cranelift_frontend/
frontend.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
//! A frontend for building Cranelift IR from other languages.
use crate::ssa::{SSABuilder, SideEffects};
use crate::variable::Variable;
use alloc::collections::BTreeSet;
use core::fmt::{self, Debug};
use cranelift_codegen::cursor::{Cursor, FuncCursor};
use cranelift_codegen::entity::{EntityRef, EntitySet, SecondaryMap};
use cranelift_codegen::ir;
use cranelift_codegen::ir::condcodes::IntCC;
use cranelift_codegen::ir::{
    types, AbiParam, Block, DataFlowGraph, DynamicStackSlot, DynamicStackSlotData, ExtFuncData,
    ExternalName, FuncRef, Function, GlobalValue, GlobalValueData, Inst, InstBuilder,
    InstBuilderBase, InstructionData, JumpTable, JumpTableData, LibCall, MemFlags, RelSourceLoc,
    SigRef, Signature, StackSlot, StackSlotData, Type, Value, ValueLabel, ValueLabelAssignments,
    ValueLabelStart,
};
use cranelift_codegen::isa::TargetFrontendConfig;
use cranelift_codegen::packed_option::PackedOption;
use cranelift_codegen::traversals::Dfs;
use smallvec::SmallVec;

/// Structure used for translating a series of functions into Cranelift IR.
///
/// In order to reduce memory reallocations when compiling multiple functions,
/// [`FunctionBuilderContext`] holds various data structures which are cleared between
/// functions, rather than dropped, preserving the underlying allocations.
#[derive(Default)]
pub struct FunctionBuilderContext {
    ssa: SSABuilder,
    status: SecondaryMap<Block, BlockStatus>,
    types: SecondaryMap<Variable, Type>,
    needs_stack_map: EntitySet<Value>,
    dfs: Dfs,
}

/// Temporary object used to build a single Cranelift IR [`Function`].
pub struct FunctionBuilder<'a> {
    /// The function currently being built.
    /// This field is public so the function can be re-borrowed.
    pub func: &'a mut Function,

    /// Source location to assign to all new instructions.
    srcloc: ir::SourceLoc,

    func_ctx: &'a mut FunctionBuilderContext,
    position: PackedOption<Block>,
}

#[derive(Clone, Default, Eq, PartialEq)]
enum BlockStatus {
    /// No instructions have been added.
    #[default]
    Empty,
    /// Some instructions have been added, but no terminator.
    Partial,
    /// A terminator has been added; no further instructions may be added.
    Filled,
}

impl FunctionBuilderContext {
    /// Creates a [`FunctionBuilderContext`] structure. The structure is automatically cleared after
    /// each [`FunctionBuilder`] completes translating a function.
    pub fn new() -> Self {
        Self::default()
    }

    fn clear(&mut self) {
        self.ssa.clear();
        self.status.clear();
        self.types.clear();
    }

    fn is_empty(&self) -> bool {
        self.ssa.is_empty() && self.status.is_empty() && self.types.is_empty()
    }
}

/// Implementation of the [`InstBuilder`] that has
/// one convenience method per Cranelift IR instruction.
pub struct FuncInstBuilder<'short, 'long: 'short> {
    builder: &'short mut FunctionBuilder<'long>,
    block: Block,
}

impl<'short, 'long> FuncInstBuilder<'short, 'long> {
    fn new(builder: &'short mut FunctionBuilder<'long>, block: Block) -> Self {
        Self { builder, block }
    }
}

impl<'short, 'long> InstBuilderBase<'short> for FuncInstBuilder<'short, 'long> {
    fn data_flow_graph(&self) -> &DataFlowGraph {
        &self.builder.func.dfg
    }

    fn data_flow_graph_mut(&mut self) -> &mut DataFlowGraph {
        &mut self.builder.func.dfg
    }

    // This implementation is richer than `InsertBuilder` because we use the data of the
    // instruction being inserted to add related info to the DFG and the SSA building system,
    // and perform debug sanity checks.
    fn build(self, data: InstructionData, ctrl_typevar: Type) -> (Inst, &'short mut DataFlowGraph) {
        // We only insert the Block in the layout when an instruction is added to it
        self.builder.ensure_inserted_block();

        let inst = self.builder.func.dfg.make_inst(data.clone());
        self.builder.func.dfg.make_inst_results(inst, ctrl_typevar);
        self.builder.func.layout.append_inst(inst, self.block);
        if !self.builder.srcloc.is_default() {
            self.builder.func.set_srcloc(inst, self.builder.srcloc);
        }

        match &self.builder.func.dfg.insts[inst] {
            ir::InstructionData::Jump {
                destination: dest, ..
            } => {
                // If the user has supplied jump arguments we must adapt the arguments of
                // the destination block
                let block = dest.block(&self.builder.func.dfg.value_lists);
                self.builder.declare_successor(block, inst);
            }

            ir::InstructionData::Brif {
                blocks: [branch_then, branch_else],
                ..
            } => {
                let block_then = branch_then.block(&self.builder.func.dfg.value_lists);
                let block_else = branch_else.block(&self.builder.func.dfg.value_lists);

                self.builder.declare_successor(block_then, inst);
                if block_then != block_else {
                    self.builder.declare_successor(block_else, inst);
                }
            }

            ir::InstructionData::BranchTable { table, .. } => {
                let pool = &self.builder.func.dfg.value_lists;

                // Unlike all other jumps/branches, jump tables are
                // capable of having the same successor appear
                // multiple times, so we must deduplicate.
                let mut unique = EntitySet::<Block>::new();
                for dest_block in self
                    .builder
                    .func
                    .stencil
                    .dfg
                    .jump_tables
                    .get(*table)
                    .expect("you are referencing an undeclared jump table")
                    .all_branches()
                {
                    let block = dest_block.block(pool);
                    if !unique.insert(block) {
                        continue;
                    }

                    // Call `declare_block_predecessor` instead of `declare_successor` for
                    // avoiding the borrow checker.
                    self.builder
                        .func_ctx
                        .ssa
                        .declare_block_predecessor(block, inst);
                }
            }

            inst => debug_assert!(!inst.opcode().is_branch()),
        }

        if data.opcode().is_terminator() {
            self.builder.fill_current_block()
        }
        (inst, &mut self.builder.func.dfg)
    }
}

#[derive(Debug, Copy, Clone, PartialEq, Eq)]
/// An error encountered when calling [`FunctionBuilder::try_use_var`].
pub enum UseVariableError {
    UsedBeforeDeclared(Variable),
}

impl fmt::Display for UseVariableError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            UseVariableError::UsedBeforeDeclared(variable) => {
                write!(
                    f,
                    "variable {} was used before it was defined",
                    variable.index()
                )?;
            }
        }
        Ok(())
    }
}

impl std::error::Error for UseVariableError {}

#[derive(Debug, Copy, Clone, Eq, PartialEq)]
/// An error encountered when calling [`FunctionBuilder::try_declare_var`].
pub enum DeclareVariableError {
    DeclaredMultipleTimes(Variable),
}

impl std::error::Error for DeclareVariableError {}

impl fmt::Display for DeclareVariableError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            DeclareVariableError::DeclaredMultipleTimes(variable) => {
                write!(
                    f,
                    "variable {} was declared multiple times",
                    variable.index()
                )?;
            }
        }
        Ok(())
    }
}

#[derive(Debug, Copy, Clone, Eq, PartialEq)]
/// An error encountered when defining the initial value of a variable.
pub enum DefVariableError {
    /// The variable was instantiated with a value of the wrong type.
    ///
    /// note: to obtain the type of the value, you can call
    /// [`cranelift_codegen::ir::dfg::DataFlowGraph::value_type`] (using the
    /// `FunctionBuilder.func.dfg` field)
    TypeMismatch(Variable, Value),
    /// The value was defined (in a call to [`FunctionBuilder::def_var`]) before
    /// it was declared (in a call to [`FunctionBuilder::declare_var`]).
    DefinedBeforeDeclared(Variable),
}

impl fmt::Display for DefVariableError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            DefVariableError::TypeMismatch(variable, value) => {
                write!(
                    f,
                    "the types of variable {} and value {} are not the same.
                    The `Value` supplied to `def_var` must be of the same type as
                    the variable was declared to be of in `declare_var`.",
                    variable.index(),
                    value.as_u32()
                )?;
            }
            DefVariableError::DefinedBeforeDeclared(variable) => {
                write!(
                    f,
                    "the value of variable {} was declared before it was defined",
                    variable.index()
                )?;
            }
        }
        Ok(())
    }
}

/// This module allows you to create a function in Cranelift IR in a straightforward way, hiding
/// all the complexity of its internal representation.
///
/// The module is parametrized by one type which is the representation of variables in your
/// origin language. It offers a way to conveniently append instruction to your program flow.
/// You are responsible to split your instruction flow into extended blocks (declared with
/// [`create_block`](Self::create_block)) whose properties are:
///
/// - branch and jump instructions can only point at the top of extended blocks;
/// - the last instruction of each block is a terminator instruction which has no natural successor,
///   and those instructions can only appear at the end of extended blocks.
///
/// The parameters of Cranelift IR instructions are Cranelift IR values, which can only be created
/// as results of other Cranelift IR instructions. To be able to create variables redefined multiple
/// times in your program, use the [`def_var`](Self::def_var) and [`use_var`](Self::use_var) command,
/// that will maintain the correspondence between your variables and Cranelift IR SSA values.
///
/// The first block for which you call [`switch_to_block`](Self::switch_to_block) will be assumed to
/// be the beginning of the function.
///
/// At creation, a [`FunctionBuilder`] instance borrows an already allocated `Function` which it
/// modifies with the information stored in the mutable borrowed
/// [`FunctionBuilderContext`]. The function passed in argument should be newly created with
/// [`Function::with_name_signature()`], whereas the [`FunctionBuilderContext`] can be kept as is
/// between two function translations.
///
/// # Errors
///
/// The functions below will panic in debug mode whenever you try to modify the Cranelift IR
/// function in a way that violate the coherence of the code. For instance: switching to a new
/// [`Block`] when you haven't filled the current one with a terminator instruction, inserting a
/// return instruction with arguments that don't match the function's signature.
impl<'a> FunctionBuilder<'a> {
    /// Creates a new [`FunctionBuilder`] structure that will operate on a [`Function`] using a
    /// [`FunctionBuilderContext`].
    pub fn new(func: &'a mut Function, func_ctx: &'a mut FunctionBuilderContext) -> Self {
        debug_assert!(func_ctx.is_empty());
        Self {
            func,
            srcloc: Default::default(),
            func_ctx,
            position: Default::default(),
        }
    }

    /// Get the block that this builder is currently at.
    pub fn current_block(&self) -> Option<Block> {
        self.position.expand()
    }

    /// Set the source location that should be assigned to all new instructions.
    pub fn set_srcloc(&mut self, srcloc: ir::SourceLoc) {
        self.srcloc = srcloc;
    }

    /// Creates a new [`Block`] and returns its reference.
    pub fn create_block(&mut self) -> Block {
        let block = self.func.dfg.make_block();
        self.func_ctx.ssa.declare_block(block);
        block
    }

    /// Mark a block as "cold".
    ///
    /// This will try to move it out of the ordinary path of execution
    /// when lowered to machine code.
    pub fn set_cold_block(&mut self, block: Block) {
        self.func.layout.set_cold(block);
    }

