use crate::ssa::{SSABuilder, SideEffects};
use crate::variable::Variable;
use core::fmt::{self, Debug};
use cranelift_codegen::cursor::{Cursor, FuncCursor};
use cranelift_codegen::entity::{EntityRef, EntitySet, SecondaryMap};
use cranelift_codegen::ir;
use cranelift_codegen::ir::condcodes::IntCC;
use cranelift_codegen::ir::{
types, AbiParam, Block, DataFlowGraph, DynamicStackSlot, DynamicStackSlotData, ExtFuncData,
ExternalName, FuncRef, Function, GlobalValue, GlobalValueData, Inst, InstBuilder,
InstBuilderBase, InstructionData, JumpTable, JumpTableData, LibCall, MemFlags, RelSourceLoc,
SigRef, Signature, StackSlot, StackSlotData, Type, Value, ValueLabel, ValueLabelAssignments,
ValueLabelStart,
};
use cranelift_codegen::isa::TargetFrontendConfig;
use cranelift_codegen::packed_option::PackedOption;
#[derive(Default)]
pub struct FunctionBuilderContext {
ssa: SSABuilder,
status: SecondaryMap<Block, BlockStatus>,
types: SecondaryMap<Variable, Type>,
}
pub struct FunctionBuilder<'a> {
pub func: &'a mut Function,
srcloc: ir::SourceLoc,
func_ctx: &'a mut FunctionBuilderContext,
position: PackedOption<Block>,
}
#[derive(Clone, Default, Eq, PartialEq)]
enum BlockStatus {
#[default]
Empty,
Partial,
Filled,
}
impl FunctionBuilderContext {
pub fn new() -> Self {
Self::default()
}
fn clear(&mut self) {
self.ssa.clear();
self.status.clear();
self.types.clear();
}
fn is_empty(&self) -> bool {
self.ssa.is_empty() && self.status.is_empty() && self.types.is_empty()
}
}
pub struct FuncInstBuilder<'short, 'long: 'short> {
builder: &'short mut FunctionBuilder<'long>,
block: Block,
}
impl<'short, 'long> FuncInstBuilder<'short, 'long> {
fn new(builder: &'short mut FunctionBuilder<'long>, block: Block) -> Self {
Self { builder, block }
}
}
impl<'short, 'long> InstBuilderBase<'short> for FuncInstBuilder<'short, 'long> {
fn data_flow_graph(&self) -> &DataFlowGraph {
&self.builder.func.dfg
}
fn data_flow_graph_mut(&mut self) -> &mut DataFlowGraph {
&mut self.builder.func.dfg
}
fn build(self, data: InstructionData, ctrl_typevar: Type) -> (Inst, &'short mut DataFlowGraph) {
self.builder.ensure_inserted_block();
let inst = self.builder.func.dfg.make_inst(data.clone());
self.builder.func.dfg.make_inst_results(inst, ctrl_typevar);
self.builder.func.layout.append_inst(inst, self.block);
if !self.builder.srcloc.is_default() {
self.builder.func.set_srcloc(inst, self.builder.srcloc);
}
match &self.builder.func.dfg.insts[inst] {
ir::InstructionData::Jump {
destination: dest, ..
} => {
let block = dest.block(&self.builder.func.dfg.value_lists);
self.builder.declare_successor(block, inst);
}
ir::InstructionData::Brif {
blocks: [branch_then, branch_else],
..
} => {
let block_then = branch_then.block(&self.builder.func.dfg.value_lists);
let block_else = branch_else.block(&self.builder.func.dfg.value_lists);
self.builder.declare_successor(block_then, inst);
if block_then != block_else {
self.builder.declare_successor(block_else, inst);
}
}
ir::InstructionData::BranchTable { table, .. } => {
let pool = &self.builder.func.dfg.value_lists;
let mut unique = EntitySet::<Block>::new();
for dest_block in self
.builder
.func
.stencil
.dfg
.jump_tables
.get(*table)
.expect("you are referencing an undeclared jump table")
.all_branches()
{
let block = dest_block.block(pool);
if !unique.insert(block) {
continue;
}
self.builder
.func_ctx
.ssa
.declare_block_predecessor(block, inst);
}
}
inst => debug_assert!(!inst.opcode().is_branch()),
}
if data.opcode().is_terminator() {
self.builder.fill_current_block()
}
(inst, &mut self.builder.func.dfg)
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum UseVariableError {
UsedBeforeDeclared(Variable),
}
impl fmt::Display for UseVariableError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
UseVariableError::UsedBeforeDeclared(variable) => {
write!(
f,
"variable {} was used before it was defined",
variable.index()
)?;
}
}
Ok(())
}
}
impl std::error::Error for UseVariableError {}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum DeclareVariableError {
DeclaredMultipleTimes(Variable),
}
impl std::error::Error for DeclareVariableError {}
impl fmt::Display for DeclareVariableError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
DeclareVariableError::DeclaredMultipleTimes(variable) => {
write!(
f,
"variable {} was declared multiple times",
variable.index()
)?;
}
}
Ok(())
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum DefVariableError {
TypeMismatch(Variable, Value),
DefinedBeforeDeclared(Variable),
}
impl fmt::Display for DefVariableError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
DefVariableError::TypeMismatch(variable, value) => {
write!(
f,
"the types of variable {} and value {} are not the same.
