1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
//! Sparse mapping of entity references to larger value types.
//!
//! This module provides a `SparseMap` data structure which implements a sparse mapping from an
//! `EntityRef` key to a value type that may be on the larger side. This implementation is based on
//! the paper:
//!
//! > Briggs, Torczon, *An efficient representation for sparse sets*,
//! ACM Letters on Programming Languages and Systems, Volume 2, Issue 1-4, March-Dec. 1993.
use crate::map::SecondaryMap;
use crate::EntityRef;
use alloc::vec::Vec;
use core::mem;
use core::slice;
use core::u32;
#[cfg(feature = "enable-serde")]
use serde_derive::{Deserialize, Serialize};
/// Trait for extracting keys from values stored in a `SparseMap`.
///
/// All values stored in a `SparseMap` must keep track of their own key in the map and implement
/// this trait to provide access to the key.
pub trait SparseMapValue<K> {
/// Get the key of this sparse map value. This key is not allowed to change while the value
/// is a member of the map.
fn key(&self) -> K;
}
/// A sparse mapping of entity references.
///
/// A `SparseMap<K, V>` map provides:
///
/// - Memory usage equivalent to `SecondaryMap<K, u32>` + `Vec<V>`, so much smaller than
/// `SecondaryMap<K, V>` for sparse mappings of larger `V` types.
/// - Constant time lookup, slightly slower than `SecondaryMap`.
/// - A very fast, constant time `clear()` operation.
/// - Fast insert and erase operations.
/// - Stable iteration that is as fast as a `Vec<V>`.
///
/// # Compared to `SecondaryMap`
///
/// When should we use a `SparseMap` instead of a secondary `SecondaryMap`? First of all,
/// `SparseMap` does not provide the functionality of a `PrimaryMap` which can allocate and assign
/// entity references to objects as they are pushed onto the map. It is only the secondary entity
/// maps that can be replaced with a `SparseMap`.
///
/// - A secondary entity map assigns a default mapping to all keys. It doesn't distinguish between
/// an unmapped key and one that maps to the default value. `SparseMap` does not require
/// `Default` values, and it tracks accurately if a key has been mapped or not.
/// - Iterating over the contents of an `SecondaryMap` is linear in the size of the *key space*,
/// while iterating over a `SparseMap` is linear in the number of elements in the mapping. This
/// is an advantage precisely when the mapping is sparse.
/// - `SparseMap::clear()` is constant time and super-fast. `SecondaryMap::clear()` is linear in
/// the size of the key space. (Or, rather the required `resize()` call following the `clear()`
/// is).
/// - `SparseMap` requires the values to implement `SparseMapValue<K>` which means that they must
/// contain their own key.
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct SparseMap<K, V>
where
K: EntityRef,
V: SparseMapValue<K>,
{
sparse: SecondaryMap<K, u32>,
dense: Vec<V>,
}
impl<K, V> SparseMap<K, V>
where
K: EntityRef,
V: SparseMapValue<K>,
{
/// Create a new empty mapping.
pub fn new() -> Self {
Self {
sparse: SecondaryMap::new(),
dense: Vec::new(),
}
}
/// Returns the number of elements in the map.
pub fn len(&self) -> usize {
self.dense.len()
}
/// Returns true is the map contains no elements.
pub fn is_empty(&self) -> bool {
self.dense.is_empty()
}
/// Remove all elements from the mapping.
pub fn clear(&mut self) {
self.dense.clear();
}
/// Returns a reference to the value corresponding to the key.
pub fn get(&self, key: K) -> Option<&V> {
if let Some(idx) = self.sparse.get(key).cloned() {
if let Some(entry) = self.dense.get(idx as usize) {
if entry.key() == key {
return Some(entry);
}
}
}
None
}
/// Returns a mutable reference to the value corresponding to the key.