    /// Insert `block` in the layout *after* the existing block `after`.
    pub fn insert_block_after(&mut self, block: Block, after: Block) {
        self.func.layout.insert_block_after(block, after);
    }

    /// After the call to this function, new instructions will be inserted into the designated
    /// block, in the order they are declared. You must declare the types of the [`Block`] arguments
    /// you will use here.
    ///
    /// When inserting the terminator instruction (which doesn't have a fallthrough to its immediate
    /// successor), the block will be declared filled and it will not be possible to append
    /// instructions to it.
    pub fn switch_to_block(&mut self, block: Block) {
        // First we check that the previous block has been filled.
        debug_assert!(
            self.position.is_none()
                || self.is_unreachable()
                || self.is_pristine(self.position.unwrap())
                || self.is_filled(self.position.unwrap()),
            "you have to fill your block before switching"
        );
        // We cannot switch to a filled block
        debug_assert!(
            !self.is_filled(block),
            "you cannot switch to a block which is already filled"
        );

        // Then we change the cursor position.
        self.position = PackedOption::from(block);
    }

    /// Declares that all the predecessors of this block are known.
    ///
    /// Function to call with `block` as soon as the last branch instruction to `block` has been
    /// created. Forgetting to call this method on every block will cause inconsistencies in the
    /// produced functions.
    pub fn seal_block(&mut self, block: Block) {
        let side_effects = self.func_ctx.ssa.seal_block(block, self.func);
        self.handle_ssa_side_effects(side_effects);
    }

    /// Effectively calls [seal_block](Self::seal_block) on all unsealed blocks in the function.
    ///
    /// It's more efficient to seal [`Block`]s as soon as possible, during
    /// translation, but for frontends where this is impractical to do, this
    /// function can be used at the end of translating all blocks to ensure
    /// that everything is sealed.
    pub fn seal_all_blocks(&mut self) {
        let side_effects = self.func_ctx.ssa.seal_all_blocks(self.func);
        self.handle_ssa_side_effects(side_effects);
    }

    /// Declares the type of a variable, so that it can be used later (by calling
    /// [`FunctionBuilder::use_var`]). This function will return an error if the variable
    /// has been previously declared.
    pub fn try_declare_var(&mut self, var: Variable, ty: Type) -> Result<(), DeclareVariableError> {
        if self.func_ctx.types[var] != types::INVALID {
            return Err(DeclareVariableError::DeclaredMultipleTimes(var));
        }
        self.func_ctx.types[var] = ty;
        Ok(())
    }

    /// In order to use a variable (by calling [`FunctionBuilder::use_var`]), you need
    /// to first declare its type with this method.
    pub fn declare_var(&mut self, var: Variable, ty: Type) {
        self.try_declare_var(var, ty)
            .unwrap_or_else(|_| panic!("the variable {:?} has been declared multiple times", var))
    }

    /// Returns the Cranelift IR necessary to use a previously defined user
    /// variable, returning an error if this is not possible.
    pub fn try_use_var(&mut self, var: Variable) -> Result<Value, UseVariableError> {
        // Assert that we're about to add instructions to this block using the definition of the
        // given variable. ssa.use_var is the only part of this crate which can add block parameters
        // behind the caller's back. If we disallow calling append_block_param as soon as use_var is
        // called, then we enforce a strict separation between user parameters and SSA parameters.
        self.ensure_inserted_block();

        let (val, side_effects) = {
            let ty = *self
                .func_ctx
                .types
                .get(var)
                .ok_or(UseVariableError::UsedBeforeDeclared(var))?;
            debug_assert_ne!(
                ty,
                types::INVALID,
                "variable {:?} is used but its type has not been declared",
                var
            );
            self.func_ctx
                .ssa
                .use_var(self.func, var, ty, self.position.unwrap())
        };
        self.handle_ssa_side_effects(side_effects);
        Ok(val)
    }

    /// Returns the Cranelift IR value corresponding to the utilization at the current program
    /// position of a previously defined user variable.
    pub fn use_var(&mut self, var: Variable) -> Value {
        self.try_use_var(var).unwrap_or_else(|_| {
            panic!(
                "variable {:?} is used but its type has not been declared",
                var
            )
        })
    }

    /// Registers a new definition of a user variable. This function will return
    /// an error if the value supplied does not match the type the variable was
    /// declared to have.
    pub fn try_def_var(&mut self, var: Variable, val: Value) -> Result<(), DefVariableError> {
        let var_ty = *self
            .func_ctx
            .types
            .get(var)
            .ok_or(DefVariableError::DefinedBeforeDeclared(var))?;
        if var_ty != self.func.dfg.value_type(val) {
            return Err(DefVariableError::TypeMismatch(var, val));
        }

        self.func_ctx.ssa.def_var(var, val, self.position.unwrap());
        Ok(())
    }

    /// Register a new definition of a user variable. The type of the value must be
    /// the same as the type registered for the variable.
    pub fn def_var(&mut self, var: Variable, val: Value) {
        self.try_def_var(var, val)
            .unwrap_or_else(|error| match error {
                DefVariableError::TypeMismatch(var, val) => {
                    panic!(
                        "declared type of variable {:?} doesn't match type of value {}",
                        var, val
                    );
                }
                DefVariableError::DefinedBeforeDeclared(var) => {
                    panic!(
                        "variable {:?} is used but its type has not been declared",
                        var
                    );
                }
            })
    }

    /// Set label for [`Value`]
    ///
    /// This will not do anything unless
    /// [`func.dfg.collect_debug_info`](DataFlowGraph::collect_debug_info) is called first.
    pub fn set_val_label(&mut self, val: Value, label: ValueLabel) {
        if let Some(values_labels) = self.func.stencil.dfg.values_labels.as_mut() {
            use alloc::collections::btree_map::Entry;

            let start = ValueLabelStart {
                from: RelSourceLoc::from_base_offset(self.func.params.base_srcloc(), self.srcloc),
                label,
            };

            match values_labels.entry(val) {
                Entry::Occupied(mut e) => match e.get_mut() {
                    ValueLabelAssignments::Starts(starts) => starts.push(start),
                    _ => panic!("Unexpected ValueLabelAssignments at this stage"),
                },
                Entry::Vacant(e) => {
                    e.insert(ValueLabelAssignments::Starts(vec![start]));
                }
            }
        }
    }

    /// Declare that the given value is a GC reference that requires inclusion
    /// in a stack map when it is live across GC safepoints.
    ///
    /// At the current moment, values that need inclusion in stack maps are
    /// spilled before safepoints, but they are not reloaded afterwards. This
    /// means that moving GCs are not yet supported, however the intention is to
    /// add this support in the near future.
    ///
    /// # Panics
    ///
    /// Panics if `val` is larger than 16 bytes.
    pub fn declare_needs_stack_map(&mut self, val: Value) {
        // We rely on these properties in `insert_safepoint_spills`.
        let size = self.func.dfg.value_type(val).bytes();
        assert!(size <= 16);
        assert!(size.is_power_of_two());

        self.func_ctx.needs_stack_map.insert(val);
    }

    /// Creates a jump table in the function, to be used by [`br_table`](InstBuilder::br_table) instructions.
    pub fn create_jump_table(&mut self, data: JumpTableData) -> JumpTable {
        self.func.create_jump_table(data)
    }

    /// Creates a sized stack slot in the function, to be used by [`stack_load`](InstBuilder::stack_load),
    /// [`stack_store`](InstBuilder::stack_store) and [`stack_addr`](InstBuilder::stack_addr) instructions.
    pub fn create_sized_stack_slot(&mut self, data: StackSlotData) -> StackSlot {
        self.func.create_sized_stack_slot(data)
    }

    /// Creates a dynamic stack slot in the function, to be used by
    /// [`dynamic_stack_load`](InstBuilder::dynamic_stack_load),
    /// [`dynamic_stack_store`](InstBuilder::dynamic_stack_store) and
    /// [`dynamic_stack_addr`](InstBuilder::dynamic_stack_addr) instructions.
    pub fn create_dynamic_stack_slot(&mut self, data: DynamicStackSlotData) -> DynamicStackSlot {
        self.func.create_dynamic_stack_slot(data)
    }

    /// Adds a signature which can later be used to declare an external function import.
    pub fn import_signature(&mut self, signature: Signature) -> SigRef {
        self.func.import_signature(signature)
    }

    /// Declare an external function import.
    pub fn import_function(&mut self, data: ExtFuncData) -> FuncRef {
        self.func.import_function(data)
    }

    /// Declares a global value accessible to the function.
    pub fn create_global_value(&mut self, data: GlobalValueData) -> GlobalValue {
        self.func.create_global_value(data)
    }

    /// Returns an object with the [`InstBuilder`]
    /// trait that allows to conveniently append an instruction to the current [`Block`] being built.
    pub fn ins<'short>(&'short mut self) -> FuncInstBuilder<'short, 'a> {
        let block = self
            .position
            .expect("Please call switch_to_block before inserting instructions");
        FuncInstBuilder::new(self, block)
    }

    /// Make sure that the current block is inserted in the layout.
    pub fn ensure_inserted_block(&mut self) {
        let block = self.position.unwrap();
        if self.is_pristine(block) {
            if !self.func.layout.is_block_inserted(block) {
                self.func.layout.append_block(block);
            }
            self.func_ctx.status[block] = BlockStatus::Partial;
        } else {
            debug_assert!(
                !self.is_filled(block),
                "you cannot add an instruction to a block already filled"
            );
        }
    }

    /// Returns a [`FuncCursor`] pointed at the current position ready for inserting instructions.
    ///
    /// This can be used to insert SSA code that doesn't need to access locals and that doesn't
    /// need to know about [`FunctionBuilder`] at all.
    pub fn cursor(&mut self) -> FuncCursor {
        self.ensure_inserted_block();
        FuncCursor::new(self.func)
            .with_srcloc(self.srcloc)
            .at_bottom(self.position.unwrap())
    }

    /// Append parameters to the given [`Block`] corresponding to the function
    /// parameters. This can be used to set up the block parameters for the
    /// entry block.
    pub fn append_block_params_for_function_params(&mut self, block: Block) {
        debug_assert!(
            !self.func_ctx.ssa.has_any_predecessors(block),
            "block parameters for function parameters should only be added to the entry block"
        );

        // These parameters count as "user" parameters here because they aren't
        // inserted by the SSABuilder.
        debug_assert!(
            self.is_pristine(block),
            "You can't add block parameters after adding any instruction"
        );

        for argtyp in &self.func.stencil.signature.params {
            self.func
                .stencil
                .dfg
                .append_block_param(block, argtyp.value_type);
        }
    }

    /// Append parameters to the given [`Block`] corresponding to the function
    /// return values. This can be used to set up the block parameters for a
    /// function exit block.
    pub fn append_block_params_for_function_returns(&mut self, block: Block) {
        // These parameters count as "user" parameters here because they aren't
        // inserted by the SSABuilder.
        debug_assert!(
            self.is_pristine(block),
            "You can't add block parameters after adding any instruction"
        );

        for argtyp in &self.func.stencil.signature.returns {
            self.func
                .stencil
                .dfg
                .append_block_param(block, argtyp.value_type);
        }
    }