The `Value` supplied to `def_var` must be of the same type as
the variable was declared to be of in `declare_var`.",
variable.index(),
value.as_u32()
)?;
}
DefVariableError::DefinedBeforeDeclared(variable) => {
write!(
f,
"the value of variabe {} was declared before it was defined",
variable.index()
)?;
}
}
Ok(())
}
}
impl<'a> FunctionBuilder<'a> {
pub fn new(func: &'a mut Function, func_ctx: &'a mut FunctionBuilderContext) -> Self {
debug_assert!(func_ctx.is_empty());
Self {
func,
srcloc: Default::default(),
func_ctx,
position: Default::default(),
}
}
pub fn current_block(&self) -> Option<Block> {
self.position.expand()
}
pub fn set_srcloc(&mut self, srcloc: ir::SourceLoc) {
self.srcloc = srcloc;
}
pub fn create_block(&mut self) -> Block {
let block = self.func.dfg.make_block();
self.func_ctx.ssa.declare_block(block);
block
}
pub fn set_cold_block(&mut self, block: Block) {
self.func.layout.set_cold(block);
}
pub fn insert_block_after(&mut self, block: Block, after: Block) {
self.func.layout.insert_block_after(block, after);
}
pub fn switch_to_block(&mut self, block: Block) {
debug_assert!(
self.position.is_none()
|| self.is_unreachable()
|| self.is_pristine(self.position.unwrap())
|| self.is_filled(self.position.unwrap()),
"you have to fill your block before switching"
);
debug_assert!(
!self.is_filled(block),
"you cannot switch to a block which is already filled"
);
self.position = PackedOption::from(block);
}
pub fn seal_block(&mut self, block: Block) {
let side_effects = self.func_ctx.ssa.seal_block(block, self.func);
self.handle_ssa_side_effects(side_effects);
}
pub fn seal_all_blocks(&mut self) {
let side_effects = self.func_ctx.ssa.seal_all_blocks(self.func);
self.handle_ssa_side_effects(side_effects);
}
pub fn try_declare_var(&mut self, var: Variable, ty: Type) -> Result<(), DeclareVariableError> {
if self.func_ctx.types[var] != types::INVALID {
return Err(DeclareVariableError::DeclaredMultipleTimes(var));
}
self.func_ctx.types[var] = ty;
Ok(())
}
pub fn declare_var(&mut self, var: Variable, ty: Type) {
self.try_declare_var(var, ty)
.unwrap_or_else(|_| panic!("the variable {:?} has been declared multiple times", var))
}
pub fn try_use_var(&mut self, var: Variable) -> Result<Value, UseVariableError> {
self.ensure_inserted_block();
let (val, side_effects) = {
let ty = *self
.func_ctx
.types
.get(var)
.ok_or(UseVariableError::UsedBeforeDeclared(var))?;
debug_assert_ne!(
ty,
types::INVALID,
"variable {:?} is used but its type has not been declared",
var
);
self.func_ctx
.ssa
.use_var(self.func, var, ty, self.position.unwrap())
};
self.handle_ssa_side_effects(side_effects);
Ok(val)
}
pub fn use_var(&mut self, var: Variable) -> Value {
self.try_use_var(var).unwrap_or_else(|_| {
panic!(
"variable {:?} is used but its type has not been declared",
var
)
})
}
pub fn try_def_var(&mut self, var: Variable, val: Value) -> Result<(), DefVariableError> {
let var_ty = *self
.func_ctx
.types
.get(var)
.ok_or(DefVariableError::DefinedBeforeDeclared(var))?;
if var_ty != self.func.dfg.value_type(val) {
return Err(DefVariableError::TypeMismatch(var, val));
}
self.func_ctx.ssa.def_var(var, val, self.position.unwrap());
Ok(())
}
pub fn def_var(&mut self, var: Variable, val: Value) {
self.try_def_var(var, val)
.unwrap_or_else(|error| match error {
DefVariableError::TypeMismatch(var, val) => {
panic!(
"declared type of variable {:?} doesn't match type of value {}",
var, val
);
}
DefVariableError::DefinedBeforeDeclared(var) => {
panic!(
"variable {:?} is used but its type has not been declared",
var
);
}
})
}
pub fn set_val_label(&mut self, val: Value, label: ValueLabel) {
if let Some(values_labels) = self.func.stencil.dfg.values_labels.as_mut() {
use alloc::collections::btree_map::Entry;
let start = ValueLabelStart {
from: RelSourceLoc::from_base_offset(self.func.params.base_srcloc(), self.srcloc),
label,
};
match values_labels.entry(val) {
Entry::Occupied(mut e) => match e.get_mut() {
ValueLabelAssignments::Starts(starts) => starts.push(start),
_ => panic!("Unexpected ValueLabelAssignments at this stage"),
},
Entry::Vacant(e) => {
e.insert(ValueLabelAssignments::Starts(vec![start]));
}
}
}
}
pub fn create_jump_table(&mut self, data: JumpTableData) -> JumpTable {
self.func.create_jump_table(data)
}
pub fn create_sized_stack_slot(&mut self, data: StackSlotData) -> StackSlot {
self.func.create_sized_stack_slot(data)
}
pub fn create_dynamic_stack_slot(&mut self, data: DynamicStackSlotData) -> DynamicStackSlot {
self.func.create_dynamic_stack_slot(data)
}
pub fn import_signature(&mut self, signature: Signature) -> SigRef {
self.func.import_signature(signature)
}
pub fn import_function(&mut self, data: ExtFuncData) -> FuncRef {
self.func.import_function(data)
}
