use crate::ast::*;
use crate::error::{Error, Errors, Span};
use crate::lexer::{Lexer, Pos, Token};
type Result<T> = std::result::Result<T, Errors>;
pub fn parse(lexer: Lexer) -> Result<Defs> {
let parser = Parser::new(lexer);
parser.parse_defs()
}
#[derive(Clone, Debug)]
struct Parser<'a> {
lexer: Lexer<'a>,
}
enum IfLetOrExpr {
IfLet(IfLet),
Expr(Expr),
}
impl<'a> Parser<'a> {
pub fn new(lexer: Lexer<'a>) -> Parser<'a> {
Parser { lexer }
}
fn error(&self, pos: Pos, msg: String) -> Errors {
Errors {
errors: vec![Error::ParseError {
msg,
span: Span::new_single(pos),
}],
filenames: self.lexer.filenames.clone(),
file_texts: self.lexer.file_texts.clone(),
}
}
fn expect<F: Fn(&Token) -> bool>(&mut self, f: F) -> Result<Token> {
if let Some(&(pos, ref peek)) = self.lexer.peek() {
if !f(peek) {
return Err(self.error(pos, format!("Unexpected token {:?}", peek)));
}
Ok(self.lexer.next()?.unwrap().1)
} else {
Err(self.error(self.lexer.pos(), "Unexpected EOF".to_string()))
}
}
fn eat<F: Fn(&Token) -> bool>(&mut self, f: F) -> Result<Option<Token>> {
if let Some(&(_pos, ref peek)) = self.lexer.peek() {
if !f(peek) {
return Ok(None);
}
Ok(Some(self.lexer.next()?.unwrap().1))
} else {
Ok(None) }
}
fn is<F: Fn(&Token) -> bool>(&self, f: F) -> bool {
if let Some((_, peek)) = self.lexer.peek() {
f(peek)
} else {
false
}
}
fn pos(&self) -> Pos {
self.lexer
.peek()
.map_or_else(|| self.lexer.pos(), |(pos, _)| *pos)
}
fn is_lparen(&self) -> bool {
self.is(|tok| *tok == Token::LParen)
}
fn is_rparen(&self) -> bool {
self.is(|tok| *tok == Token::RParen)
}
fn is_at(&self) -> bool {
self.is(|tok| *tok == Token::At)
}
fn is_sym(&self) -> bool {
self.is(Token::is_sym)
}
fn is_int(&self) -> bool {
self.is(Token::is_int)
}
fn is_const(&self) -> bool {
self.is(|tok| match tok {
Token::Symbol(tok_s) if tok_s.starts_with('$') => true,
_ => false,
})
}
fn expect_lparen(&mut self) -> Result<()> {
self.expect(|tok| *tok == Token::LParen).map(|_| ())
}
fn expect_rparen(&mut self) -> Result<()> {
self.expect(|tok| *tok == Token::RParen).map(|_| ())
}
fn expect_at(&mut self) -> Result<()> {
self.expect(|tok| *tok == Token::At).map(|_| ())
}
fn expect_symbol(&mut self) -> Result<String> {
match self.expect(Token::is_sym)? {
Token::Symbol(s) => Ok(s),
_ => unreachable!(),
}
}
fn eat_sym_str(&mut self, s: &str) -> Result<bool> {
self.eat(|tok| match tok {
Token::Symbol(ref tok_s) if tok_s == s => true,
_ => false,
})
.map(|token| token.is_some())
}
fn expect_int(&mut self) -> Result<i128> {
match self.expect(Token::is_int)? {
Token::Int(i) => Ok(i),
_ => unreachable!(),
}
}
fn parse_defs(mut self) -> Result<Defs> {
let mut defs = vec![];
while !self.lexer.eof() {
defs.push(self.parse_def()?);
}
Ok(Defs {
defs,
filenames: self.lexer.filenames,
file_texts: self.lexer.file_texts,
})
}
fn parse_def(&mut self) -> Result<Def> {
self.expect_lparen()?;
let pos = self.pos();
let def = match &self.expect_symbol()?[..] {
"pragma" => Def::Pragma(self.parse_pragma()?),
"type" => Def::Type(self.parse_type()?),
"decl" => Def::Decl(self.parse_decl()?),
"rule" => Def::Rule(self.parse_rule()?),
"extractor" => Def::Extractor(self.parse_etor()?),
"extern" => Def::Extern(self.parse_extern()?),
"convert" => Def::Converter(self.parse_converter()?),
s => {
return Err(self.error(pos, format!("Unexpected identifier: {}", s)));
}
};
self.expect_rparen()?;
Ok(def)
}
fn str_to_ident(&self, pos: Pos, s: &str) -> Result<Ident> {
let first = s
.chars()
.next()
.ok_or_else(|| self.error(pos, "empty symbol".into()))?;
if !first.is_alphabetic() && first != '_' && first != '$' {
return Err(self.error(
pos,
format!("Identifier '{}' does not start with letter or _ or $", s),
));
}
if s.chars()
.skip(1)
.any(|c| !c.is_alphanumeric() && c != '_' && c != '.' && c != '$')
{
return Err(self.error(
pos,
format!(
"Identifier '{}' contains invalid character (not a-z, A-Z, 0-9, _, ., $)",
s
),
));
}
Ok(Ident(s.to_string(), pos))