    /// Insert spills for every value that needs to be in a stack map at every
    /// safepoint.
    ///
    /// First, we do a very simple, imprecise, and overapproximating liveness
    /// analysis. This considers any use (regardless if that use produces side
    /// effects or flows into another instruction that produces side effects!)
    /// of a needs-stack-map value to keep the value live. This allows us to do
    /// this liveness analysis in a single post-order traversal of the IR,
    /// without any fixed-point loop. The result of this analysis is the set of
    /// live needs-stack-map values at each instruction that must be a safepoint
    /// (currently this is just non-tail calls).
    ///
    /// Second, take those results, add stack slots so we have a place to spill
    /// to, and then finally spill the live needs-stack-map values at each
    /// safepoint.
    fn insert_safepoint_spills(&mut self) {
        // A map from each safepoint to the set of GC references that are live
        // across it.
        let mut safepoints: crate::HashMap<ir::Inst, SmallVec<[ir::Value; 4]>> =
            crate::HashMap::new();

        // The maximum number of values we need to store in a stack map at the
        // same time, bucketed by their type's size. This array is indexed by
        // the log2 of the type's size. We do not support recording values whose
        // size is greater than 16 in stack maps.
        const LOG2_SIZE_CAPACITY: usize = (16u8.ilog2() as usize) + 1;
        let mut max_vals_in_stack_map_by_log2_size = [0; LOG2_SIZE_CAPACITY];

        // The set of needs-stack-maps values that are currently live in our
        // traversal.
        //
        // NB: use a `BTreeSet` so that iteration is deterministic, as we will
        // insert spills an order derived from this collection's iteration
        // order.
        let mut live = BTreeSet::new();

        // Do our single-pass liveness analysis.
        //
        // Use a post-order traversal, traversing the IR backwards from uses to
        // defs, because liveness is a backwards analysis.
        //
        // 1. The definition of a value removes it from our `live` set. Values
        //    are not live before they are defined.
        //
        // 2. When we see any instruction that requires a safepoint (aka
        //    non-tail calls) we record the current live set of needs-stack-map
        //    values.
        //
        //    We ignore tail calls because this caller and its frame won't exist
        //    by the time the callee is executing and potentially triggers a GC;
        //    nothing is live in the function after it exits!
        //
        //    Note that this step should actually happen *before* adding uses to
        //    the `live` set below, in order to avoid holding GC objects alive
        //    longer than necessary, because arguments to the call that are not
        //    live afterwards should need not be prevented from reclamation by
        //    the GC for us, and therefore need not appear in this stack map. It
        //    is the callee's responsibility to record such arguments in its
        //    stack maps if it keeps them alive across some call that might
        //    trigger GC.
        //
        // 3. Any use of a needs-stack-map value adds it to our `live` set.
        //
        //    Note: we do not flow liveness from block parameters back to branch
        //    arguments, and instead always consider branch arguments live. That
        //    additional precision would require a fixed-point loop in the
        //    presence of back edges.
        //
        //    Furthermore, we do not differentiate between uses of a
        //    needs-stack-map value that ultimately flow into a side-effecting
        //    operation versus uses that themselves are not live. This could be
        //    tightened up in the future, but we're starting with the easiest,
        //    simplest thing. Besides, none of our mid-end optimization passes
        //    have run at this point in time yet, so there probably isn't much,
        //    if any, dead code.
        for block in self.func_ctx.dfs.post_order_iter(&self.func) {
            let mut option_inst = self.func.layout.last_inst(block);
            while let Some(inst) = option_inst {
                // (1) Remove values defined by this instruction from the `live`
                // set.
                for val in self.func.dfg.inst_results(inst) {
                    live.remove(val);
                }

                // (2) If this instruction is a call, then we need to add a
                // safepoint to record any values in `live`.
                let opcode = self.func.dfg.insts[inst].opcode();
                if opcode.is_call() && !opcode.is_return() {
                    let mut live: SmallVec<[_; 4]> = live.iter().copied().collect();
                    for chunk in live_vals_by_size(&self.func.dfg, &mut live) {
                        let index = log2_size(&self.func.dfg, chunk[0]);
                        max_vals_in_stack_map_by_log2_size[index] =
                            core::cmp::max(max_vals_in_stack_map_by_log2_size[index], chunk.len());
                    }

                    let old_val = safepoints.insert(inst, live);
                    debug_assert!(old_val.is_none());
                }

                // (3) Add all needs-stack-map values that are operands to this
                // instruction to the live set. This includes branch arguments,
                // as mentioned above.
                for val in self.func.dfg.inst_values(inst) {
                    if self.func_ctx.needs_stack_map.contains(val) {
                        live.insert(val);
                    }
                }

                option_inst = self.func.layout.prev_inst(inst);
            }

            // After we've processed this block's instructions, remove its
            // parameters from the live set. This is part of step (1).
            for val in self.func.dfg.block_params(block) {
                live.remove(val);
            }
        }

        // Create a stack slot for each size of needs-stack-map value. These
        // slots are arrays capable of holding the maximum number of same-sized
        // values that must appear in the same stack map at the same time.
        //
        // This is indexed by the log2 of the type size.
        let mut stack_slots = [PackedOption::<ir::StackSlot>::default(); LOG2_SIZE_CAPACITY];
        for (log2_size, capacity) in max_vals_in_stack_map_by_log2_size.into_iter().enumerate() {
            if capacity == 0 {
                continue;
            }

            let size = 1usize << log2_size;
            let slot = self.func.create_sized_stack_slot(ir::StackSlotData::new(
                ir::StackSlotKind::ExplicitSlot,
                u32::try_from(size * capacity).unwrap(),
                u8::try_from(log2_size).unwrap(),
            ));
            stack_slots[log2_size] = Some(slot).into();
        }

        // Insert spills to our new stack slots before each safepoint
        // instruction.
        let mut cursor = FuncCursor::new(self.func);
        for (inst, live_vals) in safepoints {
            cursor = cursor.at_inst(inst);

            // The offset within each stack slot for the next spill to that
            // associated stack slot.
            let mut stack_slot_offsets = [0; LOG2_SIZE_CAPACITY];

            for val in live_vals {
                let ty = cursor.func.dfg.value_type(val);
                let size_of_val = ty.bytes();

                let index = log2_size(&cursor.func.dfg, val);
                let slot = stack_slots[index].unwrap();

                let offset = stack_slot_offsets[index];
                stack_slot_offsets[index] += size_of_val;

                cursor
                    .ins()
                    .stack_store(val, slot, i32::try_from(offset).unwrap());

                cursor
                    .func
                    .dfg
                    .append_user_stack_map_entry(inst, ir::UserStackMapEntry { ty, slot, offset });
            }
        }
    }

    /// Declare that translation of the current function is complete.
    ///
    /// This resets the state of the [`FunctionBuilderContext`] in preparation to
    /// be used for another function.
    pub fn finalize(mut self) {
        // Check that all the `Block`s are filled and sealed.
        #[cfg(debug_assertions)]
        {
            for block in self.func_ctx.status.keys() {
                if !self.is_pristine(block) {
                    assert!(
                        self.func_ctx.ssa.is_sealed(block),
                        "FunctionBuilder finalized, but block {} is not sealed",
                        block,
                    );
                    assert!(
                        self.is_filled(block),
                        "FunctionBuilder finalized, but block {} is not filled",
                        block,
                    );
                }
            }
        }

        // In debug mode, check that all blocks are valid basic blocks.
        #[cfg(debug_assertions)]
        {
            // Iterate manually to provide more helpful error messages.
            for block in self.func_ctx.status.keys() {
                if let Err((inst, msg)) = self.func.is_block_basic(block) {
                    let inst_str = self.func.dfg.display_inst(inst);
                    panic!(
                        "{} failed basic block invariants on {}: {}",
                        block, inst_str, msg
                    );
                }
            }
        }

        if !self.func_ctx.needs_stack_map.is_empty() {
            self.insert_safepoint_spills();
        }

        // Clear the state (but preserve the allocated buffers) in preparation
        // for translation another function.
        self.func_ctx.clear();
    }
}

/// Sort `live` by size and return an iterable of subslices grouped by size.
fn live_vals_by_size<'a, 'b>(
    dfg: &'a ir::DataFlowGraph,
    live: &'b mut [ir::Value],
) -> impl Iterator<Item = &'b [ir::Value]>
where
    'a: 'b,
{
    live.sort_by_key(|val| dfg.value_type(*val).bytes());
    live.chunk_by(|a, b| dfg.value_type(*a).bytes() == dfg.value_type(*b).bytes())
}

/// Get `log2(sizeof(val))` as a `usize`.
fn log2_size(dfg: &ir::DataFlowGraph, val: ir::Value) -> usize {
    let size = dfg.value_type(val).bytes();
    debug_assert!(size.is_power_of_two());
    usize::try_from(size.ilog2()).unwrap()
}

/// All the functions documented in the previous block are write-only and help you build a valid
/// Cranelift IR functions via multiple debug asserts. However, you might need to improve the
/// performance of your translation perform more complex transformations to your Cranelift IR
/// function. The functions below help you inspect the function you're creating and modify it
/// in ways that can be unsafe if used incorrectly.
impl<'a> FunctionBuilder<'a> {
    /// Retrieves all the parameters for a [`Block`] currently inferred from the jump instructions
    /// inserted that target it and the SSA construction.
    pub fn block_params(&self, block: Block) -> &[Value] {
        self.func.dfg.block_params(block)
    }

    /// Retrieves the signature with reference `sigref` previously added with
    /// [`import_signature`](Self::import_signature).
    pub fn signature(&self, sigref: SigRef) -> Option<&Signature> {
        self.func.dfg.signatures.get(sigref)
    }

    /// Creates a parameter for a specific [`Block`] by appending it to the list of already existing
    /// parameters.
    ///
    /// **Note:** this function has to be called at the creation of the `Block` before adding
    /// instructions to it, otherwise this could interfere with SSA construction.
    pub fn append_block_param(&mut self, block: Block, ty: Type) -> Value {
        debug_assert!(
            self.is_pristine(block),
            "You can't add block parameters after adding any instruction"
        );
        self.func.dfg.append_block_param(block, ty)
    }

    /// Returns the result values of an instruction.
    pub fn inst_results(&self, inst: Inst) -> &[Value] {
        self.func.dfg.inst_results(inst)
    }

    /// Changes the destination of a jump instruction after creation.
    ///
    /// **Note:** You are responsible for maintaining the coherence with the arguments of
    /// other jump instructions.
    pub fn change_jump_destination(&mut self, inst: Inst, old_block: Block, new_block: Block) {
        let dfg = &mut self.func.dfg;
        for block in dfg.insts[inst].branch_destination_mut(&mut dfg.jump_tables) {
            if block.block(&dfg.value_lists) == old_block {
                self.func_ctx.ssa.remove_block_predecessor(old_block, inst);
                block.set_block(new_block, &mut dfg.value_lists);
                self.func_ctx.ssa.declare_block_predecessor(new_block, inst);
            }
        }
    }

    /// Returns `true` if and only if the current [`Block`] is sealed and has no predecessors declared.
    ///
    /// The entry block of a function is never unreachable.
    pub fn is_unreachable(&self) -> bool {
        let is_entry = match self.func.layout.entry_block() {
            None => false,
            Some(entry) => self.position.unwrap() == entry,
        };
        !is_entry
            && self.func_ctx.ssa.is_sealed(self.position.unwrap())
            && !self
                .func_ctx
                .ssa
                .has_any_predecessors(self.position.unwrap())
    }