pub fn create_global_value(&mut self, data: GlobalValueData) -> GlobalValue {
self.func.create_global_value(data)
}
pub fn ins<'short>(&'short mut self) -> FuncInstBuilder<'short, 'a> {
let block = self
.position
.expect("Please call switch_to_block before inserting instructions");
FuncInstBuilder::new(self, block)
}
pub fn ensure_inserted_block(&mut self) {
let block = self.position.unwrap();
if self.is_pristine(block) {
if !self.func.layout.is_block_inserted(block) {
self.func.layout.append_block(block);
}
self.func_ctx.status[block] = BlockStatus::Partial;
} else {
debug_assert!(
!self.is_filled(block),
"you cannot add an instruction to a block already filled"
);
}
}
pub fn cursor(&mut self) -> FuncCursor {
self.ensure_inserted_block();
FuncCursor::new(self.func)
.with_srcloc(self.srcloc)
.at_bottom(self.position.unwrap())
}
pub fn append_block_params_for_function_params(&mut self, block: Block) {
debug_assert!(
!self.func_ctx.ssa.has_any_predecessors(block),
"block parameters for function parameters should only be added to the entry block"
);
debug_assert!(
self.is_pristine(block),
"You can't add block parameters after adding any instruction"
);
for argtyp in &self.func.stencil.signature.params {
self.func
.stencil
.dfg
.append_block_param(block, argtyp.value_type);
}
}
pub fn append_block_params_for_function_returns(&mut self, block: Block) {
debug_assert!(
self.is_pristine(block),
"You can't add block parameters after adding any instruction"
);
for argtyp in &self.func.stencil.signature.returns {
self.func
.stencil
.dfg
.append_block_param(block, argtyp.value_type);
}
}
pub fn finalize(self) {
#[cfg(debug_assertions)]
{
for block in self.func_ctx.status.keys() {
if !self.is_pristine(block) {
assert!(
self.func_ctx.ssa.is_sealed(block),
"FunctionBuilder finalized, but block {} is not sealed",
block,
);
assert!(
self.is_filled(block),
"FunctionBuilder finalized, but block {} is not filled",
block,
);
}
}
}
#[cfg(debug_assertions)]
{
for block in self.func_ctx.status.keys() {
if let Err((inst, msg)) = self.func.is_block_basic(block) {
let inst_str = self.func.dfg.display_inst(inst);
panic!(
"{} failed basic block invariants on {}: {}",
block, inst_str, msg
);
}
}
}
self.func_ctx.clear();
}
}
impl<'a> FunctionBuilder<'a> {
pub fn block_params(&self, block: Block) -> &[Value] {
self.func.dfg.block_params(block)
}
pub fn signature(&self, sigref: SigRef) -> Option<&Signature> {
self.func.dfg.signatures.get(sigref)
}
pub fn append_block_param(&mut self, block: Block, ty: Type) -> Value {
debug_assert!(
self.is_pristine(block),
"You can't add block parameters after adding any instruction"
);
self.func.dfg.append_block_param(block, ty)
}
pub fn inst_results(&self, inst: Inst) -> &[Value] {
self.func.dfg.inst_results(inst)
}
pub fn change_jump_destination(&mut self, inst: Inst, old_block: Block, new_block: Block) {
let dfg = &mut self.func.dfg;
for block in dfg.insts[inst].branch_destination_mut(&mut dfg.jump_tables) {
if block.block(&dfg.value_lists) == old_block {
self.func_ctx.ssa.remove_block_predecessor(old_block, inst);
block.set_block(new_block, &mut dfg.value_lists);
self.func_ctx.ssa.declare_block_predecessor(new_block, inst);
}
}
}
pub fn is_unreachable(&self) -> bool {
let is_entry = match self.func.layout.entry_block() {
None => false,
Some(entry) => self.position.unwrap() == entry,
};
!is_entry
&& self.func_ctx.ssa.is_sealed(self.position.unwrap())
&& !self
.func_ctx
.ssa
.has_any_predecessors(self.position.unwrap())
}
fn is_pristine(&self, block: Block) -> bool {
self.func_ctx.status[block] == BlockStatus::Empty
}
fn is_filled(&self, block: Block) -> bool {
self.func_ctx.status[block] == BlockStatus::Filled
}
}
impl<'a> FunctionBuilder<'a> {
pub fn call_memcpy(
&mut self,
config: TargetFrontendConfig,
dest: Value,
src: Value,
size: Value,
) {
let pointer_type = config.pointer_type();
let signature = {
let mut s = Signature::new(config.default_call_conv);
s.params.push(AbiParam::new(pointer_type));
s.params.push(AbiParam::new(pointer_type));
s.params.push(AbiParam::new(pointer_type));
self.import_signature(s)
};
let libc_memcpy = self.import_function(ExtFuncData {
name: ExternalName::LibCall(LibCall::Memcpy),
signature,
colocated: false,
});
self.ins().call(libc_memcpy, &[dest, src, size]);
}
pub fn emit_small_memory_copy(
&mut self,
config: TargetFrontendConfig,
dest: Value,
src: Value,
size: u64,
dest_align: u8,
src_align: u8,
non_overlapping: bool,
mut flags: MemFlags,
) {
const THRESHOLD: u64 = 4;
if size == 0 {
return;
}
let access_size = greatest_divisible_power_of_two(size);
assert!(
access_size.is_power_of_two(),
"`size` is not a power of two"
);
assert!(
access_size >= u64::from(::core::cmp::min(src_align, dest_align)),
"`size` is smaller than `dest` and `src`'s alignment value."
