cranelift_frontend/frontend.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
//! A frontend for building Cranelift IR from other languages.
use crate::ssa::{SSABuilder, SideEffects};
use crate::variable::Variable;
use alloc::collections::BTreeSet;
use core::fmt::{self, Debug};
use cranelift_codegen::cursor::{Cursor, FuncCursor};
use cranelift_codegen::entity::{EntityRef, EntitySet, SecondaryMap};
use cranelift_codegen::ir;
use cranelift_codegen::ir::condcodes::IntCC;
use cranelift_codegen::ir::{
types, AbiParam, Block, DataFlowGraph, DynamicStackSlot, DynamicStackSlotData, ExtFuncData,
ExternalName, FuncRef, Function, GlobalValue, GlobalValueData, Inst, InstBuilder,
InstBuilderBase, InstructionData, JumpTable, JumpTableData, LibCall, MemFlags, RelSourceLoc,
SigRef, Signature, StackSlot, StackSlotData, Type, Value, ValueLabel, ValueLabelAssignments,
ValueLabelStart,
};
use cranelift_codegen::isa::TargetFrontendConfig;
use cranelift_codegen::packed_option::PackedOption;
use cranelift_codegen::traversals::Dfs;
use smallvec::SmallVec;
/// Structure used for translating a series of functions into Cranelift IR.
///
/// In order to reduce memory reallocations when compiling multiple functions,
/// [`FunctionBuilderContext`] holds various data structures which are cleared between
/// functions, rather than dropped, preserving the underlying allocations.
#[derive(Default)]
pub struct FunctionBuilderContext {
ssa: SSABuilder,
status: SecondaryMap<Block, BlockStatus>,
types: SecondaryMap<Variable, Type>,
needs_stack_map: EntitySet<Value>,
dfs: Dfs,
}
/// Temporary object used to build a single Cranelift IR [`Function`].
pub struct FunctionBuilder<'a> {
/// The function currently being built.
/// This field is public so the function can be re-borrowed.
pub func: &'a mut Function,
/// Source location to assign to all new instructions.
srcloc: ir::SourceLoc,
func_ctx: &'a mut FunctionBuilderContext,
position: PackedOption<Block>,
}
#[derive(Clone, Default, Eq, PartialEq)]
enum BlockStatus {
/// No instructions have been added.
#[default]
Empty,
/// Some instructions have been added, but no terminator.
Partial,
/// A terminator has been added; no further instructions may be added.
Filled,
}
impl FunctionBuilderContext {
/// Creates a [`FunctionBuilderContext`] structure. The structure is automatically cleared after
/// each [`FunctionBuilder`] completes translating a function.
pub fn new() -> Self {
Self::default()
}
fn clear(&mut self) {
self.ssa.clear();
self.status.clear();
self.types.clear();
}
fn is_empty(&self) -> bool {
self.ssa.is_empty() && self.status.is_empty() && self.types.is_empty()
}
}
/// Implementation of the [`InstBuilder`] that has
/// one convenience method per Cranelift IR instruction.
pub struct FuncInstBuilder<'short, 'long: 'short> {
builder: &'short mut FunctionBuilder<'long>,
block: Block,
}
impl<'short, 'long> FuncInstBuilder<'short, 'long> {
fn new(builder: &'short mut FunctionBuilder<'long>, block: Block) -> Self {
Self { builder, block }
}
}
impl<'short, 'long> InstBuilderBase<'short> for FuncInstBuilder<'short, 'long> {
fn data_flow_graph(&self) -> &DataFlowGraph {
&self.builder.func.dfg
}
fn data_flow_graph_mut(&mut self) -> &mut DataFlowGraph {
&mut self.builder.func.dfg
}
// This implementation is richer than `InsertBuilder` because we use the data of the
// instruction being inserted to add related info to the DFG and the SSA building system,
// and perform debug sanity checks.
fn build(self, data: InstructionData, ctrl_typevar: Type) -> (Inst, &'short mut DataFlowGraph) {
// We only insert the Block in the layout when an instruction is added to it
self.builder.ensure_inserted_block();
let inst = self.builder.func.dfg.make_inst(data.clone());
self.builder.func.dfg.make_inst_results(inst, ctrl_typevar);
self.builder.func.layout.append_inst(inst, self.block);
if !self.builder.srcloc.is_default() {
self.builder.func.set_srcloc(inst, self.builder.srcloc);
}
match &self.builder.func.dfg.insts[inst] {
ir::InstructionData::Jump {
destination: dest, ..
} => {
// If the user has supplied jump arguments we must adapt the arguments of
// the destination block
let block = dest.block(&self.builder.func.dfg.value_lists);
self.builder.declare_successor(block, inst);
}
ir::InstructionData::Brif {
blocks: [branch_then, branch_else],
..
} => {
let block_then = branch_then.block(&self.builder.func.dfg.value_lists);
let block_else = branch_else.block(&self.builder.func.dfg.value_lists);
self.builder.declare_successor(block_then, inst);
if block_then != block_else {
self.builder.declare_successor(block_else, inst);
}
}
ir::InstructionData::BranchTable { table, .. } => {
let pool = &self.builder.func.dfg.value_lists;
// Unlike all other jumps/branches, jump tables are
// capable of having the same successor appear
// multiple times, so we must deduplicate.
let mut unique = EntitySet::<Block>::new();
for dest_block in self
.builder
.func
.stencil
.dfg
.jump_tables
.get(*table)
.expect("you are referencing an undeclared jump table")
.all_branches()
{
let block = dest_block.block(pool);
if !unique.insert(block) {
continue;
}
// Call `declare_block_predecessor` instead of `declare_successor` for
// avoiding the borrow checker.
self.builder
.func_ctx
.ssa
.declare_block_predecessor(block, inst);
}
}
inst => debug_assert!(!inst.opcode().is_branch()),
}
if data.opcode().is_terminator() {
self.builder.fill_current_block()
}
(inst, &mut self.builder.func.dfg)
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
/// An error encountered when calling [`FunctionBuilder::try_use_var`].
pub enum UseVariableError {
UsedBeforeDeclared(Variable),
}
impl fmt::Display for UseVariableError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
UseVariableError::UsedBeforeDeclared(variable) => {
write!(
f,
"variable {} was used before it was defined",
variable.index()
)?;
}
}
Ok(())
}
}
impl std::error::Error for UseVariableError {}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
/// An error encountered when calling [`FunctionBuilder::try_declare_var`].
pub enum DeclareVariableError {
DeclaredMultipleTimes(Variable),
}
impl std::error::Error for DeclareVariableError {}
impl fmt::Display for DeclareVariableError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
DeclareVariableError::DeclaredMultipleTimes(variable) => {
write!(
f,
"variable {} was declared multiple times",
variable.index()
)?;
}
}
Ok(())
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
/// An error encountered when defining the initial value of a variable.
pub enum DefVariableError {
/// The variable was instantiated with a value of the wrong type.
///
/// note: to obtain the type of the value, you can call
/// [`cranelift_codegen::ir::dfg::DataFlowGraph::value_type`] (using the
/// `FunctionBuilder.func.dfg` field)
TypeMismatch(Variable, Value),
/// The value was defined (in a call to [`FunctionBuilder::def_var`]) before
/// it was declared (in a call to [`FunctionBuilder::declare_var`]).
DefinedBeforeDeclared(Variable),
}
impl fmt::Display for DefVariableError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
DefVariableError::TypeMismatch(variable, value) => {
write!(
f,
"the types of variable {} and value {} are not the same.
The `Value` supplied to `def_var` must be of the same type as
the variable was declared to be of in `declare_var`.",
variable.index(),
value.as_u32()
)?;
}
DefVariableError::DefinedBeforeDeclared(variable) => {
write!(
f,
"the value of variable {} was declared before it was defined",
variable.index()
)?;
}
}
Ok(())
}
}
/// This module allows you to create a function in Cranelift IR in a straightforward way, hiding
/// all the complexity of its internal representation.
///
/// The module is parametrized by one type which is the representation of variables in your
/// origin language. It offers a way to conveniently append instruction to your program flow.
/// You are responsible to split your instruction flow into extended blocks (declared with
/// [`create_block`](Self::create_block)) whose properties are:
///
/// - branch and jump instructions can only point at the top of extended blocks;
/// - the last instruction of each block is a terminator instruction which has no natural successor,
/// and those instructions can only appear at the end of extended blocks.
///
/// The parameters of Cranelift IR instructions are Cranelift IR values, which can only be created
/// as results of other Cranelift IR instructions. To be able to create variables redefined multiple
/// times in your program, use the [`def_var`](Self::def_var) and [`use_var`](Self::use_var) command,
/// that will maintain the correspondence between your variables and Cranelift IR SSA values.
///
/// The first block for which you call [`switch_to_block`](Self::switch_to_block) will be assumed to
/// be the beginning of the function.
///
/// At creation, a [`FunctionBuilder`] instance borrows an already allocated `Function` which it
/// modifies with the information stored in the mutable borrowed
/// [`FunctionBuilderContext`]. The function passed in argument should be newly created with
/// [`Function::with_name_signature()`], whereas the [`FunctionBuilderContext`] can be kept as is
/// between two function translations.
///
/// # Errors
///
/// The functions below will panic in debug mode whenever you try to modify the Cranelift IR
/// function in a way that violate the coherence of the code. For instance: switching to a new
/// [`Block`] when you haven't filled the current one with a terminator instruction, inserting a
/// return instruction with arguments that don't match the function's signature.
impl<'a> FunctionBuilder<'a> {
/// Creates a new [`FunctionBuilder`] structure that will operate on a [`Function`] using a
/// [`FunctionBuilderContext`].
pub fn new(func: &'a mut Function, func_ctx: &'a mut FunctionBuilderContext) -> Self {
debug_assert!(func_ctx.is_empty());
Self {
func,
srcloc: Default::default(),
func_ctx,
position: Default::default(),
}
}
/// Get the block that this builder is currently at.
pub fn current_block(&self) -> Option<Block> {
self.position.expand()
}
/// Set the source location that should be assigned to all new instructions.
pub fn set_srcloc(&mut self, srcloc: ir::SourceLoc) {
self.srcloc = srcloc;
}
/// Creates a new [`Block`] and returns its reference.
pub fn create_block(&mut self) -> Block {
let block = self.func.dfg.make_block();
self.func_ctx.ssa.declare_block(block);
block
}
/// Mark a block as "cold".
