cranelift_egraph/ctxhash.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
//! A hashmap with "external hashing": nodes are hashed or compared for
//! equality only with some external context provided on lookup/insert.
//! This allows very memory-efficient data structures where
//! node-internal data references some other storage (e.g., offsets into
//! an array or pool of shared data).
use super::unionfind::UnionFind;
use hashbrown::raw::{Bucket, RawTable};
use std::hash::{Hash, Hasher};
use std::marker::PhantomData;
/// Trait that allows for equality comparison given some external
/// context.
///
/// Note that this trait is implemented by the *context*, rather than
/// the item type, for somewhat complex lifetime reasons (lack of GATs
/// to allow `for<'ctx> Ctx<'ctx>`-like associated types in traits on
/// the value type).
///
/// Furthermore, the `ctx_eq` method includes a `UnionFind` parameter,
/// because in practice we require this and a borrow to it cannot be
/// included in the context type without GATs (similarly to above).
pub trait CtxEq<V1: ?Sized, V2: ?Sized> {
/// Determine whether `a` and `b` are equal, given the context in
/// `self` and the union-find data structure `uf`.
fn ctx_eq(&self, a: &V1, b: &V2, uf: &mut UnionFind) -> bool;
}
/// Trait that allows for hashing given some external context.
pub trait CtxHash<Value: ?Sized>: CtxEq<Value, Value> {
/// Compute the hash of `value`, given the context in `self` and
/// the union-find data structure `uf`.
fn ctx_hash(&self, value: &Value, uf: &mut UnionFind) -> u64;
}
/// A null-comparator context type for underlying value types that
/// already have `Eq` and `Hash`.
#[derive(Default)]
pub struct NullCtx;
impl<V: Eq + Hash> CtxEq<V, V> for NullCtx {
fn ctx_eq(&self, a: &V, b: &V, _: &mut UnionFind) -> bool {
a.eq(b)
}
}
impl<V: Eq + Hash> CtxHash<V> for NullCtx {
fn ctx_hash(&self, value: &V, _: &mut UnionFind) -> u64 {
let mut state = fxhash::FxHasher::default();
value.hash(&mut state);
state.finish()
}
}
/// A bucket in the hash table.
///
/// Some performance-related design notes: we cache the hashcode for
/// speed, as this often buys a few percent speed in
/// interning-table-heavy workloads. We only keep the low 32 bits of
/// the hashcode, for memory efficiency: in common use, `K` and `V`
/// are often 32 bits also, and a 12-byte bucket is measurably better
/// than a 16-byte bucket.
struct BucketData<K, V> {
hash: u32,
k: K,
v: V,
}
/// A HashMap that takes external context for all operations.
pub struct CtxHashMap<K, V> {
raw: RawTable<BucketData<K, V>>,
}
impl<K, V> CtxHashMap<K, V> {
/// Create an empty hashmap.
pub fn new() -> Self {
Self {
raw: RawTable::new(),
}
}
/// Create an empty hashmap with pre-allocated space for the given
/// capacity.
pub fn with_capacity(capacity: usize) -> Self {
Self {
raw: RawTable::with_capacity(capacity),
}
}
}
impl<K, V> CtxHashMap<K, V> {
/// Insert a new key-value pair, returning the old value associated
/// with this key (if any).
pub fn insert<Ctx: CtxEq<K, K> + CtxHash<K>>(
&mut self,
k: K,
v: V,
ctx: &Ctx,
uf: &mut UnionFind,
) -> Option<V> {
let hash = ctx.ctx_hash(&k, uf) as u32;
match self.raw.find(hash as u64, |bucket| {
hash == bucket.hash && ctx.ctx_eq(&bucket.k, &k, uf)
}) {
Some(bucket) => {
let data = unsafe { bucket.as_mut() };
Some(std::mem::replace(&mut data.v, v))
}
None => {
let data = BucketData { hash, k, v };
self.raw
.insert_entry(hash as u64, data, |bucket| bucket.hash as u64);
None
}
}
}
/// Look up a key, returning a borrow of the value if present.
pub fn get<'a, Q, Ctx: CtxEq<K, Q> + CtxHash<Q> + CtxHash<K>>(
&'a self,
k: &Q,
ctx: &Ctx,
uf: &mut UnionFind,
) -> Option<&'a V> {
let hash = ctx.ctx_hash(k, uf) as u32;
self.raw
.find(hash as u64, |bucket| {
hash == bucket.hash && ctx.ctx_eq(&bucket.k, k, uf)
})
.map(|bucket| {
let data = unsafe { bucket.as_ref() };
&data.v
})
}
/// Return an Entry cursor on a given bucket for a key, allowing
/// for fetching the current value or inserting a new one.