    /// Returns `true` if and only if no instructions have been added since the last call to
    /// [`switch_to_block`](Self::switch_to_block).
    fn is_pristine(&self, block: Block) -> bool {
        self.func_ctx.status[block] == BlockStatus::Empty
    }

    /// Returns `true` if and only if a terminator instruction has been inserted since the
    /// last call to [`switch_to_block`](Self::switch_to_block).
    fn is_filled(&self, block: Block) -> bool {
        self.func_ctx.status[block] == BlockStatus::Filled
    }
}

/// Helper functions
impl<'a> FunctionBuilder<'a> {
    /// Calls libc.memcpy
    ///
    /// Copies the `size` bytes from `src` to `dest`, assumes that `src + size`
    /// won't overlap onto `dest`. If `dest` and `src` overlap, the behavior is
    /// undefined. Applications in which `dest` and `src` might overlap should
    /// use `call_memmove` instead.
    pub fn call_memcpy(
        &mut self,
        config: TargetFrontendConfig,
        dest: Value,
        src: Value,
        size: Value,
    ) {
        let pointer_type = config.pointer_type();
        let signature = {
            let mut s = Signature::new(config.default_call_conv);
            s.params.push(AbiParam::new(pointer_type));
            s.params.push(AbiParam::new(pointer_type));
            s.params.push(AbiParam::new(pointer_type));
            s.returns.push(AbiParam::new(pointer_type));
            self.import_signature(s)
        };

        let libc_memcpy = self.import_function(ExtFuncData {
            name: ExternalName::LibCall(LibCall::Memcpy),
            signature,
            colocated: false,
        });

        self.ins().call(libc_memcpy, &[dest, src, size]);
    }

    /// Optimised memcpy or memmove for small copies.
    ///
    /// # Codegen safety
    ///
    /// The following properties must hold to prevent UB:
    ///
    /// * `src_align` and `dest_align` are an upper-bound on the alignment of `src` respectively `dest`.
    /// * If `non_overlapping` is true, then this must be correct.
    pub fn emit_small_memory_copy(
        &mut self,
        config: TargetFrontendConfig,
        dest: Value,
        src: Value,
        size: u64,
        dest_align: u8,
        src_align: u8,
        non_overlapping: bool,
        mut flags: MemFlags,
    ) {
        // Currently the result of guess work, not actual profiling.
        const THRESHOLD: u64 = 4;

        if size == 0 {
            return;
        }

        let access_size = greatest_divisible_power_of_two(size);
        assert!(
            access_size.is_power_of_two(),
            "`size` is not a power of two"
        );
        assert!(
            access_size >= u64::from(::core::cmp::min(src_align, dest_align)),
            "`size` is smaller than `dest` and `src`'s alignment value."
        );

        let (access_size, int_type) = if access_size <= 8 {
            (access_size, Type::int((access_size * 8) as u16).unwrap())
        } else {
            (8, types::I64)
        };

        let load_and_store_amount = size / access_size;

        if load_and_store_amount > THRESHOLD {
            let size_value = self.ins().iconst(config.pointer_type(), size as i64);
            if non_overlapping {
                self.call_memcpy(config, dest, src, size_value);
            } else {
                self.call_memmove(config, dest, src, size_value);
            }
            return;
        }

        if u64::from(src_align) >= access_size && u64::from(dest_align) >= access_size {
            flags.set_aligned();
        }

        // Load all of the memory first. This is necessary in case `dest` overlaps.
        // It can also improve performance a bit.
        let registers: smallvec::SmallVec<[_; THRESHOLD as usize]> = (0..load_and_store_amount)
            .map(|i| {
                let offset = (access_size * i) as i32;
                (self.ins().load(int_type, flags, src, offset), offset)
            })
            .collect();

        for (value, offset) in registers {
            self.ins().store(flags, value, dest, offset);
        }
    }

    /// Calls libc.memset
    ///
    /// Writes `size` bytes of i8 value `ch` to memory starting at `buffer`.
    pub fn call_memset(
        &mut self,
        config: TargetFrontendConfig,
        buffer: Value,
        ch: Value,
        size: Value,
    ) {
        let pointer_type = config.pointer_type();
        let signature = {
            let mut s = Signature::new(config.default_call_conv);
            s.params.push(AbiParam::new(pointer_type));
            s.params.push(AbiParam::new(types::I32));
            s.params.push(AbiParam::new(pointer_type));
            s.returns.push(AbiParam::new(pointer_type));
            self.import_signature(s)
        };

        let libc_memset = self.import_function(ExtFuncData {
            name: ExternalName::LibCall(LibCall::Memset),
            signature,
            colocated: false,
        });

        let ch = self.ins().uextend(types::I32, ch);
        self.ins().call(libc_memset, &[buffer, ch, size]);
    }

    /// Calls libc.memset
    ///
    /// Writes `size` bytes of value `ch` to memory starting at `buffer`.
    pub fn emit_small_memset(
        &mut self,
        config: TargetFrontendConfig,
        buffer: Value,
        ch: u8,
        size: u64,
        buffer_align: u8,
        mut flags: MemFlags,
    ) {
        // Currently the result of guess work, not actual profiling.
        const THRESHOLD: u64 = 4;

        if size == 0 {
            return;
        }

        let access_size = greatest_divisible_power_of_two(size);
        assert!(
            access_size.is_power_of_two(),
            "`size` is not a power of two"
        );
        assert!(
            access_size >= u64::from(buffer_align),
            "`size` is smaller than `dest` and `src`'s alignment value."
        );

        let (access_size, int_type) = if access_size <= 8 {
            (access_size, Type::int((access_size * 8) as u16).unwrap())
        } else {
            (8, types::I64)
        };

        let load_and_store_amount = size / access_size;

        if load_and_store_amount > THRESHOLD {
            let ch = self.ins().iconst(types::I8, i64::from(ch));
            let size = self.ins().iconst(config.pointer_type(), size as i64);
            self.call_memset(config, buffer, ch, size);
        } else {
            if u64::from(buffer_align) >= access_size {
                flags.set_aligned();
            }

            let ch = u64::from(ch);
            let raw_value = if int_type == types::I64 {
                ch * 0x0101010101010101_u64
            } else if int_type == types::I32 {
                ch * 0x01010101_u64
            } else if int_type == types::I16 {
                (ch << 8) | ch
            } else {
                assert_eq!(int_type, types::I8);
                ch
            };

            let value = self.ins().iconst(int_type, raw_value as i64);
            for i in 0..load_and_store_amount {
                let offset = (access_size * i) as i32;
                self.ins().store(flags, value, buffer, offset);
            }
        }
    }

    /// Calls libc.memmove
    ///
    /// Copies `size` bytes from memory starting at `source` to memory starting
    /// at `dest`. `source` is always read before writing to `dest`.
    pub fn call_memmove(
        &mut self,
        config: TargetFrontendConfig,
        dest: Value,
        source: Value,
        size: Value,
    ) {
        let pointer_type = config.pointer_type();
        let signature = {
            let mut s = Signature::new(config.default_call_conv);
            s.params.push(AbiParam::new(pointer_type));
            s.params.push(AbiParam::new(pointer_type));
            s.params.push(AbiParam::new(pointer_type));
            s.returns.push(AbiParam::new(pointer_type));
            self.import_signature(s)
        };

        let libc_memmove = self.import_function(ExtFuncData {
            name: ExternalName::LibCall(LibCall::Memmove),
            signature,
            colocated: false,
        });

        self.ins().call(libc_memmove, &[dest, source, size]);
    }

    /// Calls libc.memcmp
    ///
    /// Compares `size` bytes from memory starting at `left` to memory starting
    /// at `right`. Returns `0` if all `n` bytes are equal.  If the first difference
    /// is at offset `i`, returns a positive integer if `ugt(left[i], right[i])`
    /// and a negative integer if `ult(left[i], right[i])`.
    ///
    /// Returns a C `int`, which is currently always [`types::I32`].
    pub fn call_memcmp(
        &mut self,
        config: TargetFrontendConfig,
        left: Value,
        right: Value,
        size: Value,
    ) -> Value {
        let pointer_type = config.pointer_type();
        let signature = {
            let mut s = Signature::new(config.default_call_conv);
            s.params.reserve(3);
            s.params.push(AbiParam::new(pointer_type));
            s.params.push(AbiParam::new(pointer_type));
            s.params.push(AbiParam::new(pointer_type));
            s.returns.push(AbiParam::new(types::I32));
            self.import_signature(s)
        };

        let libc_memcmp = self.import_function(ExtFuncData {
            name: ExternalName::LibCall(LibCall::Memcmp),
            signature,
            colocated: false,
        });

        let call = self.ins().call(libc_memcmp, &[left, right, size]);
        self.func.dfg.first_result(call)
    }

    /// Optimised [`Self::call_memcmp`] for small copies.
    ///
    /// This implements the byte slice comparison `int_cc(left[..size], right[..size])`.
    ///
    /// `left_align` and `right_align` are the statically-known alignments of the
    /// `left` and `right` pointers respectively.  These are used to know whether
    /// to mark `load`s as aligned.  It's always fine to pass `1` for these, but
    /// passing something higher than the true alignment may trap or otherwise
    /// misbehave as described in [`MemFlags::aligned`].
    ///
    /// Note that `memcmp` is a *big-endian* and *unsigned* comparison.
    /// As such, this panics when called with `IntCC::Signed*`.
    pub fn emit_small_memory_compare(
        &mut self,
        config: TargetFrontendConfig,
        int_cc: IntCC,
        left: Value,
        right: Value,
        size: u64,
        left_align: std::num::NonZeroU8,
        right_align: std::num::NonZeroU8,
        flags: MemFlags,
    ) -> Value {
        use IntCC::*;
        let (zero_cc, empty_imm) = match int_cc {
            //
            Equal => (Equal, 1),
            NotEqual => (NotEqual, 0),

            UnsignedLessThan => (SignedLessThan, 0),
            UnsignedGreaterThanOrEqual => (SignedGreaterThanOrEqual, 1),
            UnsignedGreaterThan => (SignedGreaterThan, 0),
            UnsignedLessThanOrEqual => (SignedLessThanOrEqual, 1),

            SignedLessThan
            | SignedGreaterThanOrEqual
            | SignedGreaterThan
            | SignedLessThanOrEqual => {
                panic!("Signed comparison {} not supported by memcmp", int_cc)
            }
        };

        if size == 0 {
            return self.ins().iconst(types::I8, empty_imm);
        }

        // Future work could consider expanding this to handle more-complex scenarios.
        if let Some(small_type) = size.try_into().ok().and_then(Type::int_with_byte_size) {
            if let Equal | NotEqual = zero_cc {
                let mut left_flags = flags;
                if size == left_align.get() as u64 {
                    left_flags.set_aligned();
                }
                let mut right_flags = flags;
                if size == right_align.get() as u64 {
                    right_flags.set_aligned();
                }
                let left_val = self.ins().load(small_type, left_flags, left, 0);
                let right_val = self.ins().load(small_type, right_flags, right, 0);
                return self.ins().icmp(int_cc, left_val, right_val);
            } else if small_type == types::I8 {
                // Once the big-endian loads from wasmtime#2492 are implemented in
                // the backends, we could easily handle comparisons for more sizes here.
                // But for now, just handle single bytes where we don't need to worry.

