1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#![doc = include_str!("../README.md")]
#![deny(missing_docs)]

use std::collections::hash_map::Entry;
use std::collections::{HashMap, HashSet};
use std::hash::Hash;
use std::ops::Index;

macro_rules! declare_id {
    (
        $(#[$attr:meta])*
            $name:ident
    ) => {
        $(#[$attr])*
            #[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
        pub struct $name(pub usize);
        impl $name {
            /// Get the index of this id.
            pub fn index(self) -> usize {
                self.0
            }
        }
    };
}

/// A wrapper around a [HashSet] which prevents accidentally observing the non-deterministic
/// iteration order.
#[derive(Clone, Debug, Default)]
pub struct StableSet<T>(HashSet<T>);

impl<T> StableSet<T> {
    fn new() -> Self {
        StableSet(HashSet::new())
    }
}

impl<T: Hash + Eq> StableSet<T> {
    /// Adds a value to the set. Returns whether the value was newly inserted.
    pub fn insert(&mut self, val: T) -> bool {
        self.0.insert(val)
    }

    /// Returns true if the set contains a value.
    pub fn contains(&self, val: &T) -> bool {
        self.0.contains(val)
    }
}

/// A wrapper around a [HashMap] which prevents accidentally observing the non-deterministic
/// iteration order.
#[derive(Clone, Debug)]
pub struct StableMap<K, V>(HashMap<K, V>);

impl<K, V> StableMap<K, V> {
    fn new() -> Self {
        StableMap(HashMap::new())
    }

    fn len(&self) -> usize {
        self.0.len()
    }
}

// NOTE: Can't auto-derive this
impl<K, V> Default for StableMap<K, V> {
    fn default() -> Self {
        StableMap(HashMap::new())
    }
}

impl<K: Hash + Eq, V> StableMap<K, V> {
    fn insert(&mut self, k: K, v: V) -> Option<V> {
        self.0.insert(k, v)
    }

    fn contains_key(&self, k: &K) -> bool {
        self.0.contains_key(k)
    }

    fn get(&self, k: &K) -> Option<&V> {
        self.0.get(k)
    }

    fn entry(&mut self, k: K) -> Entry<K, V> {
        self.0.entry(k)
    }
}

impl<K: Hash + Eq, V> Index<&K> for StableMap<K, V> {
    type Output = V;

    fn index(&self, index: &K) -> &Self::Output {
        self.0.index(index)
    }
}

/// Stores disjoint sets and provides efficient operations to merge two sets, and to find a
/// representative member of a set given any member of that set. In this implementation, sets always
/// have at least two members, and can only be formed by the `merge` operation.
#[derive(Debug, Default)]
pub struct DisjointSets<T> {
    parent: HashMap<T, (T, u8)>,
}

impl<T: Copy + std::fmt::Debug + Eq + Hash> DisjointSets<T> {
    /// Find a representative member of the set containing `x`. If `x` has not been merged with any
    /// other items using `merge`, returns `None`. This method updates the data structure to make
    /// future queries faster, and takes amortized constant time.
    ///
    /// ```
    /// let mut sets = cranelift_isle::DisjointSets::default();
    /// sets.merge(1, 2);
    /// sets.merge(1, 3);
    /// sets.merge(2, 4);
    /// assert_eq!(sets.find_mut(3).unwrap(), sets.find_mut(4).unwrap());
    /// assert_eq!(sets.find_mut(10), None);
    /// ```
    pub fn find_mut(&mut self, mut x: T) -> Option<T> {
        while let Some(node) = self.parent.get(&x) {
            if node.0 == x {
                return Some(x);
            }
            let grandparent = self.parent[&node.0].0;
            // Re-do the lookup but take a mutable borrow this time
            self.parent.get_mut(&x).unwrap().0 = grandparent;
            x = grandparent;
        }
        None
    }

    /// Find a representative member of the set containing `x`. If `x` has not been merged with any
    /// other items using `merge`, returns `None`. This method does not update the data structure to
    /// make future queries faster, so `find_mut` should be preferred.
    ///
    /// ```
    /// let mut sets = cranelift_isle::DisjointSets::default();
    /// sets.merge(1, 2);
    /// sets.merge(1, 3);
    /// sets.merge(2, 4);
    /// assert_eq!(sets.find(3).unwrap(), sets.find(4).unwrap());
    /// assert_eq!(sets.find(10), None);
    /// ```
    pub fn find(&self, mut x: T) -> Option<T> {
        while let Some(node) = self.parent.get(&x) {
            if node.0 == x {
                return Some(x);
            }
            x = node.0;
        }
        None
    }

    /// Merge the set containing `x` with the set containing `y`. This method takes amortized
    /// constant time.
    pub fn merge(&mut self, x: T, y: T) {
        assert_ne!(x, y);
        let mut x = if let Some(x) = self.find_mut(x) {
            self.parent[&x]
        } else {
            self.parent.insert(x, (x, 0));
            (x, 0)
        };
        let mut y = if let Some(y) = self.find_mut(y) {
            self.parent[&y]
        } else {
            self.parent.insert(y, (y, 0));
            (y, 0)
        };

        if x == y {
            return;
        }

        if x.1 < y.1 {
            std::mem::swap(&mut x, &mut y);
        }

        self.parent.get_mut(&y.0).unwrap().0 = x.0;
        if x.1 == y.1 {
            let x_rank = &mut self.parent.get_mut(&x.0).unwrap().1;
            *x_rank = x_rank.saturating_add(1);
        }
    }

    /// Remove the set containing the given item, and return all members of that set. The set is
    /// returned in sorted order. This method takes time linear in the total size of all sets.
    ///
    /// ```
    /// let mut sets = cranelift_isle::DisjointSets::default();
    /// sets.merge(1, 2);
    /// sets.merge(1, 3);
    /// sets.merge(2, 4);
    /// assert_eq!(sets.remove_set_of(4), &[1, 2, 3, 4]);
    /// assert_eq!(sets.remove_set_of(1), &[]);
    /// assert!(sets.is_empty());
    /// ```
    pub fn remove_set_of(&mut self, x: T) -> Vec<T>
    where
        T: Ord,
    {
        let mut set = Vec::new();
        if let Some(x) = self.find_mut(x) {
            set.extend(self.parent.keys().copied());
            // It's important to use `find_mut` here to avoid quadratic worst-case time.
            set.retain(|&y| self.find_mut(y).unwrap() == x);
            for y in set.iter() {
                self.parent.remove(y);
            }
            set.sort_unstable();
        }
        set
    }

    /// Returns true if there are no sets. This method takes constant time.
    ///
    /// ```
    /// let mut sets = cranelift_isle::DisjointSets::default();
    /// assert!(sets.is_empty());
    /// sets.merge(1, 2);
    /// assert!(!sets.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.parent.is_empty()
    }

    /// Returns the total number of elements in all sets. This method takes constant time.
    ///
    /// ```
    /// let mut sets = cranelift_isle::DisjointSets::default();
    /// sets.merge(1, 2);
    /// assert_eq!(sets.len(), 2);
    /// sets.merge(3, 4);
    /// sets.merge(3, 5);
    /// assert_eq!(sets.len(), 5);
    /// ```
    pub fn len(&self) -> usize {
        self.parent.len()
    }
}

pub mod ast;
pub mod codegen;
pub mod compile;
pub mod error;
pub mod ir;
pub mod lexer;
mod log;
pub mod overlap;
pub mod parser;
pub mod sema;
pub mod trie;
pub mod trie_again;