#[inline(always)]
pub fn entry<'a, Ctx: CtxEq<K, K> + CtxHash<K>>(
&'a mut self,
k: K,
ctx: &'a Ctx,
uf: &mut UnionFind,
) -> Entry<'a, K, V> {
let hash = ctx.ctx_hash(&k, uf) as u32;
match self.raw.find(hash as u64, |bucket| {
hash == bucket.hash && ctx.ctx_eq(&bucket.k, &k, uf)
}) {
Some(bucket) => Entry::Occupied(OccupiedEntry {
bucket,
_phantom: PhantomData,
}),
None => Entry::Vacant(VacantEntry {
raw: &mut self.raw,
hash,
key: k,
}),
}
}
}
/// An entry in the hashmap.
pub enum Entry<'a, K: 'a, V> {
Occupied(OccupiedEntry<'a, K, V>),
Vacant(VacantEntry<'a, K, V>),
}
/// An occupied entry.
pub struct OccupiedEntry<'a, K, V> {
bucket: Bucket<BucketData<K, V>>,
_phantom: PhantomData<&'a ()>,
}
impl<'a, K: 'a, V> OccupiedEntry<'a, K, V> {
/// Get the value.
pub fn get(&self) -> &'a V {
let bucket = unsafe { self.bucket.as_ref() };
&bucket.v
}
}
/// A vacant entry.
pub struct VacantEntry<'a, K, V> {
raw: &'a mut RawTable<BucketData<K, V>>,
hash: u32,
key: K,
}
impl<'a, K, V> VacantEntry<'a, K, V> {
/// Insert a value.
pub fn insert(self, v: V) -> &'a V {
let bucket = self.raw.insert(
self.hash as u64,
BucketData {
hash: self.hash,
k: self.key,
v,
},
|bucket| bucket.hash as u64,
);
let data = unsafe { bucket.as_ref() };
&data.v
}
}
#[cfg(test)]
mod test {
use super::*;
use std::hash::Hash;
#[derive(Clone, Copy, Debug)]
struct Key {
index: u32,
}
struct Ctx {
vals: &'static [&'static str],
}
impl CtxEq<Key, Key> for Ctx {
fn ctx_eq(&self, a: &Key, b: &Key, _: &mut UnionFind) -> bool {
self.vals[a.index as usize].eq(self.vals[b.index as usize])
}
}
impl CtxHash<Key> for Ctx {
fn ctx_hash(&self, value: &Key, _: &mut UnionFind) -> u64 {
let mut state = fxhash::FxHasher::default();
self.vals[value.index as usize].hash(&mut state);
state.finish()
}
}
#[test]
fn test_basic() {
let ctx = Ctx {
vals: &["a", "b", "a"],
};
let mut uf = UnionFind::new();
let k0 = Key { index: 0 };
let k1 = Key { index: 1 };
let k2 = Key { index: 2 };
assert!(ctx.ctx_eq(&k0, &k2, &mut uf));
assert!(!ctx.ctx_eq(&k0, &k1, &mut uf));
assert!(!ctx.ctx_eq(&k2, &k1, &mut uf));
let mut map: CtxHashMap<Key, u64> = CtxHashMap::new();
assert_eq!(map.insert(k0, 42, &ctx, &mut uf), None);
assert_eq!(map.insert(k2, 84, &ctx, &mut uf), Some(42));
assert_eq!(map.get(&k1, &ctx, &mut uf), None);
assert_eq!(*map.get(&k0, &ctx, &mut uf).unwrap(), 84);
}
#[test]
fn test_entry() {
let mut ctx = Ctx {
vals: &["a", "b", "a"],
};
let mut uf = UnionFind::new();
let k0 = Key { index: 0 };
let k1 = Key { index: 1 };
let k2 = Key { index: 2 };
let mut map: CtxHashMap<Key, u64> = CtxHashMap::new();
match map.entry(k0, &mut ctx, &mut uf) {
Entry::Vacant(v) => {
v.insert(1);
}
_ => panic!(),
}
match map.entry(k1, &mut ctx, &mut uf) {
Entry::Vacant(_) => {}
Entry::Occupied(_) => panic!(),
}
match map.entry(k2, &mut ctx, &mut uf) {
Entry::Occupied(o) => {
assert_eq!(*o.get(), 1);
}
_ => panic!(),
}
}
}