1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
//! Densely numbered entity references as set keys.
use crate::keys::Keys;
use crate::EntityRef;
use alloc::vec::Vec;
use core::marker::PhantomData;
/// A set of `K` for densely indexed entity references.
///
/// The `EntitySet` data structure uses the dense index space to implement a set with a bitvector.
/// Like `SecondaryMap`, an `EntitySet` is used to associate secondary information with entities.
#[derive(Debug, Clone)]
pub struct EntitySet<K>
where
K: EntityRef,
{
elems: Vec<u8>,
len: usize,
unused: PhantomData<K>,
}
impl<K: EntityRef> Default for EntitySet<K> {
fn default() -> Self {
Self {
elems: Vec::new(),
len: 0,
unused: PhantomData,
}
}
}
/// Shared `EntitySet` implementation for all value types.
impl<K> EntitySet<K>
where
K: EntityRef,
{
/// Create a new empty set.
pub fn new() -> Self {
Self::default()
}
/// Creates a new empty set with the specified capacity.
pub fn with_capacity(capacity: usize) -> Self {
Self {
elems: Vec::with_capacity((capacity + 7) / 8),
..Self::new()
}
}
/// Get the element at `k` if it exists.
pub fn contains(&self, k: K) -> bool {
let index = k.index();
if index < self.len {
(self.elems[index / 8] & (1 << (index % 8))) != 0
} else {
false
}
}
/// Is this set completely empty?
pub fn is_empty(&self) -> bool {
if self.len != 0 {
false
} else {
self.elems.iter().all(|&e| e == 0)
}
}
/// Returns the cardinality of the set. More precisely, it returns the number of calls to
/// `insert` with different key values, that have happened since the the set was most recently
/// `clear`ed or created with `new`.
pub fn cardinality(&self) -> usize {
let mut n: usize = 0;
for byte_ix in 0..self.len / 8 {
n += self.elems[byte_ix].count_ones() as usize;
}
for bit_ix in (self.len / 8) * 8..self.len {
if (self.elems[bit_ix / 8] & (1 << (bit_ix % 8))) != 0 {
n += 1;
}
}
n
}
/// Remove all entries from this set.
pub fn clear(&mut self) {
self.len = 0;
self.elems.clear()
}
/// Iterate over all the keys in this set.
pub fn keys(&self) -> Keys<K> {
Keys::with_len(self.len)
}
/// Resize the set to have `n` entries by adding default entries as needed.
pub fn resize(&mut self, n: usize) {
self.elems.resize((n + 7) / 8, 0);
self.len = n
}
/// Insert the element at `k`.
pub fn insert(&mut self, k: K) -> bool {
let index = k.index();
if index >= self.len {
self.resize(index + 1)
}
let result = !self.contains(k);
self.elems[index / 8] |= 1 << (index % 8);
result
}
/// Removes and returns the entity from the set if it exists.
pub fn pop(&mut self) -> Option<K> {
if self.len == 0 {
return None;
}
// Clear the last known entity in the list.
let last_index = self.len - 1;
self.elems[last_index / 8] &= !(1 << (last_index % 8));
// Set the length to the next last stored entity or zero if we pop'ed
// the last entity.
self.len = self
.elems
.iter()
.enumerate()
.rev()
.find(|(_, &byte)| byte != 0)
// Map `i` from byte index to bit level index.
// `(i + 1) * 8` = Last bit in byte.
// `last - byte.leading_zeros()` = last set bit in byte.
// `as usize` won't ever truncate as the potential range is `0..=8`.
.map_or(0, |(i, byte)| ((i + 1) * 8) - byte.leading_zeros() as usize);
Some(K::new(last_index))
}
}
#[cfg(test)]
mod tests {
use super::*;
use core::u32;
// `EntityRef` impl for testing.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
struct E(u32);
impl EntityRef for E {
fn new(i: usize) -> Self {
E(i as u32)
}
fn index(self) -> usize {
self.0 as usize
}
}
#[test]
fn basic() {
let r0 = E(0);
let r1 = E(1);
let r2 = E(2);
let mut m = EntitySet::new();
let v: Vec<E> = m.keys().collect();
assert_eq!(v, []);
assert!(m.is_empty());
m.insert(r2);
m.insert(r1);
assert!(!m.contains(r0));
assert!(m.contains(r1));
assert!(m.contains(r2));
assert!(!m.contains(E(3)));
assert!(!m.is_empty());
let v: Vec<E> = m.keys().collect();
assert_eq!(v, [r0, r1, r2]);
m.resize(20);
assert!(!m.contains(E(3)));
assert!(!m.contains(E(4)));
assert!(!m.contains(E(8)));
assert!(!m.contains(E(15)));
assert!(!m.contains(E(19)));
m.insert(E(8));
m.insert(E(15));
assert!(!m.contains(E(3)));
assert!(!m.contains(E(4)));
assert!(m.contains(E(8)));
assert!(!m.contains(E(9)));
assert!(!m.contains(E(14)));
assert!(m.contains(E(15)));
assert!(!m.contains(E(16)));
assert!(!m.contains(E(19)));
assert!(!m.contains(E(20)));
assert!(!m.contains(E(u32::MAX)));
m.clear();
assert!(m.is_empty());
}
#[test]
fn pop_ordered() {
let r0 = E(0);
let r1 = E(1);
let r2 = E(2);
let mut m = EntitySet::new();
m.insert(r0);
m.insert(r1);
m.insert(r2);
assert_eq!(r2, m.pop().unwrap());
assert_eq!(r1, m.pop().unwrap());
assert_eq!(r0, m.pop().unwrap());
assert!(m.pop().is_none());
assert!(m.pop().is_none());
}
#[test]
fn pop_unordered() {
let mut blocks = [
E(0),
E(1),
E(6),
E(7),
E(5),
E(9),
E(10),
E(2),
E(3),
E(11),
E(12),
];
let mut m = EntitySet::new();
for &block in &blocks {
m.insert(block);
}
assert_eq!(m.len, 13);
blocks.sort();
for &block in blocks.iter().rev() {
assert_eq!(block, m.pop().unwrap());
}
assert!(m.is_empty());
}
}