}
fn parse_ident(&mut self) -> Result<Ident> {
let pos = self.pos();
let s = self.expect_symbol()?;
self.str_to_ident(pos, &s)
}
fn parse_const(&mut self) -> Result<Ident> {
let pos = self.pos();
let ident = self.parse_ident()?;
if let Some(s) = ident.0.strip_prefix('$') {
Ok(Ident(s.to_string(), ident.1))
} else {
Err(self.error(
pos,
"Not a constant identifier; must start with a '$'".to_string(),
))
}
}
fn parse_pragma(&mut self) -> Result<Pragma> {
let ident = self.parse_ident()?;
let pragma = ident.0.as_str();
Err(self.error(ident.1, format!("Unknown pragma '{}'", pragma)))
}
fn parse_type(&mut self) -> Result<Type> {
let pos = self.pos();
let name = self.parse_ident()?;
let mut is_extern = false;
let mut is_nodebug = false;
while self.lexer.peek().map_or(false, |(_pos, tok)| tok.is_sym()) {
let sym = self.expect_symbol()?;
if sym == "extern" {
is_extern = true;
} else if sym == "nodebug" {
is_nodebug = true;
} else {
return Err(self.error(
self.pos(),
format!("unknown type declaration modifier: {}", sym),
));
}
}
let ty = self.parse_typevalue()?;
Ok(Type {
name,
is_extern,
is_nodebug,
ty,
pos,
})
}
fn parse_typevalue(&mut self) -> Result<TypeValue> {
let pos = self.pos();
self.expect_lparen()?;
if self.eat_sym_str("primitive")? {
let primitive_ident = self.parse_ident()?;
self.expect_rparen()?;
Ok(TypeValue::Primitive(primitive_ident, pos))
} else if self.eat_sym_str("enum")? {
let mut variants = vec![];
while !self.is_rparen() {
let variant = self.parse_type_variant()?;
variants.push(variant);
}
self.expect_rparen()?;
Ok(TypeValue::Enum(variants, pos))
} else {
Err(self.error(pos, "Unknown type definition".to_string()))
}
}
fn parse_type_variant(&mut self) -> Result<Variant> {
if self.is_sym() {
let pos = self.pos();
let name = self.parse_ident()?;
Ok(Variant {
name,
fields: vec![],
pos,
})
} else {
let pos = self.pos();
self.expect_lparen()?;
let name = self.parse_ident()?;
let mut fields = vec![];
while !self.is_rparen() {
fields.push(self.parse_type_field()?);
}
self.expect_rparen()?;
Ok(Variant { name, fields, pos })
}
}
fn parse_type_field(&mut self) -> Result<Field> {
let pos = self.pos();
self.expect_lparen()?;
let name = self.parse_ident()?;
let ty = self.parse_ident()?;
self.expect_rparen()?;
Ok(Field { name, ty, pos })
}
fn parse_decl(&mut self) -> Result<Decl> {
let pos = self.pos();
let pure = self.eat_sym_str("pure")?;
let multi = self.eat_sym_str("multi")?;
let partial = self.eat_sym_str("partial")?;
let term = self.parse_ident()?;
self.expect_lparen()?;
let mut arg_tys = vec![];
while !self.is_rparen() {
arg_tys.push(self.parse_ident()?);
}
self.expect_rparen()?;
let ret_ty = self.parse_ident()?;
Ok(Decl {
term,
arg_tys,
ret_ty,
pure,
multi,
partial,
pos,
})
}
fn parse_extern(&mut self) -> Result<Extern> {
let pos = self.pos();
if self.eat_sym_str("constructor")? {
let term = self.parse_ident()?;
let func = self.parse_ident()?;
Ok(Extern::Constructor { term, func, pos })
} else if self.eat_sym_str("extractor")? {
let infallible = self.eat_sym_str("infallible")?;
let term = self.parse_ident()?;
let func = self.parse_ident()?;
Ok(Extern::Extractor {
term,
func,
pos,
infallible,
})
} else if self.eat_sym_str("const")? {
let pos = self.pos();
let name = self.parse_const()?;
let ty = self.parse_ident()?;
Ok(Extern::Const { name, ty, pos })
} else {
Err(self.error(
pos,
"Invalid extern: must be (extern constructor ...) or (extern extractor ...)"
.to_string(),
))
}
}
fn parse_etor(&mut self) -> Result<Extractor> {
let pos = self.pos();
self.expect_lparen()?;
let term = self.parse_ident()?;
let mut args = vec![];
while !self.is_rparen() {
args.push(self.parse_ident()?);
}
self.expect_rparen()?;
let template = self.parse_pattern()?;
Ok(Extractor {
term,
args,
template,
pos,
})
}
fn parse_rule(&mut self) -> Result<Rule> {
let pos = self.pos();
let prio = if self.is_int() {
Some(
i64::try_from(self.expect_int()?)
