cranelift_egraph/bumpvec.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
//! Vectors allocated in arenas, with small per-vector overhead.
use std::marker::PhantomData;
use std::mem::MaybeUninit;
use std::ops::Range;
/// A vector of `T` stored within a `BumpArena`.
///
/// This is something like a normal `Vec`, except that all accesses
/// and updates require a separate borrow of the `BumpArena`. This, in
/// turn, makes the Vec itself very compact: only three `u32`s (12
/// bytes). The `BumpSlice` variant is only two `u32`s (8 bytes) and
/// is sufficient to reconstruct a slice, but not grow the vector.
///
/// The `BumpVec` does *not* implement `Clone` or `Copy`; it
/// represents unique ownership of a range of indices in the arena. If
/// dropped, those indices will be unavailable until the arena is
/// freed. This is "fine" (it is normally how arena allocation
/// works). To explicitly free and make available for some
/// allocations, a very rudimentary reuse mechanism exists via
/// `BumpVec::free(arena)`. (The allocation path opportunistically
/// checks the first range on the freelist, and can carve off a piece
/// of it if larger than needed, but it does not attempt to traverse
/// the entire freelist; this is a compromise between bump-allocation
/// speed and memory efficiency, which also influences speed through
/// cached-memory reuse.)
///
/// The type `T` should not have a `Drop` implementation. This
/// typically means that it does not own any boxed memory,
/// sub-collections, or other resources. This is important for the
/// efficiency of the data structure (otherwise, to call `Drop` impls,
/// the arena needs to track which indices are live or dead; the
/// BumpVec itself cannot do the drop because it does not retain a
/// reference to the arena). Note that placing a `T` with a `Drop`
/// impl in the arena is still *safe*, because leaking (that is, never
/// calling `Drop::drop()`) is safe. It is merely less efficient, and
/// so should be avoided if possible.
#[derive(Debug)]
pub struct BumpVec<T> {
base: u32,
len: u32,
cap: u32,
_phantom: PhantomData<T>,
}
/// A slice in an arena: like a `BumpVec`, but has a fixed size that
/// cannot grow. The size of this struct is one 32-bit word smaller
/// than `BumpVec`. It is copyable/cloneable because it will never be
/// freed.
#[derive(Debug, Clone, Copy)]
pub struct BumpSlice<T> {
base: u32,
len: u32,
_phantom: PhantomData<T>,
}
#[derive(Default)]
pub struct BumpArena<T> {
vec: Vec<MaybeUninit<T>>,
freelist: Vec<Range<u32>>,
}
impl<T> BumpArena<T> {
/// Create a new arena into which one can allocate `BumpVec`s.
pub fn new() -> Self {
Self {
vec: vec![],
freelist: vec![],
}
}
/// Create a new arena, pre-allocating space for `cap` total `T`
/// elements.
pub fn arena_with_capacity(cap: usize) -> Self {
Self {
vec: Vec::with_capacity(cap),
freelist: Vec::with_capacity(cap / 16),
}
}
/// Create a new `BumpVec` with the given pre-allocated capacity
/// and zero length.
pub fn vec_with_capacity(&mut self, cap: usize) -> BumpVec<T> {
let cap = u32::try_from(cap).unwrap();
if let Some(range) = self.maybe_freelist_alloc(cap) {
BumpVec {
base: range.start,
len: 0,
cap,
_phantom: PhantomData,
}
} else {
let base = self.vec.len() as u32;
for _ in 0..cap {
self.vec.push(MaybeUninit::uninit());
}
BumpVec {
base,
len: 0,
cap,
_phantom: PhantomData,
}
}
}
/// Create a new `BumpVec` with a single element. The capacity is
/// also only one element; growing the vector further will require
/// a reallocation.
pub fn single(&mut self, t: T) -> BumpVec<T> {
let mut vec = self.vec_with_capacity(1);
unsafe {
self.write_into_index(vec.base, t);
}
vec.len = 1;
vec
}
/// Create a new `BumpVec` with the sequence from an iterator.
