plane);
}
self.buf.align_to(align);
let pos = self.buf.cur_offset();
if labeled {
self.buf.bind_label(
MachLabel::from_block(BlockIndex::new(self.next_func)),
ctrl_plane,
);
self.next_func += 1;
}
self.buf.put_data(func);
u64::from(pos)
}
fn resolve_reloc(&mut self, offset: u64, reloc: Reloc, addend: Addend, target: usize) -> bool {
crate::trace!(
"Resolving relocation @ {offset:#x} + {addend:#x} to target {target} of kind {reloc:?}"
);
let label = MachLabel::from_block(BlockIndex::new(target));
let offset = u32::try_from(offset).unwrap();
match I::LabelUse::from_reloc(reloc, addend) {
Some(label_use) => {
self.buf.use_label_at_offset(offset, label, label_use);
true
}
None => false,
}
}
fn force_veneers(&mut self) {
self.force_veneers = ForceVeneers::Yes;
}
fn write(&mut self, offset: u64, data: &[u8]) {
self.buf.data[offset.try_into().unwrap()..][..data.len()].copy_from_slice(data);
}
fn finish(&mut self, ctrl_plane: &mut ControlPlane) -> Vec<u8> {
// Double-check all functions were pushed.
assert_eq!(self.next_func, self.buf.label_offsets.len());
// Finish up any veneers, if necessary.
self.buf
.finish_emission_maybe_forcing_veneers(self.force_veneers, ctrl_plane);
// We don't need the data any more, so return it to the caller.
mem::take(&mut self.buf.data).into_vec()
}
}
// We use an actual instruction definition to do tests, so we depend on the `arm64` feature here.
#[cfg(all(test, feature = "arm64"))]
mod test {
use cranelift_entity::EntityRef as _;
use super::*;
use crate::ir::UserExternalNameRef;
use crate::isa::aarch64::inst::xreg;
use crate::isa::aarch64::inst::{BranchTarget, CondBrKind, EmitInfo, Inst};
use crate::machinst::{MachInstEmit, MachInstEmitState};
use crate::settings;
fn label(n: u32) -> MachLabel {
MachLabel::from_block(BlockIndex::new(n as usize))
}
fn target(n: u32) -> BranchTarget {
BranchTarget::Label(label(n))
}
#[test]
fn test_elide_jump_to_next() {
let info = EmitInfo::new(settings::Flags::new(settings::builder()));
let mut buf = MachBuffer::new();
let mut state = <Inst as MachInstEmit>::State::default();
let constants = Default::default();
buf.reserve_labels_for_blocks(2);
buf.bind_label(label(0), state.ctrl_plane_mut());
let inst = Inst::Jump { dest: target(1) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(1), state.ctrl_plane_mut());
let buf = buf.finish(&constants, state.ctrl_plane_mut());
assert_eq!(0, buf.total_size());
}
#[test]
fn test_elide_trivial_jump_blocks() {
let info = EmitInfo::new(settings::Flags::new(settings::builder()));
let mut buf = MachBuffer::new();
let mut state = <Inst as MachInstEmit>::State::default();
let constants = Default::default();
buf.reserve_labels_for_blocks(4);
buf.bind_label(label(0), state.ctrl_plane_mut());
let inst = Inst::CondBr {
kind: CondBrKind::NotZero(xreg(0)),
taken: target(1),
not_taken: target(2),
};
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(1), state.ctrl_plane_mut());
let inst = Inst::Jump { dest: target(3) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(2), state.ctrl_plane_mut());
let inst = Inst::Jump { dest: target(3) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(3), state.ctrl_plane_mut());
let buf = buf.finish(&constants, state.ctrl_plane_mut());
assert_eq!(0, buf.total_size());
}
#[test]
fn test_flip_cond() {
let info = EmitInfo::new(settings::Flags::new(settings::builder()));
let mut buf = MachBuffer::new();
let mut state = <Inst as MachInstEmit>::State::default();
let constants = Default::default();
buf.reserve_labels_for_blocks(4);
buf.bind_label(label(0), state.ctrl_plane_mut());
let inst = Inst::CondBr {
kind: CondBrKind::Zero(xreg(0)),
taken: target(1),
not_taken: target(2),
};
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(1), state.ctrl_plane_mut());
let inst = Inst::Nop4;
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(2), state.ctrl_plane_mut());
let inst = Inst::Udf {
trap_code: TrapCode::STACK_OVERFLOW,
};
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(3), state.ctrl_plane_mut());
let buf = buf.finish(&constants, state.ctrl_plane_mut());
let mut buf2 = MachBuffer::new();
let mut state = Default::default();
let inst = Inst::TrapIf {
kind: CondBrKind::NotZero(xreg(0)),