);
let (access_size, int_type) = if access_size <= 8 {
(access_size, Type::int((access_size * 8) as u16).unwrap())
} else {
(8, types::I64)
};
let load_and_store_amount = size / access_size;
if load_and_store_amount > THRESHOLD {
let size_value = self.ins().iconst(config.pointer_type(), size as i64);
if non_overlapping {
self.call_memcpy(config, dest, src, size_value);
} else {
self.call_memmove(config, dest, src, size_value);
}
return;
}
if u64::from(src_align) >= access_size && u64::from(dest_align) >= access_size {
flags.set_aligned();
}
let registers: smallvec::SmallVec<[_; THRESHOLD as usize]> = (0..load_and_store_amount)
.map(|i| {
let offset = (access_size * i) as i32;
(self.ins().load(int_type, flags, src, offset), offset)
})
.collect();
for (value, offset) in registers {
self.ins().store(flags, value, dest, offset);
}
}
pub fn call_memset(
&mut self,
config: TargetFrontendConfig,
buffer: Value,
ch: Value,
size: Value,
) {
let pointer_type = config.pointer_type();
let signature = {
let mut s = Signature::new(config.default_call_conv);
s.params.push(AbiParam::new(pointer_type));
s.params.push(AbiParam::new(types::I32));
s.params.push(AbiParam::new(pointer_type));
self.import_signature(s)
};
let libc_memset = self.import_function(ExtFuncData {
name: ExternalName::LibCall(LibCall::Memset),
signature,
colocated: false,
});
let ch = self.ins().uextend(types::I32, ch);
self.ins().call(libc_memset, &[buffer, ch, size]);
}
pub fn emit_small_memset(
&mut self,
config: TargetFrontendConfig,
buffer: Value,
ch: u8,
size: u64,
buffer_align: u8,
mut flags: MemFlags,
) {
const THRESHOLD: u64 = 4;
if size == 0 {
return;
}
let access_size = greatest_divisible_power_of_two(size);
assert!(
access_size.is_power_of_two(),
"`size` is not a power of two"
);
assert!(
access_size >= u64::from(buffer_align),
"`size` is smaller than `dest` and `src`'s alignment value."
);
let (access_size, int_type) = if access_size <= 8 {
(access_size, Type::int((access_size * 8) as u16).unwrap())
} else {
(8, types::I64)
};
let load_and_store_amount = size / access_size;
if load_and_store_amount > THRESHOLD {
let ch = self.ins().iconst(types::I8, i64::from(ch));
let size = self.ins().iconst(config.pointer_type(), size as i64);
self.call_memset(config, buffer, ch, size);
} else {
if u64::from(buffer_align) >= access_size {
flags.set_aligned();
}
let ch = u64::from(ch);
let raw_value = if int_type == types::I64 {
ch * 0x0101010101010101_u64
} else if int_type == types::I32 {
ch * 0x01010101_u64
} else if int_type == types::I16 {
(ch << 8) | ch
} else {
assert_eq!(int_type, types::I8);
ch
};
let value = self.ins().iconst(int_type, raw_value as i64);
for i in 0..load_and_store_amount {
let offset = (access_size * i) as i32;
self.ins().store(flags, value, buffer, offset);
}
}
}
pub fn call_memmove(
&mut self,
config: TargetFrontendConfig,
dest: Value,
source: Value,
size: Value,
) {
let pointer_type = config.pointer_type();
let signature = {
let mut s = Signature::new(config.default_call_conv);
s.params.push(AbiParam::new(pointer_type));
s.params.push(AbiParam::new(pointer_type));
s.params.push(AbiParam::new(pointer_type));
self.import_signature(s)
};
let libc_memmove = self.import_function(ExtFuncData {
name: ExternalName::LibCall(LibCall::Memmove),
signature,
colocated: false,
});
self.ins().call(libc_memmove, &[dest, source, size]);
}
pub fn call_memcmp(
&mut self,
config: TargetFrontendConfig,
left: Value,
right: Value,
size: Value,
) -> Value {
let pointer_type = config.pointer_type();
let signature = {
let mut s = Signature::new(config.default_call_conv);
s.params.reserve(3);
s.params.push(AbiParam::new(pointer_type));
s.params.push(AbiParam::new(pointer_type));
s.params.push(AbiParam::new(pointer_type));
s.returns.push(AbiParam::new(types::I32));
self.import_signature(s)
};
let libc_memcmp = self.import_function(ExtFuncData {
name: ExternalName::LibCall(LibCall::Memcmp),
signature,
colocated: false,
});
let call = self.ins().call(libc_memcmp, &[left, right, size]);
self.func.dfg.first_result(call)
}
pub fn emit_small_memory_compare(
&mut self,
config: TargetFrontendConfig,
int_cc: IntCC,
left: Value,
right: Value,
size: u64,
left_align: std::num::NonZeroU8,
right_align: std::num::NonZeroU8,
flags: MemFlags,
) -> Value {
use IntCC::*;
let (zero_cc, empty_imm) = match int_cc {
Equal => (Equal, 1),