pub fn from_iter<I: Iterator<Item = T>>(&mut self, i: I) -> BumpVec<T> {
let base = self.vec.len() as u32;
self.vec.extend(i.map(|item| MaybeUninit::new(item)));
let len = self.vec.len() as u32 - base;
BumpVec {
base,
len,
cap: len,
_phantom: PhantomData,
}
}
/// Append two `BumpVec`s, returning a new one. Consumes both
/// vectors. This will use the capacity at the end of `a` if
/// possible to move `b`'s elements into place; otherwise it will
/// need to allocate new space.
pub fn append(&mut self, a: BumpVec<T>, b: BumpVec<T>) -> BumpVec<T> {
if (a.cap - a.len) >= b.len {
self.append_into_cap(a, b)
} else {
self.append_into_new(a, b)
}
}
/// Helper: read the `T` out of a given arena index. After
/// reading, that index becomes uninitialized.
unsafe fn read_out_of_index(&self, index: u32) -> T {
// Note that we don't actually *track* uninitialized status
// (and this is fine because we will never `Drop` and we never
// allow a `BumpVec` to refer to an uninitialized index, so
// the bits are effectively dead). We simply read the bits out
// and return them.
self.vec[index as usize].as_ptr().read()
}
/// Helper: write a `T` into the given arena index. Index must
/// have been uninitialized previously.
unsafe fn write_into_index(&mut self, index: u32, t: T) {
self.vec[index as usize].as_mut_ptr().write(t);
}
/// Helper: move a `T` from one index to another. Old index
/// becomes uninitialized and new index must have previously been
/// uninitialized.
unsafe fn move_item(&mut self, from: u32, to: u32) {
let item = self.read_out_of_index(from);
self.write_into_index(to, item);
}
/// Helper: push a `T` onto the end of the arena, growing its
/// storage. The `T` to push is read out of another index, and
/// that index subsequently becomes uninitialized.
unsafe fn push_item(&mut self, from: u32) -> u32 {
let index = self.vec.len() as u32;
let item = self.read_out_of_index(from);
self.vec.push(MaybeUninit::new(item));
index
}
/// Helper: append `b` into the capacity at the end of `a`.
fn append_into_cap(&mut self, mut a: BumpVec<T>, b: BumpVec<T>) -> BumpVec<T> {
debug_assert!(a.cap - a.len >= b.len);
for i in 0..b.len {
// Safety: initially, the indices in `b` are initialized;
// the indices in `a`'s cap, beyond its length, are
// uninitialized. We move the initialized contents from
// `b` to the tail beyond `a`, and we consume `b` (so it
// no longer exists), and we update `a`'s length to cover
// the initialized contents in their new location.
unsafe {
self.move_item(b.base + i, a.base + a.len + i);
}
}
a.len += b.len;
b.free(self);
a
}
/// Helper: return a range of indices that are available
/// (uninitialized) according to the freelist for `len` elements,
/// if possible.
fn maybe_freelist_alloc(&mut self, len: u32) -> Option<Range<u32>> {
if let Some(entry) = self.freelist.last_mut() {
if entry.len() >= len as usize {
let base = entry.start;
entry.start += len;
if entry.start == entry.end {
self.freelist.pop();
}
return Some(base..(base + len));
}
}
None
}
/// Helper: append `a` and `b` into a completely new allocation.
fn append_into_new(&mut self, a: BumpVec<T>, b: BumpVec<T>) -> BumpVec<T> {
// New capacity: round up to a power of two.
let len = a.len + b.len;
let cap = round_up_power_of_two(len);
if let Some(range) = self.maybe_freelist_alloc(cap) {
for i in 0..a.len {
// Safety: the indices in `a` must be initialized. We read
// out the item and copy it to a new index; the old index
// is no longer covered by a BumpVec, because we consume
// `a`.
unsafe {
self.move_item(a.base + i, range.start + i);
}
}
for i in 0..b.len {
// Safety: the indices in `b` must be initialized. We read
// out the item and copy it to a new index; the old index
// is no longer covered by a BumpVec, because we consume
// `b`.
unsafe {
self.move_item(b.base + i, range.start + a.len + i);
}
}
a.free(self);
b.free(self);
BumpVec {
base: range.start,
len,
cap,
_phantom: PhantomData,
}
} else {
self.vec.reserve(cap as usize);
let base = self.vec.len() as u32;
for i in 0..a.len {
// Safety: the indices in `a` must be initialized. We read
// out the item and copy it to a new index; the old index
// is no longer covered by a BumpVec, because we consume
// `a`.