                let mut aligned_flags = flags;
                aligned_flags.set_aligned();
                let left_val = self.ins().load(small_type, aligned_flags, left, 0);
                let right_val = self.ins().load(small_type, aligned_flags, right, 0);
                return self.ins().icmp(int_cc, left_val, right_val);
            }
        }

        let pointer_type = config.pointer_type();
        let size = self.ins().iconst(pointer_type, size as i64);
        let cmp = self.call_memcmp(config, left, right, size);
        self.ins().icmp_imm(zero_cc, cmp, 0)
    }
}

fn greatest_divisible_power_of_two(size: u64) -> u64 {
    (size as i64 & -(size as i64)) as u64
}

// Helper functions
impl<'a> FunctionBuilder<'a> {
    /// A Block is 'filled' when a terminator instruction is present.
    fn fill_current_block(&mut self) {
        self.func_ctx.status[self.position.unwrap()] = BlockStatus::Filled;
    }

    fn declare_successor(&mut self, dest_block: Block, jump_inst: Inst) {
        self.func_ctx
            .ssa
            .declare_block_predecessor(dest_block, jump_inst);
    }

    fn handle_ssa_side_effects(&mut self, side_effects: SideEffects) {
        for modified_block in side_effects.instructions_added_to_blocks {
            if self.is_pristine(modified_block) {
                self.func_ctx.status[modified_block] = BlockStatus::Partial;
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::greatest_divisible_power_of_two;
    use crate::frontend::{
        DeclareVariableError, DefVariableError, FunctionBuilder, FunctionBuilderContext,
        UseVariableError,
    };
    use crate::Variable;
    use alloc::string::ToString;
    use cranelift_codegen::entity::EntityRef;
    use cranelift_codegen::ir::condcodes::IntCC;
    use cranelift_codegen::ir::{self, types::*, UserFuncName};
    use cranelift_codegen::ir::{AbiParam, Function, InstBuilder, MemFlags, Signature, Value};
    use cranelift_codegen::isa::{CallConv, TargetFrontendConfig, TargetIsa};
    use cranelift_codegen::settings;
    use cranelift_codegen::verifier::verify_function;
    use target_lexicon::PointerWidth;

    fn sample_function(lazy_seal: bool) {
        let mut sig = Signature::new(CallConv::SystemV);
        sig.returns.push(AbiParam::new(I32));
        sig.params.push(AbiParam::new(I32));

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

            let block0 = builder.create_block();
            let block1 = builder.create_block();
            let block2 = builder.create_block();
            let block3 = builder.create_block();
            let x = Variable::new(0);
            let y = Variable::new(1);
            let z = Variable::new(2);
            builder.declare_var(x, I32);
            builder.declare_var(y, I32);
            builder.declare_var(z, I32);
            builder.append_block_params_for_function_params(block0);

            builder.switch_to_block(block0);
            if !lazy_seal {
                builder.seal_block(block0);
            }
            {
                let tmp = builder.block_params(block0)[0]; // the first function parameter
                builder.def_var(x, tmp);
            }
            {
                let tmp = builder.ins().iconst(I32, 2);
                builder.def_var(y, tmp);
            }
            {
                let arg1 = builder.use_var(x);
                let arg2 = builder.use_var(y);
                let tmp = builder.ins().iadd(arg1, arg2);
                builder.def_var(z, tmp);
            }
            builder.ins().jump(block1, &[]);

            builder.switch_to_block(block1);
            {
                let arg1 = builder.use_var(y);
                let arg2 = builder.use_var(z);
                let tmp = builder.ins().iadd(arg1, arg2);
                builder.def_var(z, tmp);
            }
            {
                let arg = builder.use_var(y);
                builder.ins().brif(arg, block3, &[], block2, &[]);
            }

            builder.switch_to_block(block2);
            if !lazy_seal {
                builder.seal_block(block2);
            }
            {
                let arg1 = builder.use_var(z);
                let arg2 = builder.use_var(x);
                let tmp = builder.ins().isub(arg1, arg2);
                builder.def_var(z, tmp);
            }
            {
                let arg = builder.use_var(y);
                builder.ins().return_(&[arg]);
            }

            builder.switch_to_block(block3);
            if !lazy_seal {
                builder.seal_block(block3);
            }

            {
                let arg1 = builder.use_var(y);
                let arg2 = builder.use_var(x);
                let tmp = builder.ins().isub(arg1, arg2);
                builder.def_var(y, tmp);
            }
            builder.ins().jump(block1, &[]);
            if !lazy_seal {
                builder.seal_block(block1);
            }

            if lazy_seal {
                builder.seal_all_blocks();
            }

            builder.finalize();
        }

        let flags = settings::Flags::new(settings::builder());
        // println!("{}", func.display(None));
        if let Err(errors) = verify_function(&func, &flags) {
            panic!("{}\n{}", func.display(), errors)
        }
    }

    #[test]
    fn sample() {
        sample_function(false)
    }

    #[test]
    fn sample_with_lazy_seal() {
        sample_function(true)
    }

    #[track_caller]
    fn check(func: &Function, expected_ir: &str) {
        let actual_ir = func.display().to_string();
        assert!(
            expected_ir == actual_ir,
            "Expected:\n{}\nGot:\n{}",
            expected_ir,
            actual_ir
        );
    }

    /// Helper function to construct a fixed frontend configuration.
    fn systemv_frontend_config() -> TargetFrontendConfig {
        TargetFrontendConfig {
            default_call_conv: CallConv::SystemV,
            pointer_width: PointerWidth::U64,
            page_size_align_log2: 12,
        }
    }

    #[test]
    fn memcpy() {
        let frontend_config = systemv_frontend_config();
        let mut sig = Signature::new(frontend_config.default_call_conv);
        sig.returns.push(AbiParam::new(I32));

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

            let block0 = builder.create_block();
            let x = Variable::new(0);
            let y = Variable::new(1);
            let z = Variable::new(2);
            builder.declare_var(x, frontend_config.pointer_type());
            builder.declare_var(y, frontend_config.pointer_type());
            builder.declare_var(z, I32);
            builder.append_block_params_for_function_params(block0);
            builder.switch_to_block(block0);

            let src = builder.use_var(x);
            let dest = builder.use_var(y);
            let size = builder.use_var(y);
            builder.call_memcpy(frontend_config, dest, src, size);
            builder.ins().return_(&[size]);

            builder.seal_all_blocks();
            builder.finalize();
        }

        check(
            &func,
            "function %sample() -> i32 system_v {
    sig0 = (i64, i64, i64) -> i64 system_v
    fn0 = %Memcpy sig0

block0:
    v4 = iconst.i64 0
    v1 -> v4
    v3 = iconst.i64 0
    v0 -> v3
    v2 = call fn0(v1, v0, v1)  ; v1 = 0, v0 = 0, v1 = 0
    return v1  ; v1 = 0
}
",
        );
    }

    #[test]
    fn small_memcpy() {
        let frontend_config = systemv_frontend_config();
        let mut sig = Signature::new(frontend_config.default_call_conv);
        sig.returns.push(AbiParam::new(I32));

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

            let block0 = builder.create_block();
            let x = Variable::new(0);
            let y = Variable::new(16);
            builder.declare_var(x, frontend_config.pointer_type());
            builder.declare_var(y, frontend_config.pointer_type());
            builder.append_block_params_for_function_params(block0);
            builder.switch_to_block(block0);

            let src = builder.use_var(x);
            let dest = builder.use_var(y);
            let size = 8;
            builder.emit_small_memory_copy(
                frontend_config,
                dest,
                src,
                size,
                8,
                8,
                true,
                MemFlags::new(),
            );
            builder.ins().return_(&[dest]);

            builder.seal_all_blocks();
            builder.finalize();
        }

        check(
            &func,
            "function %sample() -> i32 system_v {
block0:
    v4 = iconst.i64 0
    v1 -> v4
    v3 = iconst.i64 0
    v0 -> v3
    v2 = load.i64 aligned v0  ; v0 = 0
    store aligned v2, v1  ; v1 = 0
    return v1  ; v1 = 0
}
",
        );
    }

    #[test]
    fn not_so_small_memcpy() {
        let frontend_config = systemv_frontend_config();
        let mut sig = Signature::new(frontend_config.default_call_conv);
        sig.returns.push(AbiParam::new(I32));

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

            let block0 = builder.create_block();
            let x = Variable::new(0);
            let y = Variable::new(16);
            builder.declare_var(x, frontend_config.pointer_type());
            builder.declare_var(y, frontend_config.pointer_type());
            builder.append_block_params_for_function_params(block0);
            builder.switch_to_block(block0);

            let src = builder.use_var(x);
            let dest = builder.use_var(y);
            let size = 8192;
            builder.emit_small_memory_copy(
                frontend_config,
                dest,
                src,
                size,
                8,
                8,
                true,
                MemFlags::new(),
            );
            builder.ins().return_(&[dest]);

            builder.seal_all_blocks();
            builder.finalize();
        }

        check(
            &func,
            "function %sample() -> i32 system_v {
    sig0 = (i64, i64, i64) -> i64 system_v
    fn0 = %Memcpy sig0

block0:
    v5 = iconst.i64 0
    v1 -> v5
    v4 = iconst.i64 0
    v0 -> v4
    v2 = iconst.i64 8192
    v3 = call fn0(v1, v0, v2)  ; v1 = 0, v0 = 0, v2 = 8192
    return v1  ; v1 = 0
}
",
        );
    }

    #[test]
    fn small_memset() {
        let frontend_config = systemv_frontend_config();
        let mut sig = Signature::new(frontend_config.default_call_conv);
        sig.returns.push(AbiParam::new(I32));

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

            let block0 = builder.create_block();
            let y = Variable::new(16);
            builder.declare_var(y, frontend_config.pointer_type());
            builder.append_block_params_for_function_params(block0);
            builder.switch_to_block(block0);

            let dest = builder.use_var(y);
            let size = 8;
            builder.emit_small_memset(frontend_config, dest, 1, size, 8, MemFlags::new());
            builder.ins().return_(&[dest]);

            builder.seal_all_blocks();
            builder.finalize();
        }

        check(
            &func,
            "function %sample() -> i32 system_v {
block0:
    v2 = iconst.i64 0
    v0 -> v2
    v1 = iconst.i64 0x0101_0101_0101_0101
    store aligned v1, v0  ; v1 = 0x0101_0101_0101_0101, v0 = 0
    return v0  ; v0 = 0
}
",
        );
    }

    #[test]
    fn not_so_small_memset() {
        let frontend_config = systemv_frontend_config();
        let mut sig = Signature::new(frontend_config.default_call_conv);
        sig.returns.push(AbiParam::new(I32));

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

            let block0 = builder.create_block();
            let y = Variable::new(16);
            builder.declare_var(y, frontend_config.pointer_type());
            builder.append_block_params_for_function_params(block0);
            builder.switch_to_block(block0);

            let dest = builder.use_var(y);
            let size = 8192;
            builder.emit_small_memset(frontend_config, dest, 1, size, 8, MemFlags::new());
            builder.ins().return_(&[dest]);

            builder.seal_all_blocks();
            builder.finalize();
        }

        check(
            &func,
            "function %sample() -> i32 system_v {
    sig0 = (i64, i32, i64) -> i64 system_v
    fn0 = %Memset sig0

block0:
    v5 = iconst.i64 0
    v0 -> v5
    v1 = iconst.i8 1
    v2 = iconst.i64 8192
    v3 = uextend.i32 v1  ; v1 = 1
    v4 = call fn0(v0, v3, v2)  ; v0 = 0, v2 = 8192
    return v0  ; v0 = 0
}
",
        );
    }