NotEqual => (NotEqual, 0),
UnsignedLessThan => (SignedLessThan, 0),
UnsignedGreaterThanOrEqual => (SignedGreaterThanOrEqual, 1),
UnsignedGreaterThan => (SignedGreaterThan, 0),
UnsignedLessThanOrEqual => (SignedLessThanOrEqual, 1),
SignedLessThan
| SignedGreaterThanOrEqual
| SignedGreaterThan
| SignedLessThanOrEqual => {
panic!("Signed comparison {} not supported by memcmp", int_cc)
}
};
if size == 0 {
return self.ins().iconst(types::I8, empty_imm);
}
if let Some(small_type) = size.try_into().ok().and_then(Type::int_with_byte_size) {
if let Equal | NotEqual = zero_cc {
let mut left_flags = flags;
if size == left_align.get() as u64 {
left_flags.set_aligned();
}
let mut right_flags = flags;
if size == right_align.get() as u64 {
right_flags.set_aligned();
}
let left_val = self.ins().load(small_type, left_flags, left, 0);
let right_val = self.ins().load(small_type, right_flags, right, 0);
return self.ins().icmp(int_cc, left_val, right_val);
} else if small_type == types::I8 {
let mut aligned_flags = flags;
aligned_flags.set_aligned();
let left_val = self.ins().load(small_type, aligned_flags, left, 0);
let right_val = self.ins().load(small_type, aligned_flags, right, 0);
return self.ins().icmp(int_cc, left_val, right_val);
}
}
let pointer_type = config.pointer_type();
let size = self.ins().iconst(pointer_type, size as i64);
let cmp = self.call_memcmp(config, left, right, size);
self.ins().icmp_imm(zero_cc, cmp, 0)
}
}
fn greatest_divisible_power_of_two(size: u64) -> u64 {
(size as i64 & -(size as i64)) as u64
}
impl<'a> FunctionBuilder<'a> {
fn fill_current_block(&mut self) {
self.func_ctx.status[self.position.unwrap()] = BlockStatus::Filled;
}
fn declare_successor(&mut self, dest_block: Block, jump_inst: Inst) {
self.func_ctx
.ssa
.declare_block_predecessor(dest_block, jump_inst);
}
fn handle_ssa_side_effects(&mut self, side_effects: SideEffects) {
for modified_block in side_effects.instructions_added_to_blocks {
if self.is_pristine(modified_block) {
self.func_ctx.status[modified_block] = BlockStatus::Partial;
}
}
}
}
#[cfg(test)]
mod tests {
use super::greatest_divisible_power_of_two;
use crate::frontend::{
DeclareVariableError, DefVariableError, FunctionBuilder, FunctionBuilderContext,
UseVariableError,
};
use crate::Variable;
use alloc::string::ToString;
use cranelift_codegen::entity::EntityRef;
use cranelift_codegen::ir::condcodes::IntCC;
use cranelift_codegen::ir::{types::*, UserFuncName};
use cranelift_codegen::ir::{AbiParam, Function, InstBuilder, MemFlags, Signature, Value};
use cranelift_codegen::isa::{CallConv, TargetFrontendConfig, TargetIsa};
use cranelift_codegen::settings;
use cranelift_codegen::verifier::verify_function;
use target_lexicon::PointerWidth;
fn sample_function(lazy_seal: bool) {
let mut sig = Signature::new(CallConv::SystemV);
sig.returns.push(AbiParam::new(I32));
sig.params.push(AbiParam::new(I32));
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
{
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let block0 = builder.create_block();
let block1 = builder.create_block();
let block2 = builder.create_block();
let block3 = builder.create_block();
let x = Variable::new(0);
let y = Variable::new(1);
let z = Variable::new(2);
builder.declare_var(x, I32);
builder.declare_var(y, I32);
builder.declare_var(z, I32);
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
if !lazy_seal {
builder.seal_block(block0);
}
{
let tmp = builder.block_params(block0)[0]; builder.def_var(x, tmp);
}
{
let tmp = builder.ins().iconst(I32, 2);
builder.def_var(y, tmp);
}
{
let arg1 = builder.use_var(x);
let arg2 = builder.use_var(y);
let tmp = builder.ins().iadd(arg1, arg2);
builder.def_var(z, tmp);
}
builder.ins().jump(block1, &[]);
builder.switch_to_block(block1);
{
let arg1 = builder.use_var(y);
let arg2 = builder.use_var(z);
let tmp = builder.ins().iadd(arg1, arg2);
builder.def_var(z, tmp);
}
{
let arg = builder.use_var(y);
builder.ins().brif(arg, block3, &[], block2, &[]);
}
builder.switch_to_block(block2);
if !lazy_seal {
builder.seal_block(block2);
}
{
let arg1 = builder.use_var(z);
let arg2 = builder.use_var(x);
let tmp = builder.ins().isub(arg1, arg2);
builder.def_var(z, tmp);
}
{
let arg = builder.use_var(y);
builder.ins().return_(&[arg]);
}
builder.switch_to_block(block3);
if !lazy_seal {
builder.seal_block(block3);
}
{
let arg1 = builder.use_var(y);