///
/// Note that the returned value must not be mutated in a way that would change its key. This
/// would invalidate the sparse set data structure.
pub fn get_mut(&mut self, key: K) -> Option<&mut V> {
if let Some(idx) = self.sparse.get(key).cloned() {
if let Some(entry) = self.dense.get_mut(idx as usize) {
if entry.key() == key {
return Some(entry);
}
}
}
None
}
/// Return the index into `dense` of the value corresponding to `key`.
fn index(&self, key: K) -> Option<usize> {
if let Some(idx) = self.sparse.get(key).cloned() {
let idx = idx as usize;
if let Some(entry) = self.dense.get(idx) {
if entry.key() == key {
return Some(idx);
}
}
}
None
}
/// Return `true` if the map contains a value corresponding to `key`.
pub fn contains_key(&self, key: K) -> bool {
self.get(key).is_some()
}
/// Insert a value into the map.
///
/// If the map did not have this key present, `None` is returned.
///
/// If the map did have this key present, the value is updated, and the old value is returned.
///
/// It is not necessary to provide a key since the value knows its own key already.
pub fn insert(&mut self, value: V) -> Option<V> {
let key = value.key();
// Replace the existing entry for `key` if there is one.
if let Some(entry) = self.get_mut(key) {
return Some(mem::replace(entry, value));
}
// There was no previous entry for `key`. Add it to the end of `dense`.
let idx = self.dense.len();
debug_assert!(idx <= u32::MAX as usize, "SparseMap overflow");
self.dense.push(value);
self.sparse[key] = idx as u32;
None
}
/// Remove a value from the map and return it.
pub fn remove(&mut self, key: K) -> Option<V> {
if let Some(idx) = self.index(key) {
let back = self.dense.pop().unwrap();
// Are we popping the back of `dense`?
if idx == self.dense.len() {
return Some(back);
}
// We're removing an element from the middle of `dense`.
// Replace the element at `idx` with the back of `dense`.
// Repair `sparse` first.
self.sparse[back.key()] = idx as u32;
return Some(mem::replace(&mut self.dense[idx], back));
}
// Nothing to remove.
None
}
/// Remove the last value from the map.
pub fn pop(&mut self) -> Option<V> {
self.dense.pop()
}
/// Get an iterator over the values in the map.
///
/// The iteration order is entirely determined by the preceding sequence of `insert` and
/// `remove` operations. In particular, if no elements were removed, this is the insertion
/// order.
pub fn values(&self) -> slice::Iter<V> {
self.dense.iter()
}
/// Get the values as a slice.
pub fn as_slice(&self) -> &[V] {
self.dense.as_slice()
}
}
/// Iterating over the elements of a set.
impl<'a, K, V> IntoIterator for &'a SparseMap<K, V>
where
K: EntityRef,
V: SparseMapValue<K>,
{
type Item = &'a V;
type IntoIter = slice::Iter<'a, V>;
fn into_iter(self) -> Self::IntoIter {
self.values()
}
}
/// Any `EntityRef` can be used as a sparse map value representing itself.
impl<T> SparseMapValue<T> for T
where
T: EntityRef,
{
fn key(&self) -> Self {
*self
}
}
/// A sparse set of entity references.
///
/// Any type that implements `EntityRef` can be used as a sparse set value too.
pub type SparseSet<T> = SparseMap<T, T>;
#[cfg(test)]
mod tests {
use super::*;
/// An opaque reference to an instruction in a function.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct Inst(u32);
entity_impl!(Inst, "inst");
// Mock key-value object for testing.
