1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
//! Lowered matching IR.

use crate::lexer::Pos;
use crate::log;
use crate::sema::*;

declare_id!(
    /// The id of an instruction in a `PatternSequence`.
    InstId
);

/// A value produced by a LHS or RHS instruction.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum Value {
    /// A value produced by an instruction in the Pattern (LHS).
    Pattern {
        /// The instruction that produces this value.
        inst: InstId,
        /// This value is the `output`th value produced by this pattern.
        output: usize,
    },
    /// A value produced by an instruction in the Expr (RHS).
    Expr {
        /// The instruction that produces this value.
        inst: InstId,
        /// This value is the `output`th value produced by this expression.
        output: usize,
    },
}

/// A single Pattern instruction.
#[derive(Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum PatternInst {
    /// Match a value as equal to another value. Produces no values.
    MatchEqual {
        /// The first value.
        a: Value,
        /// The second value.
        b: Value,
        /// The type of the values.
        ty: TypeId,
    },

    /// Try matching the given value as the given integer. Produces no values.
    MatchInt {
        /// The value to match on.
        input: Value,
        /// The value's type.
        ty: TypeId,
        /// The integer to match against the value.
        int_val: i128,
    },

    /// Try matching the given value as the given constant. Produces no values.
    MatchPrim {
        /// The value to match on.
        input: Value,
        /// The type of the value.
        ty: TypeId,
        /// The primitive to match against the value.
        val: Sym,
    },

    /// Try matching the given value as the given variant, producing `|arg_tys|`
    /// values as output.
    MatchVariant {
        /// The value to match on.
        input: Value,
        /// The type of the value.
        input_ty: TypeId,
        /// The types of values produced upon a successful match.
        arg_tys: Vec<TypeId>,
        /// The value type's variant that we are matching against.
        variant: VariantId,
    },

    /// Evaluate an expression and provide the given value as the result of this
    /// match instruction. The expression has access to the pattern-values up to
    /// this point in the sequence.
    Expr {
        /// The expression to evaluate.
        seq: ExprSequence,
        /// The value produced by the expression.
        output: Value,
        /// The type of the output value.
        output_ty: TypeId,
    },

    // NB: this has to come second-to-last, because it might be infallible, for
    // the same reasons that `Arg` has to be last.
    //
    /// Invoke an extractor, taking the given values as input (the first is the
    /// value to extract, the other are the `Input`-polarity extractor args) and
    /// producing an output value for each `Output`-polarity extractor arg.
    Extract {
        /// Whether this extraction is infallible or not. `false`
        /// comes before `true`, so fallible nodes come first.
        infallible: bool,
        /// The value to extract, followed by polarity extractor args.
        inputs: Vec<Value>,
        /// The types of the inputs.
        input_tys: Vec<TypeId>,
        /// The types of the output values produced upon a successful match.
        output_tys: Vec<TypeId>,
        /// This extractor's term.
        term: TermId,
        /// Is this a multi-extractor?
        multi: bool,
    },

    // NB: This has to go last, since it is infallible, so that when we sort
    // edges in the trie, we visit infallible edges after first having tried the
    // more-specific fallible options.
    //
    /// Get the Nth input argument, which corresponds to the Nth field
    /// of the root term.
    Arg {
        /// The index of the argument to get.
        index: usize,
        /// The type of the argument.
        ty: TypeId,
    },
}

/// A single Expr instruction.
#[derive(Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum ExprInst {
    /// Produce a constant integer.
    ConstInt {
        /// This integer type.
        ty: TypeId,
        /// The integer value. Must fit within the type.
        val: i128,
    },

    /// Produce a constant extern value.
    ConstPrim {
        /// The primitive type.
        ty: TypeId,
        /// The primitive value.
        val: Sym,
    },

    /// Create a variant.
    CreateVariant {
        /// The input arguments that will make up this variant's fields.
        ///
        /// These must be in the same order as the variant's fields.
        inputs: Vec<(Value, TypeId)>,
        /// The enum type.
        ty: TypeId,
        /// The variant within the enum that we are contructing.
        variant: VariantId,
    },