unsafe {
self.push_item(a.base + i);
}
}
for i in 0..b.len {
// Safety: the indices in `b` must be initialized. We read
// out the item and copy it to a new index; the old index
// is no longer covered by a BumpVec, because we consume
// `b`.
unsafe {
self.push_item(b.base + i);
}
}
let len = self.vec.len() as u32 - base;
for _ in len..cap {
self.vec.push(MaybeUninit::uninit());
}
a.free(self);
b.free(self);
BumpVec {
base,
len,
cap,
_phantom: PhantomData,
}
}
}
/// Returns the size of the backing `Vec`.
pub fn size(&self) -> usize {
self.vec.len()
}
}
fn round_up_power_of_two(x: u32) -> u32 {
debug_assert!(x > 0);
debug_assert!(x < 0x8000_0000);
let log2 = 32 - (x - 1).leading_zeros();
1 << log2
}
impl<T> BumpVec<T> {
/// Returns a slice view of this `BumpVec`, given a borrow of the
/// arena.
pub fn as_slice<'a>(&'a self, arena: &'a BumpArena<T>) -> &'a [T] {
let maybe_uninit_slice =
&arena.vec[(self.base as usize)..((self.base + self.len) as usize)];
// Safety: the index range we represent must be initialized.
unsafe { std::mem::transmute(maybe_uninit_slice) }
}
/// Returns a mutable slice view of this `BumpVec`, given a
/// mutable borrow of the arena.
pub fn as_mut_slice<'a>(&'a mut self, arena: &'a mut BumpArena<T>) -> &'a mut [T] {
let maybe_uninit_slice =
&mut arena.vec[(self.base as usize)..((self.base + self.len) as usize)];
// Safety: the index range we represent must be initialized.
unsafe { std::mem::transmute(maybe_uninit_slice) }
}
/// Returns the length of this vector. Does not require access to
/// the arena.
pub fn len(&self) -> usize {
self.len as usize
}
/// Returns the capacity of this vector. Does not require access
/// to the arena.
pub fn cap(&self) -> usize {
self.cap as usize
}
/// Reserve `extra_len` capacity at the end of the vector,
/// reallocating if necessary.
pub fn reserve(&mut self, extra_len: usize, arena: &mut BumpArena<T>) {
let extra_len = u32::try_from(extra_len).unwrap();
if self.cap - self.len < extra_len {
if self.base + self.cap == arena.vec.len() as u32 {
for _ in 0..extra_len {
arena.vec.push(MaybeUninit::uninit());
}
self.cap += extra_len;
} else {
let new_cap = self.cap + extra_len;
let new = arena.vec_with_capacity(new_cap as usize);
unsafe {
for i in 0..self.len {
arena.move_item(self.base + i, new.base + i);
}
}
self.base = new.base;
self.cap = new.cap;
}
}
}
/// Push an item, growing the capacity if needed.
pub fn push(&mut self, t: T, arena: &mut BumpArena<T>) {
if self.cap > self.len {
unsafe {
arena.write_into_index(self.base + self.len, t);
}
self.len += 1;
} else if (self.base + self.cap) as usize == arena.vec.len() {
arena.vec.push(MaybeUninit::new(t));
self.cap += 1;
self.len += 1;
} else {
let new_cap = round_up_power_of_two(self.cap + 1);
let extra = new_cap - self.cap;
self.reserve(extra as usize, arena);
unsafe {
arena.write_into_index(self.base + self.len, t);
}
self.len += 1;
}
}
/// Clone, if `T` is cloneable.
pub fn clone(&self, arena: &mut BumpArena<T>) -> BumpVec<T>
where
T: Clone,
{
let mut new = arena.vec_with_capacity(self.len as usize);
for i in 0..self.len {
let item = self.as_slice(arena)[i as usize].clone();
new.push(item, arena);
}
new
}
/// Truncate the length to a smaller-or-equal length.
pub fn truncate(&mut self, len: usize) {
let len = len as u32;
assert!(len <= self.len);
self.len = len;
}
/// Consume the BumpVec and return its indices to a free pool in
/// the arena.