#[derive(PartialEq, Eq, Debug)]
struct Obj(Inst, &'static str);
impl SparseMapValue<Inst> for Obj {
fn key(&self) -> Inst {
self.0
}
}
#[test]
fn empty_immutable_map() {
let i1 = Inst::new(1);
let map: SparseMap<Inst, Obj> = SparseMap::new();
assert!(map.is_empty());
assert_eq!(map.len(), 0);
assert_eq!(map.get(i1), None);
assert_eq!(map.values().count(), 0);
}
#[test]
fn single_entry() {
let i0 = Inst::new(0);
let i1 = Inst::new(1);
let i2 = Inst::new(2);
let mut map = SparseMap::new();
assert!(map.is_empty());
assert_eq!(map.len(), 0);
assert_eq!(map.get(i1), None);
assert_eq!(map.get_mut(i1), None);
assert_eq!(map.remove(i1), None);
assert_eq!(map.insert(Obj(i1, "hi")), None);
assert!(!map.is_empty());
assert_eq!(map.len(), 1);
assert_eq!(map.get(i0), None);
assert_eq!(map.get(i1), Some(&Obj(i1, "hi")));
assert_eq!(map.get(i2), None);
assert_eq!(map.get_mut(i0), None);
assert_eq!(map.get_mut(i1), Some(&mut Obj(i1, "hi")));
assert_eq!(map.get_mut(i2), None);
assert_eq!(map.remove(i0), None);
assert_eq!(map.remove(i2), None);
assert_eq!(map.remove(i1), Some(Obj(i1, "hi")));
assert_eq!(map.len(), 0);
assert_eq!(map.get(i1), None);
assert_eq!(map.get_mut(i1), None);
assert_eq!(map.remove(i0), None);
assert_eq!(map.remove(i1), None);
assert_eq!(map.remove(i2), None);
}
#[test]
fn multiple_entries() {
let i0 = Inst::new(0);
let i1 = Inst::new(1);
let i2 = Inst::new(2);
let i3 = Inst::new(3);
let mut map = SparseMap::new();
assert_eq!(map.insert(Obj(i2, "foo")), None);
assert_eq!(map.insert(Obj(i1, "bar")), None);
assert_eq!(map.insert(Obj(i0, "baz")), None);
// Iteration order = insertion order when nothing has been removed yet.
assert_eq!(
map.values().map(|obj| obj.1).collect::<Vec<_>>(),
["foo", "bar", "baz"]
);
assert_eq!(map.len(), 3);
assert_eq!(map.get(i0), Some(&Obj(i0, "baz")));
assert_eq!(map.get(i1), Some(&Obj(i1, "bar")));
assert_eq!(map.get(i2), Some(&Obj(i2, "foo")));
assert_eq!(map.get(i3), None);
// Remove front object, causing back to be swapped down.
assert_eq!(map.remove(i1), Some(Obj(i1, "bar")));
assert_eq!(map.len(), 2);
assert_eq!(map.get(i0), Some(&Obj(i0, "baz")));
assert_eq!(map.get(i1), None);
assert_eq!(map.get(i2), Some(&Obj(i2, "foo")));
assert_eq!(map.get(i3), None);
// Reinsert something at a previously used key.
assert_eq!(map.insert(Obj(i1, "barbar")), None);
assert_eq!(map.len(), 3);
assert_eq!(map.get(i0), Some(&Obj(i0, "baz")));
assert_eq!(map.get(i1), Some(&Obj(i1, "barbar")));
assert_eq!(map.get(i2), Some(&Obj(i2, "foo")));
assert_eq!(map.get(i3), None);
// Replace an entry.
assert_eq!(map.insert(Obj(i0, "bazbaz")), Some(Obj(i0, "baz")));
assert_eq!(map.len(), 3);
assert_eq!(map.get(i0), Some(&Obj(i0, "bazbaz")));
assert_eq!(map.get(i1), Some(&Obj(i1, "barbar")));
assert_eq!(map.get(i2), Some(&Obj(i2, "foo")));
assert_eq!(map.get(i3), None);
// Check the reference `IntoIter` impl.
let mut v = Vec::new();
for i in &map {
v.push(i.1);
}
assert_eq!(v.len(), map.len());
}
#[test]
fn entity_set() {
let i0 = Inst::new(0);
let i1 = Inst::new(1);
let mut set = SparseSet::new();
assert_eq!(set.insert(i0), None);
assert_eq!(set.insert(i0), Some(i0));
assert_eq!(set.insert(i1), None);
assert_eq!(set.get(i0), Some(&i0));
assert_eq!(set.get(i1), Some(&i1));
}
}