///
/// This will try to move it out of the ordinary path of execution
/// when lowered to machine code.
pub fn set_cold_block(&mut self, block: Block) {
self.func.layout.set_cold(block);
}
/// Insert `block` in the layout *after* the existing block `after`.
pub fn insert_block_after(&mut self, block: Block, after: Block) {
self.func.layout.insert_block_after(block, after);
}
/// After the call to this function, new instructions will be inserted into the designated
/// block, in the order they are declared. You must declare the types of the [`Block`] arguments
/// you will use here.
///
/// When inserting the terminator instruction (which doesn't have a fallthrough to its immediate
/// successor), the block will be declared filled and it will not be possible to append
/// instructions to it.
pub fn switch_to_block(&mut self, block: Block) {
// First we check that the previous block has been filled.
debug_assert!(
self.position.is_none()
|| self.is_unreachable()
|| self.is_pristine(self.position.unwrap())
|| self.is_filled(self.position.unwrap()),
"you have to fill your block before switching"
);
// We cannot switch to a filled block
debug_assert!(
!self.is_filled(block),
"you cannot switch to a block which is already filled"
);
// Then we change the cursor position.
self.position = PackedOption::from(block);
}
/// Declares that all the predecessors of this block are known.
///
/// Function to call with `block` as soon as the last branch instruction to `block` has been
/// created. Forgetting to call this method on every block will cause inconsistencies in the
/// produced functions.
pub fn seal_block(&mut self, block: Block) {
let side_effects = self.func_ctx.ssa.seal_block(block, self.func);
self.handle_ssa_side_effects(side_effects);
}
/// Effectively calls [seal_block](Self::seal_block) on all unsealed blocks in the function.
///
/// It's more efficient to seal [`Block`]s as soon as possible, during
/// translation, but for frontends where this is impractical to do, this
/// function can be used at the end of translating all blocks to ensure
/// that everything is sealed.
pub fn seal_all_blocks(&mut self) {
let side_effects = self.func_ctx.ssa.seal_all_blocks(self.func);
self.handle_ssa_side_effects(side_effects);
}
/// Declares the type of a variable, so that it can be used later (by calling
/// [`FunctionBuilder::use_var`]). This function will return an error if the variable
/// has been previously declared.
pub fn try_declare_var(&mut self, var: Variable, ty: Type) -> Result<(), DeclareVariableError> {
if self.func_ctx.types[var] != types::INVALID {
return Err(DeclareVariableError::DeclaredMultipleTimes(var));
}
self.func_ctx.types[var] = ty;
Ok(())
}
/// In order to use a variable (by calling [`FunctionBuilder::use_var`]), you need
/// to first declare its type with this method.
pub fn declare_var(&mut self, var: Variable, ty: Type) {
self.try_declare_var(var, ty)
.unwrap_or_else(|_| panic!("the variable {:?} has been declared multiple times", var))
}
/// Returns the Cranelift IR necessary to use a previously defined user
/// variable, returning an error if this is not possible.
pub fn try_use_var(&mut self, var: Variable) -> Result<Value, UseVariableError> {
// Assert that we're about to add instructions to this block using the definition of the
// given variable. ssa.use_var is the only part of this crate which can add block parameters
// behind the caller's back. If we disallow calling append_block_param as soon as use_var is
// called, then we enforce a strict separation between user parameters and SSA parameters.
self.ensure_inserted_block();
let (val, side_effects) = {
let ty = *self
.func_ctx
.types
.get(var)
.ok_or(UseVariableError::UsedBeforeDeclared(var))?;
debug_assert_ne!(
ty,
types::INVALID,
"variable {:?} is used but its type has not been declared",
var
);
self.func_ctx
.ssa
.use_var(self.func, var, ty, self.position.unwrap())
};
self.handle_ssa_side_effects(side_effects);
Ok(val)
}
/// Returns the Cranelift IR value corresponding to the utilization at the current program
/// position of a previously defined user variable.
pub fn use_var(&mut self, var: Variable) -> Value {
self.try_use_var(var).unwrap_or_else(|_| {
panic!(
"variable {:?} is used but its type has not been declared",
var
)
})
}
/// Registers a new definition of a user variable. This function will return
/// an error if the value supplied does not match the type the variable was
/// declared to have.
pub fn try_def_var(&mut self, var: Variable, val: Value) -> Result<(), DefVariableError> {
let var_ty = *self
.func_ctx
.types
.get(var)
.ok_or(DefVariableError::DefinedBeforeDeclared(var))?;
if var_ty != self.func.dfg.value_type(val) {
return Err(DefVariableError::TypeMismatch(var, val));
}
self.func_ctx.ssa.def_var(var, val, self.position.unwrap());
Ok(())
}
/// Register a new definition of a user variable. The type of the value must be
/// the same as the type registered for the variable.
pub fn def_var(&mut self, var: Variable, val: Value) {
self.try_def_var(var, val)
.unwrap_or_else(|error| match error {
DefVariableError::TypeMismatch(var, val) => {
panic!(
"declared type of variable {:?} doesn't match type of value {}",
var, val
);
}
DefVariableError::DefinedBeforeDeclared(var) => {
panic!(
"variable {:?} is used but its type has not been declared",
var
);
}
})
}
/// Set label for [`Value`]
///
/// This will not do anything unless
/// [`func.dfg.collect_debug_info`](DataFlowGraph::collect_debug_info) is called first.
pub fn set_val_label(&mut self, val: Value, label: ValueLabel) {
if let Some(values_labels) = self.func.stencil.dfg.values_labels.as_mut() {
use alloc::collections::btree_map::Entry;
let start = ValueLabelStart {
from: RelSourceLoc::from_base_offset(self.func.params.base_srcloc(), self.srcloc),
label,
};
match values_labels.entry(val) {
Entry::Occupied(mut e) => match e.get_mut() {
ValueLabelAssignments::Starts(starts) => starts.push(start),
_ => panic!("Unexpected ValueLabelAssignments at this stage"),
},
Entry::Vacant(e) => {
e.insert(ValueLabelAssignments::Starts(vec![start]));
}
}
}
}
/// Declare that the given value is a GC reference that requires inclusion
/// in a stack map when it is live across GC safepoints.
///
/// At the current moment, values that need inclusion in stack maps are
/// spilled before safepoints, but they are not reloaded afterwards. This
/// means that moving GCs are not yet supported, however the intention is to
/// add this support in the near future.
///
/// # Panics
///
/// Panics if `val` is larger than 16 bytes.
pub fn declare_needs_stack_map(&mut self, val: Value) {
// We rely on these properties in `insert_safepoint_spills`.
let size = self.func.dfg.value_type(val).bytes();
assert!(size <= 16);
assert!(size.is_power_of_two());
self.func_ctx.needs_stack_map.insert(val);
}
/// Creates a jump table in the function, to be used by [`br_table`](InstBuilder::br_table) instructions.
pub fn create_jump_table(&mut self, data: JumpTableData) -> JumpTable {
self.func.create_jump_table(data)
}
/// Creates a sized stack slot in the function, to be used by [`stack_load`](InstBuilder::stack_load),
/// [`stack_store`](InstBuilder::stack_store) and [`stack_addr`](InstBuilder::stack_addr) instructions.
pub fn create_sized_stack_slot(&mut self, data: StackSlotData) -> StackSlot {
self.func.create_sized_stack_slot(data)
}
/// Creates a dynamic stack slot in the function, to be used by
/// [`dynamic_stack_load`](InstBuilder::dynamic_stack_load),
/// [`dynamic_stack_store`](InstBuilder::dynamic_stack_store) and
/// [`dynamic_stack_addr`](InstBuilder::dynamic_stack_addr) instructions.
pub fn create_dynamic_stack_slot(&mut self, data: DynamicStackSlotData) -> DynamicStackSlot {
self.func.create_dynamic_stack_slot(data)
}
/// Adds a signature which can later be used to declare an external function import.
pub fn import_signature(&mut self, signature: Signature) -> SigRef {
self.func.import_signature(signature)
}
/// Declare an external function import.
pub fn import_function(&mut self, data: ExtFuncData) -> FuncRef {
self.func.import_function(data)
}
/// Declares a global value accessible to the function.
pub fn create_global_value(&mut self, data: GlobalValueData) -> GlobalValue {
self.func.create_global_value(data)
}
/// Returns an object with the [`InstBuilder`]
/// trait that allows to conveniently append an instruction to the current [`Block`] being built.
pub fn ins<'short>(&'short mut self) -> FuncInstBuilder<'short, 'a> {
let block = self
.position
.expect("Please call switch_to_block before inserting instructions");
FuncInstBuilder::new(self, block)
}
/// Make sure that the current block is inserted in the layout.
pub fn ensure_inserted_block(&mut self) {
let block = self.position.unwrap();
if self.is_pristine(block) {
if !self.func.layout.is_block_inserted(block) {
self.func.layout.append_block(block);
}
self.func_ctx.status[block] = BlockStatus::Partial;
} else {
debug_assert!(
!self.is_filled(block),
"you cannot add an instruction to a block already filled"
);
}
}
/// Returns a [`FuncCursor`] pointed at the current position ready for inserting instructions.
///
/// This can be used to insert SSA code that doesn't need to access locals and that doesn't
/// need to know about [`FunctionBuilder`] at all.
pub fn cursor(&mut self) -> FuncCursor {
self.ensure_inserted_block();
FuncCursor::new(self.func)
.with_srcloc(self.srcloc)
.at_bottom(self.position.unwrap())
}
/// Append parameters to the given [`Block`] corresponding to the function
/// parameters. This can be used to set up the block parameters for the
/// entry block.
pub fn append_block_params_for_function_params(&mut self, block: Block) {
debug_assert!(
!self.func_ctx.ssa.has_any_predecessors(block),
"block parameters for function parameters should only be added to the entry block"
);
// These parameters count as "user" parameters here because they aren't
// inserted by the SSABuilder.
debug_assert!(
self.is_pristine(block),
"You can't add block parameters after adding any instruction"
);
for argtyp in &self.func.stencil.signature.params {
self.func
.stencil
.dfg
.append_block_param(block, argtyp.value_type);
}
}
/// Append parameters to the given [`Block`] corresponding to the function
/// return values. This can be used to set up the block parameters for a
/// function exit block.
pub fn append_block_params_for_function_returns(&mut self, block: Block) {
// These parameters count as "user" parameters here because they aren't
// inserted by the SSABuilder.
debug_assert!(
self.is_pristine(block),
"You can't add block parameters after adding any instruction"
);
for argtyp in &self.func.stencil.signature.returns {
self.func
.stencil
.dfg
.append_block_param(block, argtyp.value_type);
}
}
/// Insert spills for every value that needs to be in a stack map at every
/// safepoint.