    #[test]
    fn memcmp() {
        use core::str::FromStr;
        use cranelift_codegen::isa;

        let shared_builder = settings::builder();
        let shared_flags = settings::Flags::new(shared_builder);

        let triple =
            ::target_lexicon::Triple::from_str("x86_64").expect("Couldn't create x86_64 triple");

        let target = isa::lookup(triple)
            .ok()
            .map(|b| b.finish(shared_flags))
            .expect("This test requires x86_64 support.")
            .expect("Should be able to create backend with default flags");

        let mut sig = Signature::new(target.default_call_conv());
        sig.returns.push(AbiParam::new(I32));

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

            let block0 = builder.create_block();
            let x = Variable::new(0);
            let y = Variable::new(1);
            let z = Variable::new(2);
            builder.declare_var(x, target.pointer_type());
            builder.declare_var(y, target.pointer_type());
            builder.declare_var(z, target.pointer_type());
            builder.append_block_params_for_function_params(block0);
            builder.switch_to_block(block0);

            let left = builder.use_var(x);
            let right = builder.use_var(y);
            let size = builder.use_var(z);
            let cmp = builder.call_memcmp(target.frontend_config(), left, right, size);
            builder.ins().return_(&[cmp]);

            builder.seal_all_blocks();
            builder.finalize();
        }

        check(
            &func,
            "function %sample() -> i32 system_v {
    sig0 = (i64, i64, i64) -> i32 system_v
    fn0 = %Memcmp sig0

block0:
    v6 = iconst.i64 0
    v2 -> v6
    v5 = iconst.i64 0
    v1 -> v5
    v4 = iconst.i64 0
    v0 -> v4
    v3 = call fn0(v0, v1, v2)  ; v0 = 0, v1 = 0, v2 = 0
    return v3
}
",
        );
    }

    #[test]
    fn small_memcmp_zero_size() {
        let align_eight = std::num::NonZeroU8::new(8).unwrap();
        small_memcmp_helper(
            "
block0:
    v4 = iconst.i64 0
    v1 -> v4
    v3 = iconst.i64 0
    v0 -> v3
    v2 = iconst.i8 1
    return v2  ; v2 = 1",
            |builder, target, x, y| {
                builder.emit_small_memory_compare(
                    target.frontend_config(),
                    IntCC::UnsignedGreaterThanOrEqual,
                    x,
                    y,
                    0,
                    align_eight,
                    align_eight,
                    MemFlags::new(),
                )
            },
        );
    }

    #[test]
    fn small_memcmp_byte_ugt() {
        let align_one = std::num::NonZeroU8::new(1).unwrap();
        small_memcmp_helper(
            "
block0:
    v6 = iconst.i64 0
    v1 -> v6
    v5 = iconst.i64 0
    v0 -> v5
    v2 = load.i8 aligned v0  ; v0 = 0
    v3 = load.i8 aligned v1  ; v1 = 0
    v4 = icmp ugt v2, v3
    return v4",
            |builder, target, x, y| {
                builder.emit_small_memory_compare(
                    target.frontend_config(),
                    IntCC::UnsignedGreaterThan,
                    x,
                    y,
                    1,
                    align_one,
                    align_one,
                    MemFlags::new(),
                )
            },
        );
    }

    #[test]
    fn small_memcmp_aligned_eq() {
        let align_four = std::num::NonZeroU8::new(4).unwrap();
        small_memcmp_helper(
            "
block0:
    v6 = iconst.i64 0
    v1 -> v6
    v5 = iconst.i64 0
    v0 -> v5
    v2 = load.i32 aligned v0  ; v0 = 0
    v3 = load.i32 aligned v1  ; v1 = 0
    v4 = icmp eq v2, v3
    return v4",
            |builder, target, x, y| {
                builder.emit_small_memory_compare(
                    target.frontend_config(),
                    IntCC::Equal,
                    x,
                    y,
                    4,
                    align_four,
                    align_four,
                    MemFlags::new(),
                )
            },
        );
    }

    #[test]
    fn small_memcmp_ipv6_ne() {
        let align_two = std::num::NonZeroU8::new(2).unwrap();
        small_memcmp_helper(
            "
block0:
    v6 = iconst.i64 0
    v1 -> v6
    v5 = iconst.i64 0
    v0 -> v5
    v2 = load.i128 v0  ; v0 = 0
    v3 = load.i128 v1  ; v1 = 0
    v4 = icmp ne v2, v3
    return v4",
            |builder, target, x, y| {
                builder.emit_small_memory_compare(
                    target.frontend_config(),
                    IntCC::NotEqual,
                    x,
                    y,
                    16,
                    align_two,
                    align_two,
                    MemFlags::new(),
                )
            },
        );
    }

    #[test]
    fn small_memcmp_odd_size_uge() {
        let one = std::num::NonZeroU8::new(1).unwrap();
        small_memcmp_helper(
            "
    sig0 = (i64, i64, i64) -> i32 system_v
    fn0 = %Memcmp sig0

block0:
    v6 = iconst.i64 0
    v1 -> v6
    v5 = iconst.i64 0
    v0 -> v5
    v2 = iconst.i64 3
    v3 = call fn0(v0, v1, v2)  ; v0 = 0, v1 = 0, v2 = 3
    v4 = icmp_imm sge v3, 0
    return v4",
            |builder, target, x, y| {
                builder.emit_small_memory_compare(
                    target.frontend_config(),
                    IntCC::UnsignedGreaterThanOrEqual,
                    x,
                    y,
                    3,
                    one,
                    one,
                    MemFlags::new(),
                )
            },
        );
    }

    fn small_memcmp_helper(
        expected: &str,
        f: impl FnOnce(&mut FunctionBuilder, &dyn TargetIsa, Value, Value) -> Value,
    ) {
        use core::str::FromStr;
        use cranelift_codegen::isa;

        let shared_builder = settings::builder();
        let shared_flags = settings::Flags::new(shared_builder);

        let triple =
            ::target_lexicon::Triple::from_str("x86_64").expect("Couldn't create x86_64 triple");

        let target = isa::lookup(triple)
            .ok()
            .map(|b| b.finish(shared_flags))
            .expect("This test requires x86_64 support.")
            .expect("Should be able to create backend with default flags");

        let mut sig = Signature::new(target.default_call_conv());
        sig.returns.push(AbiParam::new(I8));

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

            let block0 = builder.create_block();
            let x = Variable::new(0);
            let y = Variable::new(1);
            builder.declare_var(x, target.pointer_type());
            builder.declare_var(y, target.pointer_type());
            builder.append_block_params_for_function_params(block0);
            builder.switch_to_block(block0);

            let left = builder.use_var(x);
            let right = builder.use_var(y);
            let ret = f(&mut builder, &*target, left, right);
            builder.ins().return_(&[ret]);

            builder.seal_all_blocks();
            builder.finalize();
        }

        check(
            &func,
            &format!("function %sample() -> i8 system_v {{{}\n}}\n", expected),
        );
    }

    #[test]
    fn undef_vector_vars() {
        let mut sig = Signature::new(CallConv::SystemV);
        sig.returns.push(AbiParam::new(I8X16));
        sig.returns.push(AbiParam::new(I8X16));
        sig.returns.push(AbiParam::new(F32X4));

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

            let block0 = builder.create_block();
            let a = Variable::new(0);
            let b = Variable::new(1);
            let c = Variable::new(2);
            builder.declare_var(a, I8X16);
            builder.declare_var(b, I8X16);
            builder.declare_var(c, F32X4);
            builder.switch_to_block(block0);

            let a = builder.use_var(a);
            let b = builder.use_var(b);
            let c = builder.use_var(c);
            builder.ins().return_(&[a, b, c]);

            builder.seal_all_blocks();
            builder.finalize();
        }

        check(
            &func,
            "function %sample() -> i8x16, i8x16, f32x4 system_v {
    const0 = 0x00000000000000000000000000000000

block0:
    v5 = f32const 0.0
    v6 = splat.f32x4 v5  ; v5 = 0.0
    v2 -> v6
    v4 = vconst.i8x16 const0
    v1 -> v4
    v3 = vconst.i8x16 const0
    v0 -> v3
    return v0, v1, v2  ; v0 = const0, v1 = const0
}
",
        );
    }

    #[test]
    fn test_greatest_divisible_power_of_two() {
        assert_eq!(64, greatest_divisible_power_of_two(64));
        assert_eq!(16, greatest_divisible_power_of_two(48));
        assert_eq!(8, greatest_divisible_power_of_two(24));
        assert_eq!(1, greatest_divisible_power_of_two(25));
    }

    #[test]
    fn try_use_var() {
        let sig = Signature::new(CallConv::SystemV);

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

            let block0 = builder.create_block();
            builder.append_block_params_for_function_params(block0);
            builder.switch_to_block(block0);

            assert_eq!(
                builder.try_use_var(Variable::from_u32(0)),
                Err(UseVariableError::UsedBeforeDeclared(Variable::from_u32(0)))
            );

            let value = builder.ins().iconst(cranelift_codegen::ir::types::I32, 0);

            assert_eq!(
                builder.try_def_var(Variable::from_u32(0), value),
                Err(DefVariableError::DefinedBeforeDeclared(Variable::from_u32(
                    0
                )))
            );

            builder.declare_var(Variable::from_u32(0), cranelift_codegen::ir::types::I32);
            assert_eq!(
                builder.try_declare_var(Variable::from_u32(0), cranelift_codegen::ir::types::I32),
                Err(DeclareVariableError::DeclaredMultipleTimes(
                    Variable::from_u32(0)
                ))
            );
        }
    }

    #[test]
    fn needs_stack_map_and_loop() {
        let mut sig = Signature::new(CallConv::SystemV);
        sig.params.push(AbiParam::new(ir::types::I32));
        sig.params.push(AbiParam::new(ir::types::I32));

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
        let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

        let name = builder
            .func
            .declare_imported_user_function(ir::UserExternalName {
                namespace: 0,
                index: 0,
            });
        let mut sig = Signature::new(CallConv::SystemV);
        sig.params.push(AbiParam::new(ir::types::I32));
        let signature = builder.func.import_signature(sig);
        let func_ref = builder.import_function(ir::ExtFuncData {
            name: ir::ExternalName::user(name),
            signature,
            colocated: true,
        });