.map_err(|err| self.error(pos, format!("Invalid rule priority: {}", err)))?,
)
} else {
None
};
let pattern = self.parse_pattern()?;
let mut iflets = vec![];
loop {
match self.parse_iflet_or_expr()? {
IfLetOrExpr::IfLet(iflet) => {
iflets.push(iflet);
}
IfLetOrExpr::Expr(expr) => {
return Ok(Rule {
pattern,
iflets,
expr,
pos,
prio,
});
}
}
}
}
fn parse_pattern(&mut self) -> Result<Pattern> {
let pos = self.pos();
if self.is_int() {
Ok(Pattern::ConstInt {
val: self.expect_int()?,
pos,
})
} else if self.is_const() {
let val = self.parse_const()?;
Ok(Pattern::ConstPrim { val, pos })
} else if self.eat_sym_str("_")? {
Ok(Pattern::Wildcard { pos })
} else if self.is_sym() {
let var = self.parse_ident()?;
if self.is_at() {
self.expect_at()?;
let subpat = Box::new(self.parse_pattern()?);
Ok(Pattern::BindPattern { var, subpat, pos })
} else {
Ok(Pattern::Var { var, pos })
}
} else if self.is_lparen() {
self.expect_lparen()?;
if self.eat_sym_str("and")? {
let mut subpats = vec![];
while !self.is_rparen() {
subpats.push(self.parse_pattern()?);
}
self.expect_rparen()?;
Ok(Pattern::And { subpats, pos })
} else {
let sym = self.parse_ident()?;
let mut args = vec![];
while !self.is_rparen() {
args.push(self.parse_pattern()?);
}
self.expect_rparen()?;
Ok(Pattern::Term { sym, args, pos })
}
} else {
Err(self.error(pos, "Unexpected pattern".into()))
}
}
fn parse_iflet_or_expr(&mut self) -> Result<IfLetOrExpr> {
let pos = self.pos();
if self.is_lparen() {
self.expect_lparen()?;
let ret = if self.eat_sym_str("if-let")? {
IfLetOrExpr::IfLet(self.parse_iflet()?)
} else if self.eat_sym_str("if")? {
IfLetOrExpr::IfLet(self.parse_iflet_if()?)
} else {
IfLetOrExpr::Expr(self.parse_expr_inner_parens(pos)?)
};
self.expect_rparen()?;
Ok(ret)
} else {
self.parse_expr().map(IfLetOrExpr::Expr)
}
}
fn parse_iflet(&mut self) -> Result<IfLet> {
let pos = self.pos();
let pattern = self.parse_pattern()?;
let expr = self.parse_expr()?;
Ok(IfLet { pattern, expr, pos })
}
fn parse_iflet_if(&mut self) -> Result<IfLet> {
let pos = self.pos();
let expr = self.parse_expr()?;
Ok(IfLet {
pattern: Pattern::Wildcard { pos },
expr,
pos,
})
}
fn parse_expr(&mut self) -> Result<Expr> {
let pos = self.pos();
if self.is_lparen() {
self.expect_lparen()?;
let ret = self.parse_expr_inner_parens(pos)?;
self.expect_rparen()?;
Ok(ret)
} else if self.eat_sym_str("#t")? {
Ok(Expr::ConstInt { val: 1, pos })
} else if self.eat_sym_str("#f")? {
Ok(Expr::ConstInt { val: 0, pos })
} else if self.is_const() {
let val = self.parse_const()?;
Ok(Expr::ConstPrim { val, pos })
} else if self.is_sym() {
let name = self.parse_ident()?;
Ok(Expr::Var { name, pos })
} else if self.is_int() {
let val = self.expect_int()?;
Ok(Expr::ConstInt { val, pos })
} else {
Err(self.error(pos, "Invalid expression".into()))
}
}
fn parse_expr_inner_parens(&mut self, pos: Pos) -> Result<Expr> {
if self.eat_sym_str("let")? {
self.expect_lparen()?;
let mut defs = vec![];
while !self.is_rparen() {
let def = self.parse_letdef()?;
defs.push(def);
}
self.expect_rparen()?;
let body = Box::new(self.parse_expr()?);
Ok(Expr::Let { defs, body, pos })
} else {
let sym = self.parse_ident()?;
let mut args = vec![];
while !self.is_rparen() {
args.push(self.parse_expr()?);
}
Ok(Expr::Term { sym, args, pos })
}
}
fn parse_letdef(&mut self) -> Result<LetDef> {
let pos = self.pos();
self.expect_lparen()?;
let var = self.parse_ident()?;
let ty = self.parse_ident()?;
let val = Box::new(self.parse_expr()?);
self.expect_rparen()?;
Ok(LetDef { var, ty, val, pos })
}
fn parse_converter(&mut self) -> Result<Converter> {
let pos = self.pos();
let inner_ty = self.parse_ident()?;
let outer_ty = self.parse_ident()?;
let term = self.parse_ident()?;
Ok(Converter {
term,
inner_ty,
outer_ty,
pos,
})
}
}