let arg2 = builder.use_var(x);
let tmp = builder.ins().isub(arg1, arg2);
builder.def_var(y, tmp);
}
builder.ins().jump(block1, &[]);
if !lazy_seal {
builder.seal_block(block1);
}
if lazy_seal {
builder.seal_all_blocks();
}
builder.finalize();
}
let flags = settings::Flags::new(settings::builder());
if let Err(errors) = verify_function(&func, &flags) {
panic!("{}\n{}", func.display(), errors)
}
}
#[test]
fn sample() {
sample_function(false)
}
#[test]
fn sample_with_lazy_seal() {
sample_function(true)
}
#[track_caller]
fn check(func: &Function, expected_ir: &str) {
let actual_ir = func.display().to_string();
assert!(
expected_ir == actual_ir,
"Expected:\n{}\nGot:\n{}",
expected_ir,
actual_ir
);
}
fn systemv_frontend_config() -> TargetFrontendConfig {
TargetFrontendConfig {
default_call_conv: CallConv::SystemV,
pointer_width: PointerWidth::U64,
}
}
#[test]
fn memcpy() {
let frontend_config = systemv_frontend_config();
let mut sig = Signature::new(frontend_config.default_call_conv);
sig.returns.push(AbiParam::new(I32));
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
{
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let block0 = builder.create_block();
let x = Variable::new(0);
let y = Variable::new(1);
let z = Variable::new(2);
builder.declare_var(x, frontend_config.pointer_type());
builder.declare_var(y, frontend_config.pointer_type());
builder.declare_var(z, I32);
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
let src = builder.use_var(x);
let dest = builder.use_var(y);
let size = builder.use_var(y);
builder.call_memcpy(frontend_config, dest, src, size);
builder.ins().return_(&[size]);
builder.seal_all_blocks();
builder.finalize();
}
check(
&func,
"function %sample() -> i32 system_v {
sig0 = (i64, i64, i64) system_v
fn0 = %Memcpy sig0
block0:
v3 = iconst.i64 0
v1 -> v3
v2 = iconst.i64 0
v0 -> v2
call fn0(v1, v0, v1) ; v1 = 0, v0 = 0, v1 = 0
return v1 ; v1 = 0
}
",
);
}
#[test]
fn small_memcpy() {
let frontend_config = systemv_frontend_config();
let mut sig = Signature::new(frontend_config.default_call_conv);
sig.returns.push(AbiParam::new(I32));
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
{
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let block0 = builder.create_block();
let x = Variable::new(0);
let y = Variable::new(16);
builder.declare_var(x, frontend_config.pointer_type());
builder.declare_var(y, frontend_config.pointer_type());
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
let src = builder.use_var(x);
let dest = builder.use_var(y);
let size = 8;
builder.emit_small_memory_copy(
frontend_config,
dest,
src,
size,
8,
8,
true,
MemFlags::new(),
);
builder.ins().return_(&[dest]);
builder.seal_all_blocks();
builder.finalize();
}
check(
&func,
"function %sample() -> i32 system_v {
block0:
v4 = iconst.i64 0
v1 -> v4
v3 = iconst.i64 0
v0 -> v3
v2 = load.i64 aligned v0 ; v0 = 0
store aligned v2, v1 ; v1 = 0
return v1 ; v1 = 0
}
",
);
}
#[test]
fn not_so_small_memcpy() {
let frontend_config = systemv_frontend_config();
let mut sig = Signature::new(frontend_config.default_call_conv);
sig.returns.push(AbiParam::new(I32));
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
{
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let block0 = builder.create_block();
let x = Variable::new(0);
let y = Variable::new(16);
builder.declare_var(x, frontend_config.pointer_type());
builder.declare_var(y, frontend_config.pointer_type());
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
let src = builder.use_var(x);
let dest = builder.use_var(y);
let size = 8192;
builder.emit_small_memory_copy(
frontend_config,
dest,
src,
size,
8,
8,
true,
MemFlags::new(),
);
builder.ins().return_(&[dest]);
builder.seal_all_blocks();
builder.finalize();
}
check(
&func,
"function %sample() -> i32 system_v {
sig0 = (i64, i64, i64) system_v
fn0 = %Memcpy sig0
block0:
v4 = iconst.i64 0
v1 -> v4
v3 = iconst.i64 0
v0 -> v3
v2 = iconst.i64 8192
call fn0(v1, v0, v2) ; v1 = 0, v0 = 0, v2 = 8192
return v1 ; v1 = 0
}
",
);
}
#[test]
fn small_memset() {
let frontend_config = systemv_frontend_config();
let mut sig = Signature::new(frontend_config.default_call_conv);
sig.returns.push(AbiParam::new(I32));
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
{
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let block0 = builder.create_block();
let y = Variable::new(16);