///
/// First, we do a very simple, imprecise, and overapproximating liveness
/// analysis. This considers any use (regardless if that use produces side
/// effects or flows into another instruction that produces side effects!)
/// of a needs-stack-map value to keep the value live. This allows us to do
/// this liveness analysis in a single post-order traversal of the IR,
/// without any fixed-point loop. The result of this analysis is the set of
/// live needs-stack-map values at each instruction that must be a safepoint
/// (currently this is just non-tail calls).
///
/// Second, take those results, add stack slots so we have a place to spill
/// to, and then finally spill the live needs-stack-map values at each
/// safepoint.
fn insert_safepoint_spills(&mut self) {
// A map from each safepoint to the set of GC references that are live
// across it.
let mut safepoints: crate::HashMap<ir::Inst, SmallVec<[ir::Value; 4]>> =
crate::HashMap::new();
// The maximum number of values we need to store in a stack map at the
// same time, bucketed by their type's size. This array is indexed by
// the log2 of the type's size. We do not support recording values whose
// size is greater than 16 in stack maps.
const LOG2_SIZE_CAPACITY: usize = (16u8.ilog2() as usize) + 1;
let mut max_vals_in_stack_map_by_log2_size = [0; LOG2_SIZE_CAPACITY];
// The set of needs-stack-maps values that are currently live in our
// traversal.
//
// NB: use a `BTreeSet` so that iteration is deterministic, as we will
// insert spills an order derived from this collection's iteration
// order.
let mut live = BTreeSet::new();
// Do our single-pass liveness analysis.
//
// Use a post-order traversal, traversing the IR backwards from uses to
// defs, because liveness is a backwards analysis.
//
// 1. The definition of a value removes it from our `live` set. Values
// are not live before they are defined.
//
// 2. When we see any instruction that requires a safepoint (aka
// non-tail calls) we record the current live set of needs-stack-map
// values.
//
// We ignore tail calls because this caller and its frame won't exist
// by the time the callee is executing and potentially triggers a GC;
// nothing is live in the function after it exits!
//
// Note that this step should actually happen *before* adding uses to
// the `live` set below, in order to avoid holding GC objects alive
// longer than necessary, because arguments to the call that are not
// live afterwards should need not be prevented from reclamation by
// the GC for us, and therefore need not appear in this stack map. It
// is the callee's responsibility to record such arguments in its
// stack maps if it keeps them alive across some call that might
// trigger GC.
//
// 3. Any use of a needs-stack-map value adds it to our `live` set.
//
// Note: we do not flow liveness from block parameters back to branch
// arguments, and instead always consider branch arguments live. That
// additional precision would require a fixed-point loop in the
// presence of back edges.
//
// Furthermore, we do not differentiate between uses of a
// needs-stack-map value that ultimately flow into a side-effecting
// operation versus uses that themselves are not live. This could be
// tightened up in the future, but we're starting with the easiest,
// simplest thing. Besides, none of our mid-end optimization passes
// have run at this point in time yet, so there probably isn't much,
// if any, dead code.
for block in self.func_ctx.dfs.post_order_iter(&self.func) {
let mut option_inst = self.func.layout.last_inst(block);
while let Some(inst) = option_inst {
// (1) Remove values defined by this instruction from the `live`
// set.
for val in self.func.dfg.inst_results(inst) {
live.remove(val);
}
// (2) If this instruction is a call, then we need to add a
// safepoint to record any values in `live`.
let opcode = self.func.dfg.insts[inst].opcode();
if opcode.is_call() && !opcode.is_return() {
let mut live: SmallVec<[_; 4]> = live.iter().copied().collect();
for chunk in live_vals_by_size(&self.func.dfg, &mut live) {
let index = log2_size(&self.func.dfg, chunk[0]);
max_vals_in_stack_map_by_log2_size[index] =
core::cmp::max(max_vals_in_stack_map_by_log2_size[index], chunk.len());
}
let old_val = safepoints.insert(inst, live);
debug_assert!(old_val.is_none());
}
// (3) Add all needs-stack-map values that are operands to this
// instruction to the live set. This includes branch arguments,
// as mentioned above.
for val in self.func.dfg.inst_values(inst) {
if self.func_ctx.needs_stack_map.contains(val) {
live.insert(val);
}
}
option_inst = self.func.layout.prev_inst(inst);
}
// After we've processed this block's instructions, remove its
// parameters from the live set. This is part of step (1).
for val in self.func.dfg.block_params(block) {
live.remove(val);
}
}
// Create a stack slot for each size of needs-stack-map value. These
// slots are arrays capable of holding the maximum number of same-sized
// values that must appear in the same stack map at the same time.
//
// This is indexed by the log2 of the type size.
let mut stack_slots = [PackedOption::<ir::StackSlot>::default(); LOG2_SIZE_CAPACITY];
for (log2_size, capacity) in max_vals_in_stack_map_by_log2_size.into_iter().enumerate() {
if capacity == 0 {
continue;
}
let size = 1usize << log2_size;
let slot = self.func.create_sized_stack_slot(ir::StackSlotData::new(
ir::StackSlotKind::ExplicitSlot,
u32::try_from(size * capacity).unwrap(),
u8::try_from(log2_size).unwrap(),
));
stack_slots[log2_size] = Some(slot).into();
}
// Insert spills to our new stack slots before each safepoint
// instruction.
let mut cursor = FuncCursor::new(self.func);
for (inst, live_vals) in safepoints {
cursor = cursor.at_inst(inst);
// The offset within each stack slot for the next spill to that
// associated stack slot.
let mut stack_slot_offsets = [0; LOG2_SIZE_CAPACITY];
for val in live_vals {
let ty = cursor.func.dfg.value_type(val);
let size_of_val = ty.bytes();
let index = log2_size(&cursor.func.dfg, val);
let slot = stack_slots[index].unwrap();
let offset = stack_slot_offsets[index];
stack_slot_offsets[index] += size_of_val;
cursor
.ins()
.stack_store(val, slot, i32::try_from(offset).unwrap());
cursor
.func
.dfg
.append_user_stack_map_entry(inst, ir::UserStackMapEntry { ty, slot, offset });
}
}
}
/// Declare that translation of the current function is complete.
///
/// This resets the state of the [`FunctionBuilderContext`] in preparation to
/// be used for another function.
pub fn finalize(mut self) {
// Check that all the `Block`s are filled and sealed.
#[cfg(debug_assertions)]
{
for block in self.func_ctx.status.keys() {
if !self.is_pristine(block) {
assert!(
self.func_ctx.ssa.is_sealed(block),
"FunctionBuilder finalized, but block {} is not sealed",
block,
);
assert!(
self.is_filled(block),
"FunctionBuilder finalized, but block {} is not filled",
block,
);
}
}
}
// In debug mode, check that all blocks are valid basic blocks.
#[cfg(debug_assertions)]
{
// Iterate manually to provide more helpful error messages.
for block in self.func_ctx.status.keys() {
if let Err((inst, msg)) = self.func.is_block_basic(block) {
let inst_str = self.func.dfg.display_inst(inst);
panic!(
"{} failed basic block invariants on {}: {}",
block, inst_str, msg
);
}
}
}
if !self.func_ctx.needs_stack_map.is_empty() {
self.insert_safepoint_spills();
}
// Clear the state (but preserve the allocated buffers) in preparation
// for translation another function.
self.func_ctx.clear();
}
}
/// Sort `live` by size and return an iterable of subslices grouped by size.
fn live_vals_by_size<'a, 'b>(
dfg: &'a ir::DataFlowGraph,
live: &'b mut [ir::Value],
) -> impl Iterator<Item = &'b [ir::Value]>
where
'a: 'b,
{
live.sort_by_key(|val| dfg.value_type(*val).bytes());
live.chunk_by(|a, b| dfg.value_type(*a).bytes() == dfg.value_type(*b).bytes())
}
/// Get `log2(sizeof(val))` as a `usize`.
fn log2_size(dfg: &ir::DataFlowGraph, val: ir::Value) -> usize {
let size = dfg.value_type(val).bytes();
debug_assert!(size.is_power_of_two());
usize::try_from(size.ilog2()).unwrap()
}
/// All the functions documented in the previous block are write-only and help you build a valid
/// Cranelift IR functions via multiple debug asserts. However, you might need to improve the
/// performance of your translation perform more complex transformations to your Cranelift IR
/// function. The functions below help you inspect the function you're creating and modify it
/// in ways that can be unsafe if used incorrectly.
impl<'a> FunctionBuilder<'a> {
/// Retrieves all the parameters for a [`Block`] currently inferred from the jump instructions
/// inserted that target it and the SSA construction.
pub fn block_params(&self, block: Block) -> &[Value] {
self.func.dfg.block_params(block)
}
/// Retrieves the signature with reference `sigref` previously added with
/// [`import_signature`](Self::import_signature).
pub fn signature(&self, sigref: SigRef) -> Option<&Signature> {
self.func.dfg.signatures.get(sigref)
}
/// Creates a parameter for a specific [`Block`] by appending it to the list of already existing
/// parameters.
///
/// **Note:** this function has to be called at the creation of the `Block` before adding
/// instructions to it, otherwise this could interfere with SSA construction.
pub fn append_block_param(&mut self, block: Block, ty: Type) -> Value {
debug_assert!(
self.is_pristine(block),
"You can't add block parameters after adding any instruction"
);
self.func.dfg.append_block_param(block, ty)
}
/// Returns the result values of an instruction.
pub fn inst_results(&self, inst: Inst) -> &[Value] {
self.func.dfg.inst_results(inst)
}
/// Changes the destination of a jump instruction after creation.
///
/// **Note:** You are responsible for maintaining the coherence with the arguments of
/// other jump instructions.
pub fn change_jump_destination(&mut self, inst: Inst, old_block: Block, new_block: Block) {
let dfg = &mut self.func.dfg;
for block in dfg.insts[inst].branch_destination_mut(&mut dfg.jump_tables) {
if block.block(&dfg.value_lists) == old_block {
self.func_ctx.ssa.remove_block_predecessor(old_block, inst);
block.set_block(new_block, &mut dfg.value_lists);
self.func_ctx.ssa.declare_block_predecessor(new_block, inst);
}
}
}
/// Returns `true` if and only if the current [`Block`] is sealed and has no predecessors declared.