pub fn free(self, arena: &mut BumpArena<T>) {
arena.freelist.push(self.base..(self.base + self.cap));
}
/// Freeze the capacity of this BumpVec, turning it into a slice,
/// for a smaller struct (8 bytes rather than 12). Once this
/// exists, it is copyable, because the slice will never be freed.
pub fn freeze(self, arena: &mut BumpArena<T>) -> BumpSlice<T> {
if self.cap > self.len {
arena
.freelist
.push((self.base + self.len)..(self.base + self.cap));
}
BumpSlice {
base: self.base,
len: self.len,
_phantom: PhantomData,
}
}
}
impl<T> BumpSlice<T> {
/// Returns a slice view of the `BumpSlice`, given a borrow of the
/// arena.
pub fn as_slice<'a>(&'a self, arena: &'a BumpArena<T>) -> &'a [T] {
let maybe_uninit_slice =
&arena.vec[(self.base as usize)..((self.base + self.len) as usize)];
// Safety: the index range we represent must be initialized.
unsafe { std::mem::transmute(maybe_uninit_slice) }
}
/// Returns a mutable slice view of the `BumpSlice`, given a
/// mutable borrow of the arena.
pub fn as_mut_slice<'a>(&'a mut self, arena: &'a mut BumpArena<T>) -> &'a mut [T] {
let maybe_uninit_slice =
&mut arena.vec[(self.base as usize)..((self.base + self.len) as usize)];
// Safety: the index range we represent must be initialized.
unsafe { std::mem::transmute(maybe_uninit_slice) }
}
/// Returns the length of the `BumpSlice`.
pub fn len(&self) -> usize {
self.len as usize
}
}
impl<T> std::default::Default for BumpVec<T> {
fn default() -> Self {
BumpVec {
base: 0,
len: 0,
cap: 0,
_phantom: PhantomData,
}
}
}
impl<T> std::default::Default for BumpSlice<T> {
fn default() -> Self {
BumpSlice {
base: 0,
len: 0,
_phantom: PhantomData,
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_round_up() {
assert_eq!(1, round_up_power_of_two(1));
assert_eq!(2, round_up_power_of_two(2));
assert_eq!(4, round_up_power_of_two(3));
assert_eq!(4, round_up_power_of_two(4));
assert_eq!(32, round_up_power_of_two(24));
assert_eq!(0x8000_0000, round_up_power_of_two(0x7fff_ffff));
}
#[test]
fn test_basic() {
let mut arena: BumpArena<u32> = BumpArena::new();
let a = arena.single(1);
let b = arena.single(2);
let c = arena.single(3);
let ab = arena.append(a, b);
assert_eq!(ab.as_slice(&arena), &[1, 2]);
assert_eq!(ab.cap(), 2);
let abc = arena.append(ab, c);
assert_eq!(abc.len(), 3);
assert_eq!(abc.cap(), 4);
assert_eq!(abc.as_slice(&arena), &[1, 2, 3]);
assert_eq!(arena.size(), 9);
let mut d = arena.single(4);
// Should have reused the freelist.
assert_eq!(arena.size(), 9);
assert_eq!(d.len(), 1);
assert_eq!(d.cap(), 1);
assert_eq!(d.as_slice(&arena), &[4]);
d.as_mut_slice(&mut arena)[0] = 5;
assert_eq!(d.as_slice(&arena), &[5]);
abc.free(&mut arena);
let d2 = d.clone(&mut arena);
let dd = arena.append(d, d2);
// Should have reused the freelist.
assert_eq!(arena.size(), 9);
assert_eq!(dd.as_slice(&arena), &[5, 5]);
let mut e = arena.from_iter([10, 11, 12].into_iter());
e.push(13, &mut arena);
assert_eq!(arena.size(), 13);
e.reserve(4, &mut arena);
assert_eq!(arena.size(), 17);
let _f = arena.from_iter([1, 2, 3, 4, 5, 6, 7, 8].into_iter());
assert_eq!(arena.size(), 25);
e.reserve(8, &mut arena);
assert_eq!(e.cap(), 16);
assert_eq!(e.as_slice(&arena), &[10, 11, 12, 13]);
// `e` must have been copied now that `f` is at the end of the
// arena.
assert_eq!(arena.size(), 41);
}
}