builder.declare_var(y, frontend_config.pointer_type());
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
let dest = builder.use_var(y);
let size = 8;
builder.emit_small_memset(frontend_config, dest, 1, size, 8, MemFlags::new());
builder.ins().return_(&[dest]);
builder.seal_all_blocks();
builder.finalize();
}
check(
&func,
"function %sample() -> i32 system_v {
block0:
v2 = iconst.i64 0
v0 -> v2
v1 = iconst.i64 0x0101_0101_0101_0101
store aligned v1, v0 ; v1 = 0x0101_0101_0101_0101, v0 = 0
return v0 ; v0 = 0
}
",
);
}
#[test]
fn not_so_small_memset() {
let frontend_config = systemv_frontend_config();
let mut sig = Signature::new(frontend_config.default_call_conv);
sig.returns.push(AbiParam::new(I32));
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
{
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let block0 = builder.create_block();
let y = Variable::new(16);
builder.declare_var(y, frontend_config.pointer_type());
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
let dest = builder.use_var(y);
let size = 8192;
builder.emit_small_memset(frontend_config, dest, 1, size, 8, MemFlags::new());
builder.ins().return_(&[dest]);
builder.seal_all_blocks();
builder.finalize();
}
check(
&func,
"function %sample() -> i32 system_v {
sig0 = (i64, i32, i64) system_v
fn0 = %Memset sig0
block0:
v4 = iconst.i64 0
v0 -> v4
v1 = iconst.i8 1
v2 = iconst.i64 8192
v3 = uextend.i32 v1 ; v1 = 1
call fn0(v0, v3, v2) ; v0 = 0, v2 = 8192
return v0 ; v0 = 0
}
",
);
}
#[test]
fn memcmp() {
use core::str::FromStr;
use cranelift_codegen::isa;
let shared_builder = settings::builder();
let shared_flags = settings::Flags::new(shared_builder);
let triple =
::target_lexicon::Triple::from_str("x86_64").expect("Couldn't create x86_64 triple");
let target = isa::lookup(triple)
.ok()
.map(|b| b.finish(shared_flags))
.expect("This test requires x86_64 support.")
.expect("Should be able to create backend with default flags");
let mut sig = Signature::new(target.default_call_conv());
sig.returns.push(AbiParam::new(I32));
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
{
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let block0 = builder.create_block();
let x = Variable::new(0);
let y = Variable::new(1);
let z = Variable::new(2);
builder.declare_var(x, target.pointer_type());
builder.declare_var(y, target.pointer_type());
builder.declare_var(z, target.pointer_type());
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
let left = builder.use_var(x);
let right = builder.use_var(y);
let size = builder.use_var(z);
let cmp = builder.call_memcmp(target.frontend_config(), left, right, size);
builder.ins().return_(&[cmp]);
builder.seal_all_blocks();
builder.finalize();
}
check(
&func,
"function %sample() -> i32 system_v {
sig0 = (i64, i64, i64) -> i32 system_v
fn0 = %Memcmp sig0
block0:
v6 = iconst.i64 0
v2 -> v6
v5 = iconst.i64 0
v1 -> v5
v4 = iconst.i64 0
v0 -> v4
v3 = call fn0(v0, v1, v2) ; v0 = 0, v1 = 0, v2 = 0
return v3
}
",
);
}
#[test]
fn small_memcmp_zero_size() {
let align_eight = std::num::NonZeroU8::new(8).unwrap();
small_memcmp_helper(
"
block0:
v4 = iconst.i64 0
v1 -> v4
v3 = iconst.i64 0
v0 -> v3
v2 = iconst.i8 1
return v2 ; v2 = 1",
|builder, target, x, y| {
builder.emit_small_memory_compare(
target.frontend_config(),
IntCC::UnsignedGreaterThanOrEqual,
x,
y,
0,
align_eight,
align_eight,
MemFlags::new(),
)
},
);
}
#[test]
fn small_memcmp_byte_ugt() {
let align_one = std::num::NonZeroU8::new(1).unwrap();
small_memcmp_helper(
"
block0:
v6 = iconst.i64 0
v1 -> v6
v5 = iconst.i64 0
v0 -> v5
v2 = load.i8 aligned v0 ; v0 = 0
v3 = load.i8 aligned v1 ; v1 = 0
v4 = icmp ugt v2, v3
return v4",
|builder, target, x, y| {
builder.emit_small_memory_compare(
target.frontend_config(),
IntCC::UnsignedGreaterThan,
x,
y,
1,
align_one,
align_one,
MemFlags::new(),
)
},
);
}
#[test]
fn small_memcmp_aligned_eq() {
let align_four = std::num::NonZeroU8::new(4).unwrap();
small_memcmp_helper(
"
block0:
v6 = iconst.i64 0
v1 -> v6
v5 = iconst.i64 0
v0 -> v5
v2 = load.i32 aligned v0 ; v0 = 0
v3 = load.i32 aligned v1 ; v1 = 0
v4 = icmp eq v2, v3
return v4",
|builder, target, x, y| {
builder.emit_small_memory_compare(
target.frontend_config(),
IntCC::Equal,
x,
y,
4,
align_four,
align_four,
MemFlags::new(),
)
},
);
}
#[test]
fn small_memcmp_ipv6_ne() {
let align_two = std::num::NonZeroU8::new(2).unwrap();