///
/// The entry block of a function is never unreachable.
pub fn is_unreachable(&self) -> bool {
let is_entry = match self.func.layout.entry_block() {
None => false,
Some(entry) => self.position.unwrap() == entry,
};
!is_entry
&& self.func_ctx.ssa.is_sealed(self.position.unwrap())
&& !self
.func_ctx
.ssa
.has_any_predecessors(self.position.unwrap())
}
/// Returns `true` if and only if no instructions have been added since the last call to
/// [`switch_to_block`](Self::switch_to_block).
fn is_pristine(&self, block: Block) -> bool {
self.func_ctx.status[block] == BlockStatus::Empty
}
/// Returns `true` if and only if a terminator instruction has been inserted since the
/// last call to [`switch_to_block`](Self::switch_to_block).
fn is_filled(&self, block: Block) -> bool {
self.func_ctx.status[block] == BlockStatus::Filled
}
}
/// Helper functions
impl<'a> FunctionBuilder<'a> {
/// Calls libc.memcpy
///
/// Copies the `size` bytes from `src` to `dest`, assumes that `src + size`
/// won't overlap onto `dest`. If `dest` and `src` overlap, the behavior is
/// undefined. Applications in which `dest` and `src` might overlap should
/// use `call_memmove` instead.
pub fn call_memcpy(
&mut self,
config: TargetFrontendConfig,
dest: Value,
src: Value,
size: Value,
) {
let pointer_type = config.pointer_type();
let signature = {
let mut s = Signature::new(config.default_call_conv);
s.params.push(AbiParam::new(pointer_type));
s.params.push(AbiParam::new(pointer_type));
s.params.push(AbiParam::new(pointer_type));
s.returns.push(AbiParam::new(pointer_type));
self.import_signature(s)
};
let libc_memcpy = self.import_function(ExtFuncData {
name: ExternalName::LibCall(LibCall::Memcpy),
signature,
colocated: false,
});
self.ins().call(libc_memcpy, &[dest, src, size]);
}
/// Optimised memcpy or memmove for small copies.
///
/// # Codegen safety
///
/// The following properties must hold to prevent UB:
///
/// * `src_align` and `dest_align` are an upper-bound on the alignment of `src` respectively `dest`.
/// * If `non_overlapping` is true, then this must be correct.
pub fn emit_small_memory_copy(
&mut self,
config: TargetFrontendConfig,
dest: Value,
src: Value,
size: u64,
dest_align: u8,
src_align: u8,
non_overlapping: bool,
mut flags: MemFlags,
) {
// Currently the result of guess work, not actual profiling.
const THRESHOLD: u64 = 4;
if size == 0 {
return;
}
let access_size = greatest_divisible_power_of_two(size);
assert!(
access_size.is_power_of_two(),
"`size` is not a power of two"
);
assert!(
access_size >= u64::from(::core::cmp::min(src_align, dest_align)),
"`size` is smaller than `dest` and `src`'s alignment value."
);
let (access_size, int_type) = if access_size <= 8 {
(access_size, Type::int((access_size * 8) as u16).unwrap())
} else {
(8, types::I64)
};
let load_and_store_amount = size / access_size;
if load_and_store_amount > THRESHOLD {
let size_value = self.ins().iconst(config.pointer_type(), size as i64);
if non_overlapping {
self.call_memcpy(config, dest, src, size_value);
} else {
self.call_memmove(config, dest, src, size_value);
}
return;
}
if u64::from(src_align) >= access_size && u64::from(dest_align) >= access_size {
flags.set_aligned();
}
// Load all of the memory first. This is necessary in case `dest` overlaps.
// It can also improve performance a bit.
let registers: smallvec::SmallVec<[_; THRESHOLD as usize]> = (0..load_and_store_amount)
.map(|i| {
let offset = (access_size * i) as i32;
(self.ins().load(int_type, flags, src, offset), offset)
})
.collect();
for (value, offset) in registers {
self.ins().store(flags, value, dest, offset);
}
}
/// Calls libc.memset
///
/// Writes `size` bytes of i8 value `ch` to memory starting at `buffer`.
pub fn call_memset(
&mut self,
config: TargetFrontendConfig,
buffer: Value,
ch: Value,
size: Value,
) {
let pointer_type = config.pointer_type();
let signature = {
let mut s = Signature::new(config.default_call_conv);
s.params.push(AbiParam::new(pointer_type));
s.params.push(AbiParam::new(types::I32));
s.params.push(AbiParam::new(pointer_type));
s.returns.push(AbiParam::new(pointer_type));
self.import_signature(s)
};
let libc_memset = self.import_function(ExtFuncData {
name: ExternalName::LibCall(LibCall::Memset),
signature,
colocated: false,
});
let ch = self.ins().uextend(types::I32, ch);
self.ins().call(libc_memset, &[buffer, ch, size]);
}
/// Calls libc.memset
///
/// Writes `size` bytes of value `ch` to memory starting at `buffer`.
pub fn emit_small_memset(
&mut self,
config: TargetFrontendConfig,
buffer: Value,
ch: u8,
size: u64,
buffer_align: u8,
mut flags: MemFlags,
) {
// Currently the result of guess work, not actual profiling.
const THRESHOLD: u64 = 4;
if size == 0 {
return;
}
let access_size = greatest_divisible_power_of_two(size);
assert!(
access_size.is_power_of_two(),
"`size` is not a power of two"
);
assert!(
access_size >= u64::from(buffer_align),
"`size` is smaller than `dest` and `src`'s alignment value."
);
let (access_size, int_type) = if access_size <= 8 {
(access_size, Type::int((access_size * 8) as u16).unwrap())
} else {
(8, types::I64)
};
let load_and_store_amount = size / access_size;
if load_and_store_amount > THRESHOLD {
let ch = self.ins().iconst(types::I8, i64::from(ch));
let size = self.ins().iconst(config.pointer_type(), size as i64);
self.call_memset(config, buffer, ch, size);
} else {
if u64::from(buffer_align) >= access_size {
flags.set_aligned();
}
let ch = u64::from(ch);
let raw_value = if int_type == types::I64 {
ch * 0x0101010101010101_u64
} else if int_type == types::I32 {
ch * 0x01010101_u64
} else if int_type == types::I16 {
(ch << 8) | ch
} else {
assert_eq!(int_type, types::I8);
ch
};
let value = self.ins().iconst(int_type, raw_value as i64);
for i in 0..load_and_store_amount {
let offset = (access_size * i) as i32;
self.ins().store(flags, value, buffer, offset);
}
}
}
/// Calls libc.memmove
///
/// Copies `size` bytes from memory starting at `source` to memory starting
/// at `dest`. `source` is always read before writing to `dest`.
pub fn call_memmove(
&mut self,
config: TargetFrontendConfig,
dest: Value,
source: Value,
size: Value,
) {
let pointer_type = config.pointer_type();
let signature = {
let mut s = Signature::new(config.default_call_conv);
s.params.push(AbiParam::new(pointer_type));
s.params.push(AbiParam::new(pointer_type));
s.params.push(AbiParam::new(pointer_type));
s.returns.push(AbiParam::new(pointer_type));
self.import_signature(s)
};
let libc_memmove = self.import_function(ExtFuncData {
name: ExternalName::LibCall(LibCall::Memmove),
signature,
colocated: false,
});
self.ins().call(libc_memmove, &[dest, source, size]);
}
/// Calls libc.memcmp
///
/// Compares `size` bytes from memory starting at `left` to memory starting
/// at `right`. Returns `0` if all `n` bytes are equal. If the first difference
/// is at offset `i`, returns a positive integer if `ugt(left[i], right[i])`
/// and a negative integer if `ult(left[i], right[i])`.
///
/// Returns a C `int`, which is currently always [`types::I32`].
pub fn call_memcmp(
&mut self,
config: TargetFrontendConfig,
left: Value,
right: Value,
size: Value,
) -> Value {
let pointer_type = config.pointer_type();
let signature = {
let mut s = Signature::new(config.default_call_conv);
s.params.reserve(3);
s.params.push(AbiParam::new(pointer_type));
s.params.push(AbiParam::new(pointer_type));
s.params.push(AbiParam::new(pointer_type));
s.returns.push(AbiParam::new(types::I32));
self.import_signature(s)
};
let libc_memcmp = self.import_function(ExtFuncData {
name: ExternalName::LibCall(LibCall::Memcmp),
signature,
colocated: false,
});
let call = self.ins().call(libc_memcmp, &[left, right, size]);
self.func.dfg.first_result(call)
}
/// Optimised [`Self::call_memcmp`] for small copies.
///
/// This implements the byte slice comparison `int_cc(left[..size], right[..size])`.
///
/// `left_align` and `right_align` are the statically-known alignments of the
/// `left` and `right` pointers respectively. These are used to know whether
/// to mark `load`s as aligned. It's always fine to pass `1` for these, but
/// passing something higher than the true alignment may trap or otherwise
/// misbehave as described in [`MemFlags::aligned`].
///
/// Note that `memcmp` is a *big-endian* and *unsigned* comparison.
/// As such, this panics when called with `IntCC::Signed*`.
pub fn emit_small_memory_compare(
&mut self,
config: TargetFrontendConfig,
int_cc: IntCC,
left: Value,
right: Value,
size: u64,
left_align: std::num::NonZeroU8,
right_align: std::num::NonZeroU8,
flags: MemFlags,
) -> Value {
use IntCC::*;
let (zero_cc, empty_imm) = match int_cc {
//
Equal => (Equal, 1),
NotEqual => (NotEqual, 0),
UnsignedLessThan => (SignedLessThan, 0),
UnsignedGreaterThanOrEqual => (SignedGreaterThanOrEqual, 1),
UnsignedGreaterThan => (SignedGreaterThan, 0),
UnsignedLessThanOrEqual => (SignedLessThanOrEqual, 1),
SignedLessThan
| SignedGreaterThanOrEqual
| SignedGreaterThan
| SignedLessThanOrEqual => {
panic!("Signed comparison {} not supported by memcmp", int_cc)
}
};
if size == 0 {
return self.ins().iconst(types::I8, empty_imm);
}
// Future work could consider expanding this to handle more-complex scenarios.
if let Some(small_type) = size.try_into().ok().and_then(Type::int_with_byte_size) {
if let Equal | NotEqual = zero_cc {
let mut left_flags = flags;
if size == left_align.get() as u64 {
left_flags.set_aligned();
}
let mut right_flags = flags;
if size == right_align.get() as u64 {
right_flags.set_aligned();
}
let left_val = self.ins().load(small_type, left_flags, left, 0);
let right_val = self.ins().load(small_type, right_flags, right, 0);
return self.ins().icmp(int_cc, left_val, right_val);
} else if small_type == types::I8 {
// Once the big-endian loads from wasmtime#2492 are implemented in
// the backends, we could easily handle comparisons for more sizes here.