        // Here the value `v1` is technically not live but our single-pass liveness
        // analysis treats every branch argument to a block as live to avoid
        // needing to do a fixed-point loop.
        //
        //     block0(v0, v1):
        //       call $foo(v0)
        //       jump block0(v0, v1)
        let block0 = builder.create_block();
        builder.append_block_params_for_function_params(block0);
        let a = builder.func.dfg.block_params(block0)[0];
        let b = builder.func.dfg.block_params(block0)[1];
        builder.declare_needs_stack_map(a);
        builder.declare_needs_stack_map(b);
        builder.switch_to_block(block0);
        builder.ins().call(func_ref, &[a]);
        builder.ins().jump(block0, &[a, b]);
        builder.seal_all_blocks();
        builder.finalize();

        eprintln!("Actual = {}", func.display());
        assert_eq!(
            func.display().to_string().trim(),
            r#"
function %sample(i32, i32) system_v {
    ss0 = explicit_slot 8, align = 4
    sig0 = (i32) system_v
    fn0 = colocated u0:0 sig0

block0(v0: i32, v1: i32):
    stack_store v0, ss0
    stack_store v1, ss0+4
    call fn0(v0), stack_map=[i32 @ ss0+0, i32 @ ss0+4]
    jump block0(v0, v1)
}
            "#
            .trim()
        );
    }

    #[test]
    fn needs_stack_map_simple() {
        let sig = Signature::new(CallConv::SystemV);

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
        let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

        let name = builder
            .func
            .declare_imported_user_function(ir::UserExternalName {
                namespace: 0,
                index: 0,
            });
        let mut sig = Signature::new(CallConv::SystemV);
        sig.params.push(AbiParam::new(ir::types::I32));
        let signature = builder.func.import_signature(sig);
        let func_ref = builder.import_function(ir::ExtFuncData {
            name: ir::ExternalName::user(name),
            signature,
            colocated: true,
        });

        // At each `call` we are losing one more value as no longer live, so
        // each stack map should be one smaller than the last. `v3` is never
        // live, so should never appear in a stack map. Note that a value that
        // is an argument to the call, but is not live after the call, should
        // not appear in the stack map. This is why `v0` appears in the first
        // call's stack map, but not the second call's stack map.
        //
        //     block0:
        //       v0 = needs stack map
        //       v1 = needs stack map
        //       v2 = needs stack map
        //       v3 = needs stack map
        //       call $foo(v0)
        //       call $foo(v0)
        //       call $foo(v1)
        //       call $foo(v2)
        //       return
        let block0 = builder.create_block();
        builder.append_block_params_for_function_params(block0);
        builder.switch_to_block(block0);
        let v0 = builder.ins().iconst(ir::types::I32, 0);
        builder.declare_needs_stack_map(v0);
        let v1 = builder.ins().iconst(ir::types::I32, 1);
        builder.declare_needs_stack_map(v1);
        let v2 = builder.ins().iconst(ir::types::I32, 2);
        builder.declare_needs_stack_map(v2);
        let v3 = builder.ins().iconst(ir::types::I32, 3);
        builder.declare_needs_stack_map(v3);
        builder.ins().call(func_ref, &[v0]);
        builder.ins().call(func_ref, &[v0]);
        builder.ins().call(func_ref, &[v1]);
        builder.ins().call(func_ref, &[v2]);
        builder.ins().return_(&[]);
        builder.seal_all_blocks();
        builder.finalize();

        eprintln!("Actual = {}", func.display());
        assert_eq!(
            func.display().to_string().trim(),
            r#"
function %sample() system_v {
    ss0 = explicit_slot 12, align = 4
    sig0 = (i32) system_v
    fn0 = colocated u0:0 sig0

block0:
    v0 = iconst.i32 0
    v1 = iconst.i32 1
    v2 = iconst.i32 2
    v3 = iconst.i32 3
    stack_store v0, ss0  ; v0 = 0
    stack_store v1, ss0+4  ; v1 = 1
    stack_store v2, ss0+8  ; v2 = 2
    call fn0(v0), stack_map=[i32 @ ss0+0, i32 @ ss0+4, i32 @ ss0+8]  ; v0 = 0
    stack_store v1, ss0  ; v1 = 1
    stack_store v2, ss0+4  ; v2 = 2
    call fn0(v0), stack_map=[i32 @ ss0+0, i32 @ ss0+4]  ; v0 = 0
    stack_store v2, ss0  ; v2 = 2
    call fn0(v1), stack_map=[i32 @ ss0+0]  ; v1 = 1
    call fn0(v2)  ; v2 = 2
    return
}
            "#
            .trim()
        );
    }

    #[test]
    fn needs_stack_map_and_post_order_early_return() {
        let mut sig = Signature::new(CallConv::SystemV);
        sig.params.push(AbiParam::new(ir::types::I32));

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
        let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

        let name = builder
            .func
            .declare_imported_user_function(ir::UserExternalName {
                namespace: 0,
                index: 0,
            });
        let signature = builder
            .func
            .import_signature(Signature::new(CallConv::SystemV));
        let func_ref = builder.import_function(ir::ExtFuncData {
            name: ir::ExternalName::user(name),
            signature,
            colocated: true,
        });

        // Here we rely on the post-order to make sure that we never visit block
        // 4 and add `v1` to our live set, then visit block 2 and add `v1` to
        // its stack map even though `v1` is not in scope. Thanksfully, that
        // sequence is impossible because it would be an invalid post-order
        // traversal. The only valid post-order traversals are [3, 1, 2, 0] and
        // [2, 3, 1, 0].
        //
        //     block0(v0):
        //       brif v0, block1, block2
        //
        //     block1:
        //       <stuff>
        //       v1 = get some gc ref
        //       jump block3
        //
        //     block2:
        //       call $needs_safepoint_accidentally
        //       return
        //
        //     block3:
        //       stuff keeping v1 live
        //       return
        let block0 = builder.create_block();
        let block1 = builder.create_block();
        let block2 = builder.create_block();
        let block3 = builder.create_block();
        builder.append_block_params_for_function_params(block0);

        builder.switch_to_block(block0);
        let v0 = builder.func.dfg.block_params(block0)[0];
        builder.ins().brif(v0, block1, &[], block2, &[]);

        builder.switch_to_block(block1);
        let v1 = builder.ins().iconst(ir::types::I64, 0x12345678);
        builder.declare_needs_stack_map(v1);
        builder.ins().jump(block3, &[]);

        builder.switch_to_block(block2);
        builder.ins().call(func_ref, &[]);
        builder.ins().return_(&[]);

        builder.switch_to_block(block3);
        // NB: Our simplistic liveness analysis conservatively treats any use of
        // a value as keeping it live, regardless if the use has side effects or
        // is otherwise itself live, so an `iadd_imm` suffices to keep `v1` live
        // here.
        builder.ins().iadd_imm(v1, 0);
        builder.ins().return_(&[]);

        builder.seal_all_blocks();
        builder.finalize();

        eprintln!("Actual = {}", func.display());
        assert_eq!(
            func.display().to_string().trim(),
            r#"
function %sample(i32) system_v {
    sig0 = () system_v
    fn0 = colocated u0:0 sig0

block0(v0: i32):
    brif v0, block1, block2

block1:
    v1 = iconst.i64 0x1234_5678
    jump block3

block2:
    call fn0()
    return

block3:
    v2 = iadd_imm.i64 v1, 0  ; v1 = 0x1234_5678
    return
}
            "#
            .trim()
        );
    }

    #[test]
    fn needs_stack_map_conditional_branches_and_liveness() {
        let mut sig = Signature::new(CallConv::SystemV);
        sig.params.push(AbiParam::new(ir::types::I32));

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
        let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

        let name = builder
            .func
            .declare_imported_user_function(ir::UserExternalName {
                namespace: 0,
                index: 0,
            });
        let signature = builder
            .func
            .import_signature(Signature::new(CallConv::SystemV));
        let func_ref = builder.import_function(ir::ExtFuncData {
            name: ir::ExternalName::user(name),
            signature,
            colocated: true,
        });

        // Depending on which post-order traversal we take, we might consider
        // `v1` live inside `block1` and emit unnecessary safepoint
        // spills. That's not great, but ultimately fine, we are trading away
        // precision for a single-pass analysis.
        //
        //     block0(v0):
        //       v1 = needs stack map
        //       brif v0, block1, block2
        //
        //     block1:
        //       call $foo()
        //       return
        //
        //     block2:
        //       keep v1 alive
        //       return
        let block0 = builder.create_block();
        let block1 = builder.create_block();
        let block2 = builder.create_block();
        builder.append_block_params_for_function_params(block0);

        builder.switch_to_block(block0);
        let v0 = builder.func.dfg.block_params(block0)[0];
        let v1 = builder.ins().iconst(ir::types::I64, 0x12345678);
        builder.declare_needs_stack_map(v1);
        builder.ins().brif(v0, block1, &[], block2, &[]);

        builder.switch_to_block(block1);
        builder.ins().call(func_ref, &[]);
        builder.ins().return_(&[]);

        builder.switch_to_block(block2);
        // NB: Our simplistic liveness analysis conservatively treats any use of
        // a value as keeping it live, regardless if the use has side effects or
        // is otherwise itself live, so an `iadd_imm` suffices to keep `v1` live
        // here.
        builder.ins().iadd_imm(v1, 0);
        builder.ins().return_(&[]);

        builder.seal_all_blocks();
        builder.finalize();

        eprintln!("Actual = {}", func.display());
        assert_eq!(
            func.display().to_string().trim(),
            r#"
function %sample(i32) system_v {
    sig0 = () system_v
    fn0 = colocated u0:0 sig0

block0(v0: i32):
    v1 = iconst.i64 0x1234_5678
    brif v0, block1, block2

block1:
    call fn0()
    return

block2:
    v2 = iadd_imm.i64 v1, 0  ; v1 = 0x1234_5678
    return
}
            "#
            .trim()
        );

        // Now Do the same test but with block 1 and 2 swapped so that we
        // exercise what we are trying to exercise, regardless of which
        // post-order traversal we happen to take.
        func.clear();
        fn_ctx.clear();

        let mut sig = Signature::new(CallConv::SystemV);
        sig.params.push(AbiParam::new(ir::types::I32));

        func.signature = sig;
        let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

        let name = builder
            .func
            .declare_imported_user_function(ir::UserExternalName {
                namespace: 0,
                index: 0,
            });
        let signature = builder
            .func
            .import_signature(Signature::new(CallConv::SystemV));
        let func_ref = builder.import_function(ir::ExtFuncData {
            name: ir::ExternalName::user(name),
            signature,
            colocated: true,
        });

        let block0 = builder.create_block();
        let block1 = builder.create_block();
        let block2 = builder.create_block();
        builder.append_block_params_for_function_params(block0);

        builder.switch_to_block(block0);
        let v0 = builder.func.dfg.block_params(block0)[0];
        let v1 = builder.ins().iconst(ir::types::I64, 0x12345678);
        builder.declare_needs_stack_map(v1);
        builder.ins().brif(v0, block1, &[], block2, &[]);

        builder.switch_to_block(block1);
        builder.ins().iadd_imm(v1, 0);
        builder.ins().return_(&[]);

        builder.switch_to_block(block2);
        builder.ins().call(func_ref, &[]);
        builder.ins().return_(&[]);

        builder.seal_all_blocks();
        builder.finalize();

        eprintln!("Actual = {}", func.display());
        assert_eq!(
            func.display().to_string().trim(),
            r#"
function u0:0(i32) system_v {
    ss0 = explicit_slot 8, align = 8
    sig0 = () system_v
    fn0 = colocated u0:0 sig0

block0(v0: i32):
    v1 = iconst.i64 0x1234_5678
    brif v0, block1, block2

block1:
    v2 = iadd_imm.i64 v1, 0  ; v1 = 0x1234_5678
    return

block2:
    stack_store.i64 v1, ss0  ; v1 = 0x1234_5678
    call fn0(), stack_map=[i64 @ ss0+0]
    return
}
            "#
            .trim()
        );
    }