small_memcmp_helper(
"
block0:
v6 = iconst.i64 0
v1 -> v6
v5 = iconst.i64 0
v0 -> v5
v2 = load.i128 v0 ; v0 = 0
v3 = load.i128 v1 ; v1 = 0
v4 = icmp ne v2, v3
return v4",
|builder, target, x, y| {
builder.emit_small_memory_compare(
target.frontend_config(),
IntCC::NotEqual,
x,
y,
16,
align_two,
align_two,
MemFlags::new(),
)
},
);
}
#[test]
fn small_memcmp_odd_size_uge() {
let one = std::num::NonZeroU8::new(1).unwrap();
small_memcmp_helper(
"
sig0 = (i64, i64, i64) -> i32 system_v
fn0 = %Memcmp sig0
block0:
v6 = iconst.i64 0
v1 -> v6
v5 = iconst.i64 0
v0 -> v5
v2 = iconst.i64 3
v3 = call fn0(v0, v1, v2) ; v0 = 0, v1 = 0, v2 = 3
v4 = icmp_imm sge v3, 0
return v4",
|builder, target, x, y| {
builder.emit_small_memory_compare(
target.frontend_config(),
IntCC::UnsignedGreaterThanOrEqual,
x,
y,
3,
one,
one,
MemFlags::new(),
)
},
);
}
fn small_memcmp_helper(
expected: &str,
f: impl FnOnce(&mut FunctionBuilder, &dyn TargetIsa, Value, Value) -> Value,
) {
use core::str::FromStr;
use cranelift_codegen::isa;
let shared_builder = settings::builder();
let shared_flags = settings::Flags::new(shared_builder);
let triple =
::target_lexicon::Triple::from_str("x86_64").expect("Couldn't create x86_64 triple");
let target = isa::lookup(triple)
.ok()
.map(|b| b.finish(shared_flags))
.expect("This test requires x86_64 support.")
.expect("Should be able to create backend with default flags");
let mut sig = Signature::new(target.default_call_conv());
sig.returns.push(AbiParam::new(I8));
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
{
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let block0 = builder.create_block();
let x = Variable::new(0);
let y = Variable::new(1);
builder.declare_var(x, target.pointer_type());
builder.declare_var(y, target.pointer_type());
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
let left = builder.use_var(x);
let right = builder.use_var(y);
let ret = f(&mut builder, &*target, left, right);
builder.ins().return_(&[ret]);
builder.seal_all_blocks();
builder.finalize();
}
check(
&func,
&format!("function %sample() -> i8 system_v {{{}\n}}\n", expected),
);
}
#[test]
fn undef_vector_vars() {
let mut sig = Signature::new(CallConv::SystemV);
sig.returns.push(AbiParam::new(I8X16));
sig.returns.push(AbiParam::new(I8X16));
sig.returns.push(AbiParam::new(F32X4));
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
{
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let block0 = builder.create_block();
let a = Variable::new(0);
let b = Variable::new(1);
let c = Variable::new(2);
builder.declare_var(a, I8X16);
builder.declare_var(b, I8X16);
builder.declare_var(c, F32X4);
builder.switch_to_block(block0);
let a = builder.use_var(a);
let b = builder.use_var(b);
let c = builder.use_var(c);
builder.ins().return_(&[a, b, c]);
builder.seal_all_blocks();
builder.finalize();
}
check(
&func,
"function %sample() -> i8x16, i8x16, f32x4 system_v {
const0 = 0x00000000000000000000000000000000
block0:
v5 = f32const 0.0
v6 = splat.f32x4 v5 ; v5 = 0.0
v2 -> v6
v4 = vconst.i8x16 const0
v1 -> v4
v3 = vconst.i8x16 const0
v0 -> v3
return v0, v1, v2 ; v0 = const0, v1 = const0
}
",
);
}
#[test]
fn test_greatest_divisible_power_of_two() {
assert_eq!(64, greatest_divisible_power_of_two(64));
assert_eq!(16, greatest_divisible_power_of_two(48));
assert_eq!(8, greatest_divisible_power_of_two(24));
assert_eq!(1, greatest_divisible_power_of_two(25));
}
#[test]
fn try_use_var() {
let sig = Signature::new(CallConv::SystemV);
let mut fn_ctx = FunctionBuilderContext::new();
let mut func = Function::with_name_signature(UserFuncName::testcase("sample"), sig);
{
let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
let block0 = builder.create_block();
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
assert_eq!(
builder.try_use_var(Variable::from_u32(0)),
Err(UseVariableError::UsedBeforeDeclared(Variable::from_u32(0)))
);
let value = builder.ins().iconst(cranelift_codegen::ir::types::I32, 0);
assert_eq!(
builder.try_def_var(Variable::from_u32(0), value),
Err(DefVariableError::DefinedBeforeDeclared(Variable::from_u32(
0
)))
);
builder.declare_var(Variable::from_u32(0), cranelift_codegen::ir::types::I32);
assert_eq!(
builder.try_declare_var(Variable::from_u32(0), cranelift_codegen::ir::types::I32),
Err(DeclareVariableError::DeclaredMultipleTimes(
Variable::from_u32(0)
))
);
}
}
}