// But for now, just handle single bytes where we don't need to worry.
let mut aligned_flags = flags;
aligned_flags.set_aligned();
let left_val = self.ins().load(small_type, aligned_flags, left, 0);
let right_val = self.ins().load(small_type, aligned_flags, right, 0);
return self.ins().icmp(int_cc, left_val, right_val);
}
}
let pointer_type = config.pointer_type();
let size = self.ins().iconst(pointer_type, size as i64);
let cmp = self.call_memcmp(config, left, right, size);
self.ins().icmp_imm(zero_cc, cmp, 0)
}
}
fn greatest_divisible_power_of_two(size: u64) -> u64 {
(size as i64 & -(size as i64)) as u64
}
// Helper functions
impl<'a> FunctionBuilder<'a> {
/// A Block is 'filled' when a terminator instruction is present.
fn fill_current_block(&mut self) {
self.func_ctx.status[self.position.unwrap()] = BlockStatus::Filled;
}
fn declare_successor(&mut self, dest_block: Block, jump_inst: Inst) {
self.func_ctx
.ssa
.declare_block_predecessor(dest_block, jump_inst);
}
fn handle_ssa_side_effects(&mut self, side_effects: SideEffects) {
for modified_block in side_effects.instructions_added_to_blocks {
if self.is_pristine(modified_block) {
self.func_ctx.status[modified_block] = BlockStatus::Partial;
}
}
}
}
#[cfg(test)]
mod tests {
use super::greatest_divisible_power_of_two;
use crate::frontend::{
DeclareVariableError, DefVariableError, FunctionBuilder, FunctionBuilderContext,
UseVariableError,
};
use crate::Variable;
use alloc::string::ToString;
use cranelift_codegen::entity::EntityRef;
use cranelift_codegen::ir::condcodes::IntCC;
use cranelift_codegen::ir::{self, types::*, UserFuncName};
use cranelift_codegen::ir::{AbiParam, Function, InstBuilder, MemFlags, Signature, Value};
use cranelift_codegen::isa::{CallConv, TargetFrontendConfig, TargetIsa};
use cranelift_codegen::settings;
use cranelift_codegen::verifier::verify_function;
use target_lexicon::PointerWidth;
fn sample_function(lazy_seal: bool) {
let mut sig = Signature::new(CallConv::SystemV);
sig.returns.push(AbiParam::new(I32));
sig.params.push(AbiParam::new(I32));
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
{
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let block0 = builder.create_block();
let block1 = builder.create_block();
let block2 = builder.create_block();
let block3 = builder.create_block();
let x = Variable::new(0);
let y = Variable::new(1);
let z = Variable::new(2);
builder.declare_var(x, I32);
builder.declare_var(y, I32);
builder.declare_var(z, I32);
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
if !lazy_seal {
builder.seal_block(block0);
}
{
let tmp = builder.block_params(block0)[0]; // the first function parameter
builder.def_var(x, tmp);
}
{
let tmp = builder.ins().iconst(I32, 2);
builder.def_var(y, tmp);
}
{
let arg1 = builder.use_var(x);
let arg2 = builder.use_var(y);
let tmp = builder.ins().iadd(arg1, arg2);
builder.def_var(z, tmp);
}
builder.ins().jump(block1, &[]);
builder.switch_to_block(block1);
{
let arg1 = builder.use_var(y);
let arg2 = builder.use_var(z);
let tmp = builder.ins().iadd(arg1, arg2);
builder.def_var(z, tmp);
}
{
let arg = builder.use_var(y);
builder.ins().brif(arg, block3, &[], block2, &[]);
}
builder.switch_to_block(block2);
if !lazy_seal {
builder.seal_block(block2);
}
{
let arg1 = builder.use_var(z);
let arg2 = builder.use_var(x);
let tmp = builder.ins().isub(arg1, arg2);
builder.def_var(z, tmp);
}
{
let arg = builder.use_var(y);
builder.ins().return_(&[arg]);
}
builder.switch_to_block(block3);
if !lazy_seal {
builder.seal_block(block3);
}
{
let arg1 = builder.use_var(y);
let arg2 = builder.use_var(x);
let tmp = builder.ins().isub(arg1, arg2);
builder.def_var(y, tmp);
}
builder.ins().jump(block1, &[]);
if !lazy_seal {
builder.seal_block(block1);
}
if lazy_seal {
builder.seal_all_blocks();
}
builder.finalize();
}
let flags = settings::Flags::new(settings::builder());
// println!("{}", func.display(None));
if let Err(errors) = verify_function(&func, &flags) {
panic!("{}\n{}", func.display(), errors)
}
}
#[test]
fn sample() {
sample_function(false)
}
#[test]
fn sample_with_lazy_seal() {
sample_function(true)
}
#[track_caller]
fn check(func: &Function, expected_ir: &str) {
let actual_ir = func.display().to_string();
assert!(
expected_ir == actual_ir,
"Expected:\n{}\nGot:\n{}",
expected_ir,
actual_ir
);
}
/// Helper function to construct a fixed frontend configuration.
fn systemv_frontend_config() -> TargetFrontendConfig {
TargetFrontendConfig {
default_call_conv: CallConv::SystemV,
pointer_width: PointerWidth::U64,
page_size_align_log2: 12,
}
}
#[test]
fn memcpy() {
let frontend_config = systemv_frontend_config();
let mut sig = Signature::new(frontend_config.default_call_conv);
sig.returns.push(AbiParam::new(I32));
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
{
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let block0 = builder.create_block();
let x = Variable::new(0);
let y = Variable::new(1);
let z = Variable::new(2);
builder.declare_var(x, frontend_config.pointer_type());
builder.declare_var(y, frontend_config.pointer_type());
builder.declare_var(z, I32);
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
let src = builder.use_var(x);
let dest = builder.use_var(y);
let size = builder.use_var(y);
builder.call_memcpy(frontend_config, dest, src, size);
builder.ins().return_(&[size]);
builder.seal_all_blocks();
builder.finalize();
}
check(
&func,
"function %sample() -> i32 system_v {
sig0 = (i64, i64, i64) -> i64 system_v
fn0 = %Memcpy sig0
block0:
v4 = iconst.i64 0
v1 -> v4
v3 = iconst.i64 0
v0 -> v3
v2 = call fn0(v1, v0, v1) ; v1 = 0, v0 = 0, v1 = 0
return v1 ; v1 = 0
}
",
);
}
#[test]
fn small_memcpy() {
let frontend_config = systemv_frontend_config();
let mut sig = Signature::new(frontend_config.default_call_conv);
sig.returns.push(AbiParam::new(I32));
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
{
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let block0 = builder.create_block();
let x = Variable::new(0);
let y = Variable::new(16);
builder.declare_var(x, frontend_config.pointer_type());
builder.declare_var(y, frontend_config.pointer_type());
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
let src = builder.use_var(x);
let dest = builder.use_var(y);
let size = 8;
builder.emit_small_memory_copy(
frontend_config,
dest,
src,
size,
8,
8,
true,
MemFlags::new(),
);
builder.ins().return_(&[dest]);
builder.seal_all_blocks();
builder.finalize();
}
check(
&func,
"function %sample() -> i32 system_v {
block0:
v4 = iconst.i64 0
v1 -> v4
v3 = iconst.i64 0
v0 -> v3
v2 = load.i64 aligned v0 ; v0 = 0
store aligned v2, v1 ; v1 = 0
return v1 ; v1 = 0
}
",
);
}
#[test]
fn not_so_small_memcpy() {
let frontend_config = systemv_frontend_config();
let mut sig = Signature::new(frontend_config.default_call_conv);
sig.returns.push(AbiParam::new(I32));
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
{
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let block0 = builder.create_block();
let x = Variable::new(0);
let y = Variable::new(16);
builder.declare_var(x, frontend_config.pointer_type());
builder.declare_var(y, frontend_config.pointer_type());
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
let src = builder.use_var(x);
let dest = builder.use_var(y);
let size = 8192;
builder.emit_small_memory_copy(
frontend_config,
dest,
src,
size,
8,
8,
true,
MemFlags::new(),
);
builder.ins().return_(&[dest]);
builder.seal_all_blocks();
builder.finalize();
}
check(
&func,
"function %sample() -> i32 system_v {
sig0 = (i64, i64, i64) -> i64 system_v
fn0 = %Memcpy sig0
block0:
v5 = iconst.i64 0
v1 -> v5
v4 = iconst.i64 0
v0 -> v4
v2 = iconst.i64 8192
v3 = call fn0(v1, v0, v2) ; v1 = 0, v0 = 0, v2 = 8192
return v1 ; v1 = 0
}
",
);
}
#[test]
fn small_memset() {
let frontend_config = systemv_frontend_config();
let mut sig = Signature::new(frontend_config.default_call_conv);
sig.returns.push(AbiParam::new(I32));
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
{
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let block0 = builder.create_block();
let y = Variable::new(16);
builder.declare_var(y, frontend_config.pointer_type());
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
let dest = builder.use_var(y);
let size = 8;
builder.emit_small_memset(frontend_config, dest, 1, size, 8, MemFlags::new());
builder.ins().return_(&[dest]);
builder.seal_all_blocks();
builder.finalize();
}
check(
&func,
"function %sample() -> i32 system_v {
block0:
v2 = iconst.i64 0
v0 -> v2
v1 = iconst.i64 0x0101_0101_0101_0101
store aligned v1, v0 ; v1 = 0x0101_0101_0101_0101, v0 = 0
return v0 ; v0 = 0
}
",
);
}
#[test]
fn not_so_small_memset() {
let frontend_config = systemv_frontend_config();
let mut sig = Signature::new(frontend_config.default_call_conv);
sig.returns.push(AbiParam::new(I32));
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
{
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let block0 = builder.create_block();
let y = Variable::new(16);
builder.declare_var(y, frontend_config.pointer_type());
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
let dest = builder.use_var(y);
let size = 8192;
builder.emit_small_memset(frontend_config, dest, 1, size, 8, MemFlags::new());
builder.ins().return_(&[dest]);
builder.seal_all_blocks();
builder.finalize();
}
check(
&func,
"function %sample() -> i32 system_v {
sig0 = (i64, i32, i64) -> i64 system_v
fn0 = %Memset sig0
block0:
v5 = iconst.i64 0
v0 -> v5
v1 = iconst.i8 1
v2 = iconst.i64 8192
v3 = uextend.i32 v1 ; v1 = 1
v4 = call fn0(v0, v3, v2) ; v0 = 0, v2 = 8192
return v0 ; v0 = 0
}
",
);
}
#[test]
fn memcmp() {
use core::str::FromStr;
use cranelift_codegen::isa;
let shared_builder = settings::builder();
let shared_flags = settings::Flags::new(shared_builder);
let triple =
::target_lexicon::Triple::from_str("x86_64").expect("Couldn't create x86_64 triple");
let target = isa::lookup(triple)
.ok()
.map(|b| b.finish(shared_flags))
.expect("This test requires x86_64 support.")