    /// Invoke a constructor.
    Construct {
        /// The arguments to the constructor.
        inputs: Vec<(Value, TypeId)>,
        /// The type of the constructor.
        ty: TypeId,
        /// The constructor term.
        term: TermId,
        /// Whether this constructor is infallible or not.
        infallible: bool,
        /// Is this a multi-constructor?
        multi: bool,
    },

    /// Set the Nth return value. Produces no values.
    Return {
        /// The index of the return value to set.
        index: usize,
        /// The type of the return value.
        ty: TypeId,
        /// The value to set as the `index`th return value.
        value: Value,
    },
}

impl ExprInst {
    /// Invoke `f` for each value in this expression.
    pub fn visit_values<F: FnMut(Value)>(&self, mut f: F) {
        match self {
            &ExprInst::ConstInt { .. } => {}
            &ExprInst::ConstPrim { .. } => {}
            &ExprInst::Construct { ref inputs, .. }
            | &ExprInst::CreateVariant { ref inputs, .. } => {
                for (input, _ty) in inputs {
                    f(*input);
                }
            }
            &ExprInst::Return { value, .. } => {
                f(value);
            }
        }
    }
}

/// A linear sequence of instructions that match on and destructure an
/// argument. A pattern is fallible (may not match). If it does not fail, its
/// result consists of the values produced by the `PatternInst`s, which may be
/// used by a subsequent `Expr`.
#[derive(Clone, Debug, PartialEq, Eq, Hash, Default)]
pub struct PatternSequence {
    /// Instruction sequence for pattern.
    ///
    /// `InstId` indexes into this sequence for `Value::Pattern` values.
    pub insts: Vec<PatternInst>,
}

/// A linear sequence of instructions that produce a new value from the
/// right-hand side of a rule, given bindings that come from a `Pattern` derived
/// from the left-hand side.
#[derive(Clone, Debug, PartialEq, Eq, Hash, Default, PartialOrd, Ord)]
pub struct ExprSequence {
    /// Instruction sequence for expression.
    ///
    /// `InstId` indexes into this sequence for `Value::Expr` values.
    pub insts: Vec<ExprInst>,
    /// Position at which the rule producing this sequence was located.
    pub pos: Pos,
}

impl ExprSequence {
    /// Is this expression sequence producing a constant integer?
    ///
    /// If so, return the integer type and the constant.
    pub fn is_const_int(&self) -> Option<(TypeId, i128)> {
        if self.insts.len() == 2 && matches!(&self.insts[1], &ExprInst::Return { .. }) {
            match &self.insts[0] {
                &ExprInst::ConstInt { ty, val } => Some((ty, val)),
                _ => None,
            }
        } else {
            None
        }
    }
}

impl PatternSequence {
    fn add_inst(&mut self, inst: PatternInst) -> InstId {
        let id = InstId(self.insts.len());
        self.insts.push(inst);
        id
    }
}

/// Used as an intermediate representation of expressions in the [RuleVisitor] implementation for
/// [PatternSequence].
pub struct ReturnExpr {
    seq: ExprSequence,
    output: Value,
    output_ty: TypeId,
}

impl RuleVisitor for PatternSequence {
    type PatternVisitor = Self;
    type ExprVisitor = ExprSequence;
    type Expr = ReturnExpr;

    fn add_arg(&mut self, index: usize, ty: TypeId) -> Value {
        let inst = self.add_inst(PatternInst::Arg { index, ty });
        Value::Pattern { inst, output: 0 }
    }

    fn add_pattern<F: FnOnce(&mut Self)>(&mut self, visitor: F) {
        visitor(self)
    }

    fn add_expr<F>(&mut self, visitor: F) -> ReturnExpr
    where
        F: FnOnce(&mut ExprSequence) -> VisitedExpr<ExprSequence>,
    {
        let mut expr = ExprSequence::default();
        let VisitedExpr { ty, value } = visitor(&mut expr);
        let index = 0;
        expr.add_inst(ExprInst::Return { index, ty, value });
        ReturnExpr {
            seq: expr,
            output: value,
            output_ty: ty,
        }
    }

    fn expr_as_pattern(&mut self, expr: ReturnExpr) -> Value {
        let inst = self.add_inst(PatternInst::Expr {
            seq: expr.seq,
            output: expr.output,
            output_ty: expr.output_ty,
        });

