cranelift_wasm/environ/
spec.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
//! All the runtime support necessary for the wasm to cranelift translation is formalized by the
//! traits `FunctionEnvironment` and `ModuleEnvironment`.
//!
//! There are skeleton implementations of these traits in the `dummy` module, and complete
//! implementations in [Wasmtime].
//!
//! [Wasmtime]: https://github.com/bytecodealliance/wasmtime

use crate::state::FuncTranslationState;
use crate::{
    DataIndex, ElemIndex, FuncIndex, Global, GlobalIndex, Heap, HeapData, Memory, MemoryIndex,
    Table, TableIndex, Tag, TagIndex, TypeConvert, TypeIndex, WasmError, WasmFuncType,
    WasmHeapType, WasmResult,
};
use cranelift_codegen::cursor::FuncCursor;
use cranelift_codegen::ir::immediates::Offset32;
use cranelift_codegen::ir::{self, InstBuilder, Type};
use cranelift_codegen::isa::TargetFrontendConfig;
use cranelift_entity::PrimaryMap;
use cranelift_frontend::FunctionBuilder;
use std::boxed::Box;
use std::string::ToString;
use wasmparser::{FuncValidator, FunctionBody, Operator, ValidatorResources, WasmFeatures};
use wasmtime_types::{ConstExpr, ModuleInternedTypeIndex};

/// The value of a WebAssembly global variable.
#[derive(Clone, Copy)]
pub enum GlobalVariable {
    /// This is a constant global with a value known at compile time.
    Const(ir::Value),

    /// This is a variable in memory that should be referenced through a `GlobalValue`.
    Memory {
        /// The address of the global variable storage.
        gv: ir::GlobalValue,
        /// An offset to add to the address.
        offset: Offset32,
        /// The global variable's type.
        ty: ir::Type,
    },

    /// This is a global variable that needs to be handled by the environment.
    Custom,
}

/// Environment affecting the translation of a WebAssembly.
pub trait TargetEnvironment: TypeConvert {
    /// Get the information needed to produce Cranelift IR for the given target.
    fn target_config(&self) -> TargetFrontendConfig;

    /// Whether to enable Spectre mitigations for heap accesses.
    fn heap_access_spectre_mitigation(&self) -> bool;

    /// Whether to add proof-carrying-code facts to verify memory accesses.
    fn proof_carrying_code(&self) -> bool;

    /// Get the Cranelift integer type to use for native pointers.
    ///
    /// This returns `I64` for 64-bit architectures and `I32` for 32-bit architectures.
    fn pointer_type(&self) -> ir::Type {
        ir::Type::int(u16::from(self.target_config().pointer_bits())).unwrap()
    }

    /// Get the size of a native pointer, in bytes.
    fn pointer_bytes(&self) -> u8 {
        self.target_config().pointer_bytes()
    }

    /// Get the Cranelift reference type to use for the given Wasm reference
    /// type.
    ///
    /// By default, this returns `R64` for 64-bit architectures and `R32` for
    /// 32-bit architectures. If you override this, then you should also
    /// override `FuncEnvironment::{translate_ref_null, translate_ref_is_null}`
    /// as well.
    fn reference_type(&self, ty: WasmHeapType) -> ir::Type {
        let _ = ty;
        match self.pointer_type() {
            ir::types::I32 => ir::types::R32,
            ir::types::I64 => ir::types::R64,
            _ => panic!("unsupported pointer type"),
        }
    }
}

/// Environment affecting the translation of a single WebAssembly function.
///
/// A `FuncEnvironment` trait object is required to translate a WebAssembly function to Cranelift
/// IR. The function environment provides information about the WebAssembly module as well as the
/// runtime environment.
pub trait FuncEnvironment: TargetEnvironment {
    /// Is the given parameter of the given function a wasm-level parameter, as opposed to a hidden
    /// parameter added for use by the implementation?
    fn is_wasm_parameter(&self, signature: &ir::Signature, index: usize) -> bool {
        signature.params[index].purpose == ir::ArgumentPurpose::Normal
    }