.expect("Should be able to create backend with default flags");
let mut sig = Signature::new(target.default_call_conv());
sig.returns.push(AbiParam::new(I32));
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
{
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let block0 = builder.create_block();
let x = Variable::new(0);
let y = Variable::new(1);
let z = Variable::new(2);
builder.declare_var(x, target.pointer_type());
builder.declare_var(y, target.pointer_type());
builder.declare_var(z, target.pointer_type());
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
let left = builder.use_var(x);
let right = builder.use_var(y);
let size = builder.use_var(z);
let cmp = builder.call_memcmp(target.frontend_config(), left, right, size);
builder.ins().return_(&[cmp]);
builder.seal_all_blocks();
builder.finalize();
}
check(
&func,
"function %sample() -> i32 system_v {
sig0 = (i64, i64, i64) -> i32 system_v
fn0 = %Memcmp sig0
block0:
v6 = iconst.i64 0
v2 -> v6
v5 = iconst.i64 0
v1 -> v5
v4 = iconst.i64 0
v0 -> v4
v3 = call fn0(v0, v1, v2) ; v0 = 0, v1 = 0, v2 = 0
return v3
}
",
);
}
#[test]
fn small_memcmp_zero_size() {
let align_eight = std::num::NonZeroU8::new(8).unwrap();
small_memcmp_helper(
"
block0:
v4 = iconst.i64 0
v1 -> v4
v3 = iconst.i64 0
v0 -> v3
v2 = iconst.i8 1
return v2 ; v2 = 1",
|builder, target, x, y| {
builder.emit_small_memory_compare(
target.frontend_config(),
IntCC::UnsignedGreaterThanOrEqual,
x,
y,
0,
align_eight,
align_eight,
MemFlags::new(),
)
},
);
}
#[test]
fn small_memcmp_byte_ugt() {
let align_one = std::num::NonZeroU8::new(1).unwrap();
small_memcmp_helper(
"
block0:
v6 = iconst.i64 0
v1 -> v6
v5 = iconst.i64 0
v0 -> v5
v2 = load.i8 aligned v0 ; v0 = 0
v3 = load.i8 aligned v1 ; v1 = 0
v4 = icmp ugt v2, v3
return v4",
|builder, target, x, y| {
builder.emit_small_memory_compare(
target.frontend_config(),
IntCC::UnsignedGreaterThan,
x,
y,
1,
align_one,
align_one,
MemFlags::new(),
)
},
);
}
#[test]
fn small_memcmp_aligned_eq() {
let align_four = std::num::NonZeroU8::new(4).unwrap();
small_memcmp_helper(
"
block0:
v6 = iconst.i64 0
v1 -> v6
v5 = iconst.i64 0
v0 -> v5
v2 = load.i32 aligned v0 ; v0 = 0
v3 = load.i32 aligned v1 ; v1 = 0
v4 = icmp eq v2, v3
return v4",
|builder, target, x, y| {
builder.emit_small_memory_compare(
target.frontend_config(),
IntCC::Equal,
x,
y,
4,
align_four,
align_four,
MemFlags::new(),
)
},
);
}
#[test]
fn small_memcmp_ipv6_ne() {
let align_two = std::num::NonZeroU8::new(2).unwrap();
small_memcmp_helper(
"
block0:
v6 = iconst.i64 0
v1 -> v6
v5 = iconst.i64 0
v0 -> v5
v2 = load.i128 v0 ; v0 = 0
v3 = load.i128 v1 ; v1 = 0
v4 = icmp ne v2, v3
return v4",
|builder, target, x, y| {
builder.emit_small_memory_compare(
target.frontend_config(),
IntCC::NotEqual,
x,
y,
16,
align_two,
align_two,
MemFlags::new(),
)
},
);
}
#[test]
fn small_memcmp_odd_size_uge() {
let one = std::num::NonZeroU8::new(1).unwrap();
small_memcmp_helper(
"
sig0 = (i64, i64, i64) -> i32 system_v
fn0 = %Memcmp sig0
block0:
v6 = iconst.i64 0
v1 -> v6
v5 = iconst.i64 0
v0 -> v5
v2 = iconst.i64 3
v3 = call fn0(v0, v1, v2) ; v0 = 0, v1 = 0, v2 = 3
v4 = icmp_imm sge v3, 0
return v4",
|builder, target, x, y| {
builder.emit_small_memory_compare(
target.frontend_config(),
IntCC::UnsignedGreaterThanOrEqual,
x,
y,
3,
one,
one,
MemFlags::new(),
)
},
);
}
fn small_memcmp_helper(
expected: &str,
f: impl FnOnce(&mut FunctionBuilder, &dyn TargetIsa, Value, Value) -> Value,
) {
use core::str::FromStr;
use cranelift_codegen::isa;
let shared_builder = settings::builder();
let shared_flags = settings::Flags::new(shared_builder);
let triple =
::target_lexicon::Triple::from_str("x86_64").expect("Couldn't create x86_64 triple");
let target = isa::lookup(triple)
.ok()
.map(|b| b.finish(shared_flags))
.expect("This test requires x86_64 support.")
.expect("Should be able to create backend with default flags");
let mut sig = Signature::new(target.default_call_conv());
sig.returns.push(AbiParam::new(I8));
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
{
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let block0 = builder.create_block();
let x = Variable::new(0);
let y = Variable::new(1);
builder.declare_var(x, target.pointer_type());
builder.declare_var(y, target.pointer_type());
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
let left = builder.use_var(x);
let right = builder.use_var(y);
let ret = f(&mut builder, &*target, left, right);
builder.ins().return_(&[ret]);
builder.seal_all_blocks();
builder.finalize();
}
check(
&func,
&format!("function %sample() -> i8 system_v {{{}\n}}\n", expected),
);
}
#[test]
fn undef_vector_vars() {
let mut sig = Signature::new(CallConv::SystemV);
sig.returns.push(AbiParam::new(I8X16));
sig.returns.push(AbiParam::new(I8X16));
sig.returns.push(AbiParam::new(F32X4));
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
{
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let block0 = builder.create_block();
let a = Variable::new(0);
let b = Variable::new(1);
let c = Variable::new(2);
builder.declare_var(a, I8X16);
builder.declare_var(b, I8X16);
builder.declare_var(c, F32X4);
builder.switch_to_block(block0);
let a = builder.use_var(a);
let b = builder.use_var(b);
let c = builder.use_var(c);
builder.ins().return_(&[a, b, c]);
builder.seal_all_blocks();
builder.finalize();
}
check(
&func,
"function %sample() -> i8x16, i8x16, f32x4 system_v {
const0 = 0x00000000000000000000000000000000
block0:
v5 = f32const 0.0
v6 = splat.f32x4 v5 ; v5 = 0.0
v2 -> v6
v4 = vconst.i8x16 const0
v1 -> v4
v3 = vconst.i8x16 const0
v0 -> v3
return v0, v1, v2 ; v0 = const0, v1 = const0
}
",
);
}
#[test]
fn test_greatest_divisible_power_of_two() {
assert_eq!(64, greatest_divisible_power_of_two(64));
assert_eq!(16, greatest_divisible_power_of_two(48));
assert_eq!(8, greatest_divisible_power_of_two(24));
assert_eq!(1, greatest_divisible_power_of_two(25));
}
#[test]
fn try_use_var() {
let sig = Signature::new(CallConv::SystemV);
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
{
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let block0 = builder.create_block();
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
assert_eq!(
builder.try_use_var(Variable::from_u32(0)),
Err(UseVariableError::UsedBeforeDeclared(Variable::from_u32(0)))
);
let value = builder.ins().iconst(cranelift_codegen::ir::types::I32, 0);
assert_eq!(
builder.try_def_var(Variable::from_u32(0), value),
Err(DefVariableError::DefinedBeforeDeclared(Variable::from_u32(
0
)))
);
builder.declare_var(Variable::from_u32(0), cranelift_codegen::ir::types::I32);
assert_eq!(
builder.try_declare_var(Variable::from_u32(0), cranelift_codegen::ir::types::I32),
Err(DeclareVariableError::DeclaredMultipleTimes(
Variable::from_u32(0)
))
);
}
}
#[test]
fn needs_stack_map_and_loop() {
let mut sig = Signature::new(CallConv::SystemV);
sig.params.push(AbiParam::new(ir::types::I32));
sig.params.push(AbiParam::new(ir::types::I32));
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let name = builder
.func
.declare_imported_user_function(ir::UserExternalName {
namespace: 0,
index: 0,
});
let mut sig = Signature::new(CallConv::SystemV);
sig.params.push(AbiParam::new(ir::types::I32));
let signature = builder.func.import_signature(sig);
let func_ref = builder.import_function(ir::ExtFuncData {
name: ir::ExternalName::user(name),
signature,
colocated: true,
});
// Here the value `v1` is technically not live but our single-pass liveness
// analysis treats every branch argument to a block as live to avoid
// needing to do a fixed-point loop.