        // Create values for all outputs.
        Value::Pattern { inst, output: 0 }
    }

    fn pattern_as_expr(&mut self, pattern: Value) -> Value {
        pattern
    }
}

impl PatternVisitor for PatternSequence {
    type PatternId = Value;

    fn add_match_equal(&mut self, a: Value, b: Value, ty: TypeId) {
        self.add_inst(PatternInst::MatchEqual { a, b, ty });
    }

    fn add_match_int(&mut self, input: Value, ty: TypeId, int_val: i128) {
        self.add_inst(PatternInst::MatchInt { input, ty, int_val });
    }

    fn add_match_prim(&mut self, input: Value, ty: TypeId, val: Sym) {
        self.add_inst(PatternInst::MatchPrim { input, ty, val });
    }

    fn add_match_variant(
        &mut self,
        input: Value,
        input_ty: TypeId,
        arg_tys: &[TypeId],
        variant: VariantId,
    ) -> Vec<Value> {
        let outputs = arg_tys.len();
        let arg_tys = arg_tys.into();
        let inst = self.add_inst(PatternInst::MatchVariant {
            input,
            input_ty,
            arg_tys,
            variant,
        });
        (0..outputs)
            .map(|output| Value::Pattern { inst, output })
            .collect()
    }

    fn add_extract(
        &mut self,
        input: Value,
        input_ty: TypeId,
        output_tys: Vec<TypeId>,
        term: TermId,
        infallible: bool,
        multi: bool,
    ) -> Vec<Value> {
        let outputs = output_tys.len();
        let inst = self.add_inst(PatternInst::Extract {
            inputs: vec![input],
            input_tys: vec![input_ty],
            output_tys,
            term,
            infallible,
            multi,
        });
        (0..outputs)
            .map(|output| Value::Pattern { inst, output })
            .collect()
    }
}

impl ExprSequence {
    fn add_inst(&mut self, inst: ExprInst) -> InstId {
        let id = InstId(self.insts.len());
        self.insts.push(inst);
        id
    }
}

impl ExprVisitor for ExprSequence {
    type ExprId = Value;

    fn add_const_int(&mut self, ty: TypeId, val: i128) -> Value {
        let inst = self.add_inst(ExprInst::ConstInt { ty, val });
        Value::Expr { inst, output: 0 }
    }

    fn add_const_prim(&mut self, ty: TypeId, val: Sym) -> Value {
        let inst = self.add_inst(ExprInst::ConstPrim { ty, val });
        Value::Expr { inst, output: 0 }
    }

    fn add_create_variant(
        &mut self,
        inputs: Vec<(Value, TypeId)>,
        ty: TypeId,
        variant: VariantId,
    ) -> Value {
        let inst = self.add_inst(ExprInst::CreateVariant {
            inputs,
            ty,
            variant,
        });
        Value::Expr { inst, output: 0 }
    }

    fn add_construct(
        &mut self,
        inputs: Vec<(Value, TypeId)>,
        ty: TypeId,
        term: TermId,
        _pure: bool,
        infallible: bool,
        multi: bool,
    ) -> Value {
        let inst = self.add_inst(ExprInst::Construct {
            inputs,
            ty,
            term,
            infallible,
            multi,
        });
        Value::Expr { inst, output: 0 }
    }
}

/// Build a sequence from a rule.
pub fn lower_rule(termenv: &TermEnv, rule: RuleId) -> (PatternSequence, ExprSequence) {
    let ruledata = &termenv.rules[rule.index()];
    log!("lower_rule: ruledata {:?}", ruledata);

    let mut pattern_seq = PatternSequence::default();
    let mut expr_seq = ruledata.visit(&mut pattern_seq, termenv).seq;
    expr_seq.pos = ruledata.pos;
    (pattern_seq, expr_seq)
}