    #[test]
    fn needs_stack_map_and_tail_calls() {
        let mut sig = Signature::new(CallConv::SystemV);
        sig.params.push(AbiParam::new(ir::types::I32));

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
        let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

        let name = builder
            .func
            .declare_imported_user_function(ir::UserExternalName {
                namespace: 0,
                index: 0,
            });
        let signature = builder
            .func
            .import_signature(Signature::new(CallConv::SystemV));
        let func_ref = builder.import_function(ir::ExtFuncData {
            name: ir::ExternalName::user(name),
            signature,
            colocated: true,
        });

        // Depending on which post-order traversal we take, we might consider
        // `v1` live inside `block1`. But nothing is live after a tail call so
        // we shouldn't spill `v1` either way here.
        //
        //     block0(v0):
        //       v1 = needs stack map
        //       brif v0, block1, block2
        //
        //     block1:
        //       return_call $foo()
        //
        //     block2:
        //       keep v1 alive
        //       return
        let block0 = builder.create_block();
        let block1 = builder.create_block();
        let block2 = builder.create_block();
        builder.append_block_params_for_function_params(block0);

        builder.switch_to_block(block0);
        let v0 = builder.func.dfg.block_params(block0)[0];
        let v1 = builder.ins().iconst(ir::types::I64, 0x12345678);
        builder.declare_needs_stack_map(v1);
        builder.ins().brif(v0, block1, &[], block2, &[]);

        builder.switch_to_block(block1);
        builder.ins().return_call(func_ref, &[]);

        builder.switch_to_block(block2);
        // NB: Our simplistic liveness analysis conservatively treats any use of
        // a value as keeping it live, regardless if the use has side effects or
        // is otherwise itself live, so an `iadd_imm` suffices to keep `v1` live
        // here.
        builder.ins().iadd_imm(v1, 0);
        builder.ins().return_(&[]);

        builder.seal_all_blocks();
        builder.finalize();

        eprintln!("Actual = {}", func.display());
        assert_eq!(
            func.display().to_string().trim(),
            r#"
function %sample(i32) system_v {
    sig0 = () system_v
    fn0 = colocated u0:0 sig0

block0(v0: i32):
    v1 = iconst.i64 0x1234_5678
    brif v0, block1, block2

block1:
    return_call fn0()

block2:
    v2 = iadd_imm.i64 v1, 0  ; v1 = 0x1234_5678
    return
}
            "#
            .trim()
        );

        // Do the same test but with block 1 and 2 swapped so that we exercise
        // what we are trying to exercise, regardless of which post-order
        // traversal we happen to take.
        func.clear();
        fn_ctx.clear();

        let mut sig = Signature::new(CallConv::SystemV);
        sig.params.push(AbiParam::new(ir::types::I32));
        func.signature = sig;

        let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

        let name = builder
            .func
            .declare_imported_user_function(ir::UserExternalName {
                namespace: 0,
                index: 0,
            });
        let signature = builder
            .func
            .import_signature(Signature::new(CallConv::SystemV));
        let func_ref = builder.import_function(ir::ExtFuncData {
            name: ir::ExternalName::user(name),
            signature,
            colocated: true,
        });

        let block0 = builder.create_block();
        let block1 = builder.create_block();
        let block2 = builder.create_block();
        builder.append_block_params_for_function_params(block0);

        builder.switch_to_block(block0);
        let v0 = builder.func.dfg.block_params(block0)[0];
        let v1 = builder.ins().iconst(ir::types::I64, 0x12345678);
        builder.declare_needs_stack_map(v1);
        builder.ins().brif(v0, block1, &[], block2, &[]);

        builder.switch_to_block(block1);
        builder.ins().iadd_imm(v1, 0);
        builder.ins().return_(&[]);

        builder.switch_to_block(block2);
        builder.ins().return_call(func_ref, &[]);

        builder.seal_all_blocks();
        builder.finalize();

        eprintln!("Actual = {}", func.display());
        assert_eq!(
            func.display().to_string().trim(),
            r#"
function u0:0(i32) system_v {
    sig0 = () system_v
    fn0 = colocated u0:0 sig0

block0(v0: i32):
    v1 = iconst.i64 0x1234_5678
    brif v0, block1, block2

block1:
    v2 = iadd_imm.i64 v1, 0  ; v1 = 0x1234_5678
    return

block2:
    return_call fn0()
}
            "#
            .trim()
        );
    }

    #[test]
    fn needs_stack_map_and_cfg_diamond() {
        let mut sig = Signature::new(CallConv::SystemV);
        sig.params.push(AbiParam::new(ir::types::I32));

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
        let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

        let name = builder
            .func
            .declare_imported_user_function(ir::UserExternalName {
                namespace: 0,
                index: 0,
            });
        let signature = builder
            .func
            .import_signature(Signature::new(CallConv::SystemV));
        let func_ref = builder.import_function(ir::ExtFuncData {
            name: ir::ExternalName::user(name),
            signature,
            colocated: true,
        });

        // Create an if/else CFG diamond that and check that various things get
        // spilled as needed.
        //
        //     block0(v0):
        //       brif v0, block1, block2
        //
        //     block1:
        //       v1 = needs stack map
        //       v2 = needs stack map
        //       call $foo()
        //       jump block3(v1, v2)
        //
        //     block2:
        //       v3 = needs stack map
        //       v4 = needs stack map
        //       call $foo()
        //       jump block3(v3, v3)  ;; Note: v4 is not live
        //
        //     block3(v5, v6):
        //       call $foo()
        //       keep v5 alive, but not v6
        let block0 = builder.create_block();
        let block1 = builder.create_block();
        let block2 = builder.create_block();
        let block3 = builder.create_block();
        builder.append_block_params_for_function_params(block0);

        builder.switch_to_block(block0);
        let v0 = builder.func.dfg.block_params(block0)[0];
        builder.ins().brif(v0, block1, &[], block2, &[]);

        builder.switch_to_block(block1);
        let v1 = builder.ins().iconst(ir::types::I64, 1);
        builder.declare_needs_stack_map(v1);
        let v2 = builder.ins().iconst(ir::types::I64, 2);
        builder.declare_needs_stack_map(v2);
        builder.ins().call(func_ref, &[]);
        builder.ins().jump(block3, &[v1, v2]);

        builder.switch_to_block(block2);
        let v3 = builder.ins().iconst(ir::types::I64, 3);
        builder.declare_needs_stack_map(v3);
        let v4 = builder.ins().iconst(ir::types::I64, 4);
        builder.declare_needs_stack_map(v4);
        builder.ins().call(func_ref, &[]);
        builder.ins().jump(block3, &[v3, v3]);

        builder.switch_to_block(block3);
        builder.ins().call(func_ref, &[]);
        // NB: Our simplistic liveness analysis conservatively treats any use of
        // a value as keeping it live, regardless if the use has side effects or
        // is otherwise itself live, so an `iadd_imm` suffices to keep `v1` live
        // here.
        builder.ins().iadd_imm(v1, 0);
        builder.ins().return_(&[]);

        builder.seal_all_blocks();
        builder.finalize();

        eprintln!("Actual = {}", func.display());
        assert_eq!(
            func.display().to_string().trim(),
            r#"
function %sample(i32) system_v {
    ss0 = explicit_slot 16, align = 8
    sig0 = () system_v
    fn0 = colocated u0:0 sig0

block0(v0: i32):
    brif v0, block1, block2

block1:
    v1 = iconst.i64 1
    v2 = iconst.i64 2
    stack_store v1, ss0  ; v1 = 1
    stack_store v2, ss0+8  ; v2 = 2
    call fn0(), stack_map=[i64 @ ss0+0, i64 @ ss0+8]
    jump block3(v1, v2)  ; v1 = 1, v2 = 2

block2:
    v3 = iconst.i64 3
    v4 = iconst.i64 4
    stack_store v3, ss0  ; v3 = 3
    call fn0(), stack_map=[i64 @ ss0+0]
    jump block3(v3, v3)  ; v3 = 3, v3 = 3

block3:
    stack_store.i64 v1, ss0  ; v1 = 1
    call fn0(), stack_map=[i64 @ ss0+0]
    v5 = iadd_imm.i64 v1, 0  ; v1 = 1
    return
}
            "#
            .trim()
        );
    }

    #[test]
    fn needs_stack_map_and_heterogeneous_types() {
        let mut sig = Signature::new(CallConv::SystemV);
        for ty in [
            ir::types::I8,
            ir::types::I16,
            ir::types::I32,
            ir::types::I64,
            ir::types::I128,
            ir::types::F32,
            ir::types::F64,
            ir::types::I8X16,
            ir::types::I16X8,
        ] {
            sig.params.push(AbiParam::new(ty));
            sig.returns.push(AbiParam::new(ty));
        }

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
        let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

        let name = builder
            .func
            .declare_imported_user_function(ir::UserExternalName {
                namespace: 0,
                index: 0,
            });
        let signature = builder
            .func
            .import_signature(Signature::new(CallConv::SystemV));
        let func_ref = builder.import_function(ir::ExtFuncData {
            name: ir::ExternalName::user(name),
            signature,
            colocated: true,
        });

        // Test that we support stack maps of heterogeneous types and properly
        // coalesce types into stack slots based on their size.
        //
        //     block0(v0, v1, v2, v3, v4, v5, v6, v7, v8):
        //       call $foo()
        //       return v0, v1, v2, v3, v4, v5, v6, v7, v8
        let block0 = builder.create_block();
        builder.append_block_params_for_function_params(block0);

        builder.switch_to_block(block0);
        let params = builder.func.dfg.block_params(block0).to_vec();
        for val in &params {
            builder.declare_needs_stack_map(*val);
        }
        builder.ins().call(func_ref, &[]);
        builder.ins().return_(&params);

        builder.seal_all_blocks();
        builder.finalize();

        eprintln!("Actual = {}", func.display());
        assert_eq!(
            func.display().to_string().trim(),
            r#"
function %sample(i8, i16, i32, i64, i128, f32, f64, i8x16, i16x8) -> i8, i16, i32, i64, i128, f32, f64, i8x16, i16x8 system_v {
    ss0 = explicit_slot 1
    ss1 = explicit_slot 2, align = 2
    ss2 = explicit_slot 8, align = 4
    ss3 = explicit_slot 16, align = 8
    ss4 = explicit_slot 48, align = 16
    sig0 = () system_v
    fn0 = colocated u0:0 sig0

block0(v0: i8, v1: i16, v2: i32, v3: i64, v4: i128, v5: f32, v6: f64, v7: i8x16, v8: i16x8):
    stack_store v0, ss0
    stack_store v1, ss1
    stack_store v2, ss2
    stack_store v5, ss2+4
    stack_store v3, ss3
    stack_store v6, ss3+8
    stack_store v4, ss4
    stack_store v7, ss4+16
    stack_store v8, ss4+32
    call fn0(), stack_map=[i8 @ ss0+0, i16 @ ss1+0, i32 @ ss2+0, f32 @ ss2+4, i64 @ ss3+0, f64 @ ss3+8, i128 @ ss4+0, i8x16 @ ss4+16, i16x8 @ ss4+32]
    return v0, v1, v2, v3, v4, v5, v6, v7, v8
}
            "#
            .trim()
        );
    }
}