//
// block0(v0, v1):
// call $foo(v0)
// jump block0(v0, v1)
let block0 = builder.create_block();
builder.append_block_params_for_function_params(block0);
let a = builder.func.dfg.block_params(block0)[0];
let b = builder.func.dfg.block_params(block0)[1];
builder.declare_needs_stack_map(a);
builder.declare_needs_stack_map(b);
builder.switch_to_block(block0);
builder.ins().call(func_ref, &[a]);
builder.ins().jump(block0, &[a, b]);
builder.seal_all_blocks();
builder.finalize();
eprintln!("Actual = {}", func.display());
assert_eq!(
func.display().to_string().trim(),
r#"
function %sample(i32, i32) system_v {
ss0 = explicit_slot 8, align = 4
sig0 = (i32) system_v
fn0 = colocated u0:0 sig0
block0(v0: i32, v1: i32):
stack_store v0, ss0
stack_store v1, ss0+4
call fn0(v0), stack_map=[i32 @ ss0+0, i32 @ ss0+4]
jump block0(v0, v1)
}
"#
.trim()
);
}
#[test]
fn needs_stack_map_simple() {
let sig = Signature::new(CallConv::SystemV);
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let name = builder
.func
.declare_imported_user_function(ir::UserExternalName {
namespace: 0,
index: 0,
});
let mut sig = Signature::new(CallConv::SystemV);
sig.params.push(AbiParam::new(ir::types::I32));
let signature = builder.func.import_signature(sig);
let func_ref = builder.import_function(ir::ExtFuncData {
name: ir::ExternalName::user(name),
signature,
colocated: true,
});
// At each `call` we are losing one more value as no longer live, so
// each stack map should be one smaller than the last. `v3` is never
// live, so should never appear in a stack map. Note that a value that
// is an argument to the call, but is not live after the call, should
// not appear in the stack map. This is why `v0` appears in the first
// call's stack map, but not the second call's stack map.
//
// block0:
// v0 = needs stack map
// v1 = needs stack map
// v2 = needs stack map
// v3 = needs stack map
// call $foo(v0)
// call $foo(v0)
// call $foo(v1)
// call $foo(v2)
// return
let block0 = builder.create_block();
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
let v0 = builder.ins().iconst(ir::types::I32, 0);
builder.declare_needs_stack_map(v0);
let v1 = builder.ins().iconst(ir::types::I32, 1);
builder.declare_needs_stack_map(v1);
let v2 = builder.ins().iconst(ir::types::I32, 2);
builder.declare_needs_stack_map(v2);
let v3 = builder.ins().iconst(ir::types::I32, 3);
builder.declare_needs_stack_map(v3);
builder.ins().call(func_ref, &[v0]);
builder.ins().call(func_ref, &[v0]);
builder.ins().call(func_ref, &[v1]);
builder.ins().call(func_ref, &[v2]);
builder.ins().return_(&[]);
builder.seal_all_blocks();
builder.finalize();
eprintln!("Actual = {}", func.display());
assert_eq!(
func.display().to_string().trim(),
r#"
function %sample() system_v {
ss0 = explicit_slot 12, align = 4
sig0 = (i32) system_v
fn0 = colocated u0:0 sig0
block0:
v0 = iconst.i32 0
v1 = iconst.i32 1
v2 = iconst.i32 2
v3 = iconst.i32 3
stack_store v0, ss0 ; v0 = 0
stack_store v1, ss0+4 ; v1 = 1
stack_store v2, ss0+8 ; v2 = 2
call fn0(v0), stack_map=[i32 @ ss0+0, i32 @ ss0+4, i32 @ ss0+8] ; v0 = 0
stack_store v1, ss0 ; v1 = 1
stack_store v2, ss0+4 ; v2 = 2
call fn0(v0), stack_map=[i32 @ ss0+0, i32 @ ss0+4] ; v0 = 0
stack_store v2, ss0 ; v2 = 2
call fn0(v1), stack_map=[i32 @ ss0+0] ; v1 = 1
call fn0(v2) ; v2 = 2
return
}
"#
.trim()
);
}
#[test]
fn needs_stack_map_and_post_order_early_return() {
let mut sig = Signature::new(CallConv::SystemV);
sig.params.push(AbiParam::new(ir::types::I32));
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let name = builder
.func
.declare_imported_user_function(ir::UserExternalName {
namespace: 0,
index: 0,
});
let signature = builder
.func
.import_signature(Signature::new(CallConv::SystemV));
let func_ref = builder.import_function(ir::ExtFuncData {
name: ir::ExternalName::user(name),
signature,
colocated: true,
});
// Here we rely on the post-order to make sure that we never visit block
// 4 and add `v1` to our live set, then visit block 2 and add `v1` to
// its stack map even though `v1` is not in scope. Thanksfully, that
// sequence is impossible because it would be an invalid post-order
// traversal. The only valid post-order traversals are [3, 1, 2, 0] and
// [2, 3, 1, 0].
//
// block0(v0):
// brif v0, block1, block2
//
// block1:
// <stuff>
// v1 = get some gc ref
// jump block3
//
// block2:
// call $needs_safepoint_accidentally
// return
//
// block3:
// stuff keeping v1 live
// return
let block0 = builder.create_block();
let block1 = builder.create_block();
let block2 = builder.create_block();
let block3 = builder.create_block();
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
let v0 = builder.func.dfg.block_params(block0)[0];
builder.ins().brif(v0, block1, &[], block2, &[]);
builder.switch_to_block(block1);
let v1 = builder.ins().iconst(ir::types::I64, 0x12345678);
builder.declare_needs_stack_map(v1);
builder.ins().jump(block3, &[]);
builder.switch_to_block(block2);
builder.ins().call(func_ref, &[]);
builder.ins().return_(&[]);
builder.switch_to_block(block3);
// NB: Our simplistic liveness analysis conservatively treats any use of
// a value as keeping it live, regardless if the use has side effects or
// is otherwise itself live, so an `iadd_imm` suffices to keep `v1` live
// here.
builder.ins().iadd_imm(v1, 0);
builder.ins().return_(&[]);
builder.seal_all_blocks();
builder.finalize();
eprintln!("Actual = {}", func.display());
assert_eq!(
func.display().to_string().trim(),
r#"
function %sample(i32) system_v {
sig0 = () system_v
fn0 = colocated u0:0 sig0
block0(v0: i32):
brif v0, block1, block2
block1:
v1 = iconst.i64 0x1234_5678
jump block3
block2:
call fn0()
return
block3:
v2 = iadd_imm.i64 v1, 0 ; v1 = 0x1234_5678
return
}
"#
.trim()
);
}
#[test]
fn needs_stack_map_conditional_branches_and_liveness() {
let mut sig = Signature::new(CallConv::SystemV);
sig.params.push(AbiParam::new(ir::types::I32));
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let name = builder
.func
.declare_imported_user_function(ir::UserExternalName {
namespace: 0,
index: 0,
});
let signature = builder
.func
.import_signature(Signature::new(CallConv::SystemV));
let func_ref = builder.import_function(ir::ExtFuncData {
name: ir::ExternalName::user(name),
signature,
colocated: true,
});
// Depending on which post-order traversal we take, we might consider
// `v1` live inside `block1` and emit unnecessary safepoint
// spills. That's not great, but ultimately fine, we are trading away
// precision for a single-pass analysis.
//
// block0(v0):
// v1 = needs stack map
// brif v0, block1, block2
//
// block1:
// call $foo()
// return
//
// block2:
// keep v1 alive
// return
let block0 = builder.create_block();
let block1 = builder.create_block();
let block2 = builder.create_block();
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
let v0 = builder.func.dfg.block_params(block0)[0];
let v1 = builder.ins().iconst(ir::types::I64, 0x12345678);
builder.declare_needs_stack_map(v1);
builder.ins().brif(v0, block1, &[], block2, &[]);
builder.switch_to_block(block1);
builder.ins().call(func_ref, &[]);
builder.ins().return_(&[]);
builder.switch_to_block(block2);
// NB: Our simplistic liveness analysis conservatively treats any use of
// a value as keeping it live, regardless if the use has side effects or
// is otherwise itself live, so an `iadd_imm` suffices to keep `v1` live
// here.
builder.ins().iadd_imm(v1, 0);
builder.ins().return_(&[]);
builder.seal_all_blocks();
builder.finalize();
eprintln!("Actual = {}", func.display());
assert_eq!(
func.display().to_string().trim(),
r#"
function %sample(i32) system_v {
sig0 = () system_v
fn0 = colocated u0:0 sig0
block0(v0: i32):
v1 = iconst.i64 0x1234_5678
brif v0, block1, block2
block1:
call fn0()
return
block2:
v2 = iadd_imm.i64 v1, 0 ; v1 = 0x1234_5678
return
}
"#
.trim()
);
// Now Do the same test but with block 1 and 2 swapped so that we
// exercise what we are trying to exercise, regardless of which
// post-order traversal we happen to take.
func.clear();
fn_ctx.clear();
let mut sig = Signature::new(CallConv::SystemV);
sig.params.push(AbiParam::new(ir::types::I32));
func.signature = sig;
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let name = builder
.func
.declare_imported_user_function(ir::UserExternalName {
namespace: 0,
index: 0,
});
let signature = builder
.func
.import_signature(Signature::new(CallConv::SystemV));
let func_ref = builder.import_function(ir::ExtFuncData {
name: ir::ExternalName::user(name),
signature,
colocated: true,
});
let block0 = builder.create_block();
let block1 = builder.create_block();
let block2 = builder.create_block();
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
let v0 = builder.func.dfg.block_params(block0)[0];
let v1 = builder.ins().iconst(ir::types::I64, 0x12345678);
builder.declare_needs_stack_map(v1);
builder.ins().brif(v0, block1, &[], block2, &[]);
builder.switch_to_block(block1);
builder.ins().iadd_imm(v1, 0);
builder.ins().return_(&[]);
builder.switch_to_block(block2);
builder.ins().call(func_ref, &[]);
builder.ins().return_(&[]);
builder.seal_all_blocks();
builder.finalize();
eprintln!("Actual = {}", func.display());
assert_eq!(
func.display().to_string().trim(),
r#"
function u0:0(i32) system_v {
ss0 = explicit_slot 8, align = 8
sig0 = () system_v
fn0 = colocated u0:0 sig0
block0(v0: i32):
v1 = iconst.i64 0x1234_5678
brif v0, block1, block2
block1:
v2 = iadd_imm.i64 v1, 0 ; v1 = 0x1234_5678
return
block2:
stack_store.i64 v1, ss0 ; v1 = 0x1234_5678
call fn0(), stack_map=[i64 @ ss0+0]
return
}
"#
.trim()
);
}
#[test]
fn needs_stack_map_and_tail_calls() {
let mut sig = Signature::new(CallConv::SystemV);
sig.params.push(AbiParam::new(ir::types::I32));
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let name = builder
.func
.declare_imported_user_function(ir::UserExternalName {
namespace: 0,
index: 0,
});
let signature = builder
.func
.import_signature(Signature::new(CallConv::SystemV));
let func_ref = builder.import_function(ir::ExtFuncData {
name: ir::ExternalName::user(name),
signature,
colocated: true,
});
// Depending on which post-order traversal we take, we might consider
// `v1` live inside `block1`. But nothing is live after a tail call so
// we shouldn't spill `v1` either way here.