trap_code: TrapCode::STACK_OVERFLOW,
};
inst.emit(&mut buf2, &info, &mut state);
let inst = Inst::Nop4;
inst.emit(&mut buf2, &info, &mut state);
let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
assert_eq!(buf.data, buf2.data);
}
#[test]
fn test_island() {
let info = EmitInfo::new(settings::Flags::new(settings::builder()));
let mut buf = MachBuffer::new();
let mut state = <Inst as MachInstEmit>::State::default();
let constants = Default::default();
buf.reserve_labels_for_blocks(4);
buf.bind_label(label(0), state.ctrl_plane_mut());
let inst = Inst::CondBr {
kind: CondBrKind::NotZero(xreg(0)),
taken: target(2),
not_taken: target(3),
};
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(1), state.ctrl_plane_mut());
while buf.cur_offset() < 2000000 {
if buf.island_needed(0) {
buf.emit_island(0, state.ctrl_plane_mut());
}
let inst = Inst::Nop4;
inst.emit(&mut buf, &info, &mut state);
}
buf.bind_label(label(2), state.ctrl_plane_mut());
let inst = Inst::Nop4;
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(3), state.ctrl_plane_mut());
let inst = Inst::Nop4;
inst.emit(&mut buf, &info, &mut state);
let buf = buf.finish(&constants, state.ctrl_plane_mut());
assert_eq!(2000000 + 8, buf.total_size());
let mut buf2 = MachBuffer::new();
let mut state = Default::default();
let inst = Inst::CondBr {
kind: CondBrKind::NotZero(xreg(0)),
// This conditionally taken branch has a 19-bit constant, shifted
// to the left by two, giving us a 21-bit range in total. Half of
// this range positive so the we should be around 1 << 20 bytes
// away for our jump target.
//
// There are two pending fixups by the time we reach this point,
// one for this 19-bit jump and one for the unconditional 26-bit
// jump below. A 19-bit veneer is 4 bytes large and the 26-bit
// veneer is 20 bytes large, which means that pessimistically
// assuming we'll need two veneers. Currently each veneer is
// pessimistically assumed to be the maximal size which means we
// need 40 bytes of extra space, meaning that the actual island
// should come 40-bytes before the deadline.
taken: BranchTarget::ResolvedOffset((1 << 20) - 20 - 20),
// This branch is in-range so no veneers should be needed, it should
// go directly to the target.
not_taken: BranchTarget::ResolvedOffset(2000000 + 4 - 4),
};
inst.emit(&mut buf2, &info, &mut state);
let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
assert_eq!(&buf.data[0..8], &buf2.data[..]);
}
#[test]
fn test_island_backward() {
let info = EmitInfo::new(settings::Flags::new(settings::builder()));
let mut buf = MachBuffer::new();
let mut state = <Inst as MachInstEmit>::State::default();
let constants = Default::default();
buf.reserve_labels_for_blocks(4);
buf.bind_label(label(0), state.ctrl_plane_mut());
let inst = Inst::Nop4;
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(1), state.ctrl_plane_mut());
let inst = Inst::Nop4;
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(2), state.ctrl_plane_mut());
while buf.cur_offset() < 2000000 {
let inst = Inst::Nop4;
inst.emit(&mut buf, &info, &mut state);
}
buf.bind_label(label(3), state.ctrl_plane_mut());
let inst = Inst::CondBr {
kind: CondBrKind::NotZero(xreg(0)),
taken: target(0),
not_taken: target(1),
};
inst.emit(&mut buf, &info, &mut state);
let buf = buf.finish(&constants, state.ctrl_plane_mut());
assert_eq!(2000000 + 12, buf.total_size());
let mut buf2 = MachBuffer::new();
let mut state = Default::default();
let inst = Inst::CondBr {
kind: CondBrKind::NotZero(xreg(0)),
taken: BranchTarget::ResolvedOffset(8),
not_taken: BranchTarget::ResolvedOffset(4 - (2000000 + 4)),
};
inst.emit(&mut buf2, &info, &mut state);
let inst = Inst::Jump {
dest: BranchTarget::ResolvedOffset(-(2000000 + 8)),
};
inst.emit(&mut buf2, &info, &mut state);
let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
assert_eq!(&buf.data[2000000..], &buf2.data[..]);
}
#[test]
fn test_multiple_redirect() {
// label0:
// cbz x0, label1
// b label2
// label1:
// b label3
// label2:
// nop
// nop
// b label0
// label3:
// b label4
// label4:
// b label5
// label5:
// b label7
// label6:
// nop
// label7:
// ret
//
// -- should become:
//
// label0:
// cbz x0, label7
// label2:
// nop
// nop
// b label0
// label6:
// nop
// label7:
// ret
let info = EmitInfo::new(settings::Flags::new(settings::builder()));
let mut buf = MachBuffer::new();
let mut state = <Inst as MachInstEmit>::State::default();
let constants = Default::default();
buf.reserve_labels_for_blocks(8);
buf.bind_label(label(0), state.ctrl_plane_mut());
let inst = Inst::CondBr {
kind: CondBrKind::Zero(xreg(0)),
taken: target(1),
not_taken: target(2),
};
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(1), state.ctrl_plane_mut());
let inst = Inst::Jump { dest: target(3) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(2), state.ctrl_plane_mut());
let inst = Inst::Nop4;
inst.emit(&mut buf, &info, &mut state);
inst.emit(&mut buf, &info, &mut state);
let inst = Inst::Jump { dest: target(0) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(3), state.ctrl_plane_mut());
let inst = Inst::Jump { dest: target(4) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(4), state.ctrl_plane_mut());
let inst = Inst::Jump { dest: target(5) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(5), state.ctrl_plane_mut());
let inst = Inst::Jump { dest: target(7) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(6), state.ctrl_plane_mut());
let inst = Inst::Nop4;
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(7), state.ctrl_plane_mut());
let inst = Inst::Ret {};
inst.emit(&mut buf, &info, &mut state);
let buf = buf.finish(&constants, state.ctrl_plane_mut());
let golden_data = vec![
0xa0, 0x00, 0x00, 0xb4, // cbz x0, 0x14
0x1f, 0x20, 0x03, 0xd5, // nop
0x1f, 0x20, 0x03, 0xd5, // nop
0xfd, 0xff, 0xff, 0x17, // b 0
0x1f, 0x20, 0x03, 0xd5, // nop
0xc0, 0x03, 0x5f, 0xd6, // ret
];
assert_eq!(&golden_data[..], &buf.data[..]);
}
#[test]
fn test_handle_branch_cycle() {
// label0:
// b label1
// label1:
// b label2
// label2:
// b label3
// label3:
// b label4
// label4:
// b label1 // note: not label0 (to make it interesting).
//
// -- should become:
//
// label0, label1, ..., label4:
// b label0
let info = EmitInfo::new(settings::Flags::new(settings::builder()));
let mut buf = MachBuffer::new();
let mut state = <Inst as MachInstEmit>::State::default();
let constants = Default::default();
buf.reserve_labels_for_blocks(5);
buf.bind_label(label(0), state.ctrl_plane_mut());
let inst = Inst::Jump { dest: target(1) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(1), state.ctrl_plane_mut());
let inst = Inst::Jump { dest: target(2) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(2), state.ctrl_plane_mut());
let inst = Inst::Jump { dest: target(3) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(3), state.ctrl_plane_mut());
let inst = Inst::Jump { dest: target(4) };
inst.emit(&mut buf, &info, &mut state);
buf.bind_label(label(4), state.ctrl_plane_mut());
let inst = Inst::Jump { dest: target(1) };
inst.emit(&mut buf, &info, &mut state);
let buf = buf.finish(&constants, state.ctrl_plane_mut());
let golden_data = vec![
0x00, 0x00, 0x00, 0x14, // b 0
];
assert_eq!(&golden_data[..], &buf.data[..]);
}
#[test]
fn metadata_records() {
let mut buf = MachBuffer::<Inst>::new();
let ctrl_plane = &mut Default::default();
let constants = Default::default();
buf.reserve_labels_for_blocks(1);
buf.bind_label(label(0), ctrl_plane);
buf.put1(1);
buf.add_trap(TrapCode::HEAP_OUT_OF_BOUNDS);
buf.put1(2);
buf.add_trap(TrapCode::INTEGER_OVERFLOW);
buf.add_trap(TrapCode::INTEGER_DIVISION_BY_ZERO);
buf.add_call_site();
buf.add_reloc(
Reloc::Abs4,
&ExternalName::User(UserExternalNameRef::new(0)),
0,
);
buf.put1(3);
buf.add_reloc(
Reloc::Abs8,
&ExternalName::User(UserExternalNameRef::new(1)),
1,
);
buf.put1(4);
let buf = buf.finish(&constants, ctrl_plane);
assert_eq!(buf.data(), &[1, 2, 3, 4]);
assert_eq!(
buf.traps()
.iter()
.map(|trap| (trap.offset, trap.code))
.collect::<Vec<_>>(),
vec![
(1, TrapCode::HEAP_OUT_OF_BOUNDS),
(2, TrapCode::INTEGER_OVERFLOW),
(2, TrapCode::INTEGER_DIVISION_BY_ZERO)
]
);
assert_eq!(
buf.call_sites()
.iter()
.map(|call_site| call_site.ret_addr)
.collect::<Vec<_>>(),
vec![2]
);
assert_eq!(
buf.relocs()
.iter()
.map(|reloc| (reloc.offset, reloc.kind))
.collect::<Vec<_>>(),
vec![(2, Reloc::Abs4), (3, Reloc::Abs8)]
);
}
}