//
// block0(v0):
// v1 = needs stack map
// brif v0, block1, block2
//
// block1:
// return_call $foo()
//
// block2:
// keep v1 alive
// return
let block0 = builder.create_block();
let block1 = builder.create_block();
let block2 = builder.create_block();
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
let v0 = builder.func.dfg.block_params(block0)[0];
let v1 = builder.ins().iconst(ir::types::I64, 0x12345678);
builder.declare_needs_stack_map(v1);
builder.ins().brif(v0, block1, &[], block2, &[]);
builder.switch_to_block(block1);
builder.ins().return_call(func_ref, &[]);
builder.switch_to_block(block2);
// NB: Our simplistic liveness analysis conservatively treats any use of
// a value as keeping it live, regardless if the use has side effects or
// is otherwise itself live, so an `iadd_imm` suffices to keep `v1` live
// here.
builder.ins().iadd_imm(v1, 0);
builder.ins().return_(&[]);
builder.seal_all_blocks();
builder.finalize();
eprintln!("Actual = {}", func.display());
assert_eq!(
func.display().to_string().trim(),
r#"
function %sample(i32) system_v {
sig0 = () system_v
fn0 = colocated u0:0 sig0
block0(v0: i32):
v1 = iconst.i64 0x1234_5678
brif v0, block1, block2
block1:
return_call fn0()
block2:
v2 = iadd_imm.i64 v1, 0 ; v1 = 0x1234_5678
return
}
"#
.trim()
);
// Do the same test but with block 1 and 2 swapped so that we exercise
// what we are trying to exercise, regardless of which post-order
// traversal we happen to take.
func.clear();
fn_ctx.clear();
let mut sig = Signature::new(CallConv::SystemV);
sig.params.push(AbiParam::new(ir::types::I32));
func.signature = sig;
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let name = builder
.func
.declare_imported_user_function(ir::UserExternalName {
namespace: 0,
index: 0,
});
let signature = builder
.func
.import_signature(Signature::new(CallConv::SystemV));
let func_ref = builder.import_function(ir::ExtFuncData {
name: ir::ExternalName::user(name),
signature,
colocated: true,
});
let block0 = builder.create_block();
let block1 = builder.create_block();
let block2 = builder.create_block();
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
let v0 = builder.func.dfg.block_params(block0)[0];
let v1 = builder.ins().iconst(ir::types::I64, 0x12345678);
builder.declare_needs_stack_map(v1);
builder.ins().brif(v0, block1, &[], block2, &[]);
builder.switch_to_block(block1);
builder.ins().iadd_imm(v1, 0);
builder.ins().return_(&[]);
builder.switch_to_block(block2);
builder.ins().return_call(func_ref, &[]);
builder.seal_all_blocks();
builder.finalize();
eprintln!("Actual = {}", func.display());
assert_eq!(
func.display().to_string().trim(),
r#"
function u0:0(i32) system_v {
sig0 = () system_v
fn0 = colocated u0:0 sig0
block0(v0: i32):
v1 = iconst.i64 0x1234_5678
brif v0, block1, block2
block1:
v2 = iadd_imm.i64 v1, 0 ; v1 = 0x1234_5678
return
block2:
return_call fn0()
}
"#
.trim()
);
}
#[test]
fn needs_stack_map_and_cfg_diamond() {
let mut sig = Signature::new(CallConv::SystemV);
sig.params.push(AbiParam::new(ir::types::I32));
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let name = builder
.func
.declare_imported_user_function(ir::UserExternalName {
namespace: 0,
index: 0,
});
let signature = builder
.func
.import_signature(Signature::new(CallConv::SystemV));
let func_ref = builder.import_function(ir::ExtFuncData {
name: ir::ExternalName::user(name),
signature,
colocated: true,
});
// Create an if/else CFG diamond that and check that various things get
// spilled as needed.
//
// block0(v0):
// brif v0, block1, block2
//
// block1:
// v1 = needs stack map
// v2 = needs stack map
// call $foo()
// jump block3(v1, v2)
//
// block2:
// v3 = needs stack map
// v4 = needs stack map
// call $foo()
// jump block3(v3, v3) ;; Note: v4 is not live
//
// block3(v5, v6):
// call $foo()
// keep v5 alive, but not v6
let block0 = builder.create_block();
let block1 = builder.create_block();
let block2 = builder.create_block();
let block3 = builder.create_block();
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
let v0 = builder.func.dfg.block_params(block0)[0];
builder.ins().brif(v0, block1, &[], block2, &[]);
builder.switch_to_block(block1);
let v1 = builder.ins().iconst(ir::types::I64, 1);
builder.declare_needs_stack_map(v1);
let v2 = builder.ins().iconst(ir::types::I64, 2);
builder.declare_needs_stack_map(v2);
builder.ins().call(func_ref, &[]);
builder.ins().jump(block3, &[v1, v2]);
builder.switch_to_block(block2);
let v3 = builder.ins().iconst(ir::types::I64, 3);
builder.declare_needs_stack_map(v3);
let v4 = builder.ins().iconst(ir::types::I64, 4);
builder.declare_needs_stack_map(v4);
builder.ins().call(func_ref, &[]);
builder.ins().jump(block3, &[v3, v3]);
builder.switch_to_block(block3);
builder.ins().call(func_ref, &[]);
// NB: Our simplistic liveness analysis conservatively treats any use of
// a value as keeping it live, regardless if the use has side effects or
// is otherwise itself live, so an `iadd_imm` suffices to keep `v1` live
// here.
builder.ins().iadd_imm(v1, 0);
builder.ins().return_(&[]);
builder.seal_all_blocks();
builder.finalize();
eprintln!("Actual = {}", func.display());
assert_eq!(
func.display().to_string().trim(),
r#"
function %sample(i32) system_v {
ss0 = explicit_slot 16, align = 8
sig0 = () system_v
fn0 = colocated u0:0 sig0
block0(v0: i32):
brif v0, block1, block2
block1:
v1 = iconst.i64 1
v2 = iconst.i64 2
stack_store v1, ss0 ; v1 = 1
stack_store v2, ss0+8 ; v2 = 2
call fn0(), stack_map=[i64 @ ss0+0, i64 @ ss0+8]
jump block3(v1, v2) ; v1 = 1, v2 = 2
block2:
v3 = iconst.i64 3
v4 = iconst.i64 4
stack_store v3, ss0 ; v3 = 3
call fn0(), stack_map=[i64 @ ss0+0]
jump block3(v3, v3) ; v3 = 3, v3 = 3
block3:
stack_store.i64 v1, ss0 ; v1 = 1
call fn0(), stack_map=[i64 @ ss0+0]
v5 = iadd_imm.i64 v1, 0 ; v1 = 1
return
}
"#
.trim()
);
}
#[test]
fn needs_stack_map_and_heterogeneous_types() {
let mut sig = Signature::new(CallConv::SystemV);
for ty in [
ir::types::I8,
ir::types::I16,
ir::types::I32,
ir::types::I64,
ir::types::I128,
ir::types::F32,
ir::types::F64,
ir::types::I8X16,
ir::types::I16X8,
] {
sig.params.push(AbiParam::new(ty));
sig.returns.push(AbiParam::new(ty));
}
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let name = builder
.func
.declare_imported_user_function(ir::UserExternalName {
namespace: 0,
index: 0,
});
let signature = builder
.func
.import_signature(Signature::new(CallConv::SystemV));
let func_ref = builder.import_function(ir::ExtFuncData {
name: ir::ExternalName::user(name),
signature,
colocated: true,
});
// Test that we support stack maps of heterogeneous types and properly
// coalesce types into stack slots based on their size.
//
// block0(v0, v1, v2, v3, v4, v5, v6, v7, v8):
// call $foo()
// return v0, v1, v2, v3, v4, v5, v6, v7, v8
let block0 = builder.create_block();
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
let params = builder.func.dfg.block_params(block0).to_vec();
for val in ¶ms {
builder.declare_needs_stack_map(*val);
}
builder.ins().call(func_ref, &[]);
builder.ins().return_(¶ms);
builder.seal_all_blocks();
builder.finalize();
eprintln!("Actual = {}", func.display());
assert_eq!(
func.display().to_string().trim(),
r#"
function %sample(i8, i16, i32, i64, i128, f32, f64, i8x16, i16x8) -> i8, i16, i32, i64, i128, f32, f64, i8x16, i16x8 system_v {
ss0 = explicit_slot 1
ss1 = explicit_slot 2, align = 2
ss2 = explicit_slot 8, align = 4
ss3 = explicit_slot 16, align = 8
ss4 = explicit_slot 48, align = 16
sig0 = () system_v
fn0 = colocated u0:0 sig0
block0(v0: i8, v1: i16, v2: i32, v3: i64, v4: i128, v5: f32, v6: f64, v7: i8x16, v8: i16x8):
stack_store v0, ss0
stack_store v1, ss1
stack_store v2, ss2
stack_store v5, ss2+4
stack_store v3, ss3
stack_store v6, ss3+8
stack_store v4, ss4
stack_store v7, ss4+16
stack_store v8, ss4+32
call fn0(), stack_map=[i8 @ ss0+0, i16 @ ss1+0, i32 @ ss2+0, f32 @ ss2+4, i64 @ ss3+0, f64 @ ss3+8, i128 @ ss4+0, i8x16 @ ss4+16, i16x8 @ ss4+32]
return v0, v1, v2, v3, v4, v5, v6, v7, v8
}
"#
.trim()
);
}
}