    /// Is the given return of the given function a wasm-level parameter, as
    /// opposed to a hidden parameter added for use by the implementation?
    fn is_wasm_return(&self, signature: &ir::Signature, index: usize) -> bool {
        signature.returns[index].purpose == ir::ArgumentPurpose::Normal
    }

    /// Called after the locals for a function have been parsed, and the number
    /// of variables defined by this function is provided.
    fn after_locals(&mut self, num_locals_defined: usize) {
        let _ = num_locals_defined;
    }

    /// Set up the necessary preamble definitions in `func` to access the global variable
    /// identified by `index`.
    ///
    /// The index space covers both imported globals and globals defined by the module.
    ///
    /// Return the global variable reference that should be used to access the global and the
    /// WebAssembly type of the global.
    fn make_global(
        &mut self,
        func: &mut ir::Function,
        index: GlobalIndex,
    ) -> WasmResult<GlobalVariable>;

    /// Get the heaps for this function environment.
    ///
    /// The returned map should provide heap format details (encoded in
    /// `HeapData`) for each `Heap` that was previously returned by
    /// `make_heap()`. The translator will first call make_heap for each Wasm
    /// memory, and then later when translating code, will invoke `heaps()` to
    /// learn how to access the environment's implementation of each memory.
    fn heaps(&self) -> &PrimaryMap<Heap, HeapData>;

    /// Set up the necessary preamble definitions in `func` to access the linear memory identified
    /// by `index`.
    ///
    /// The index space covers both imported and locally declared memories.
    fn make_heap(&mut self, func: &mut ir::Function, index: MemoryIndex) -> WasmResult<Heap>;

    /// Set up a signature definition in the preamble of `func` that can be used for an indirect
    /// call with signature `index`.
    ///
    /// The signature may contain additional arguments needed for an indirect call, but the
    /// arguments marked as `ArgumentPurpose::Normal` must correspond to the WebAssembly signature
    /// arguments.
    ///
    /// The signature will only be used for indirect calls, even if the module has direct function
    /// calls with the same WebAssembly type.
    fn make_indirect_sig(
        &mut self,
        func: &mut ir::Function,
        index: TypeIndex,
    ) -> WasmResult<ir::SigRef>;

    /// Set up an external function definition in the preamble of `func` that can be used to
    /// directly call the function `index`.
    ///
    /// The index space covers both imported functions and functions defined in the current module.
    ///
    /// The function's signature may contain additional arguments needed for a direct call, but the
    /// arguments marked as `ArgumentPurpose::Normal` must correspond to the WebAssembly signature
    /// arguments.
    ///
    /// The function's signature will only be used for direct calls, even if the module has
    /// indirect calls with the same WebAssembly type.
    fn make_direct_func(
        &mut self,
        func: &mut ir::Function,
        index: FuncIndex,
    ) -> WasmResult<ir::FuncRef>;

    /// Translate a `call` WebAssembly instruction at `pos`.
    ///
    /// Insert instructions at `pos` for a direct call to the function `callee_index`.
    ///
    /// The function reference `callee` was previously created by `make_direct_func()`.
    ///
    /// Return the call instruction whose results are the WebAssembly return values.
    fn translate_call(
        &mut self,
        builder: &mut FunctionBuilder,
        _callee_index: FuncIndex,
        callee: ir::FuncRef,
        call_args: &[ir::Value],
    ) -> WasmResult<ir::Inst> {
        Ok(builder.ins().call(callee, call_args))
    }

    /// Translate a `call_indirect` WebAssembly instruction at `pos`.
    ///
    /// Insert instructions at `pos` for an indirect call to the function `callee` in the table
    /// `table_index` with WebAssembly signature `sig_index`. The `callee` value will have type
    /// `i32`.
    ///
    /// The signature `sig_ref` was previously created by `make_indirect_sig()`.
    ///
    /// Return the call instruction whose results are the WebAssembly return values.
    /// Returns `None` if this statically traps instead of creating a call
    /// instruction.
    fn translate_call_indirect(
        &mut self,
        builder: &mut FunctionBuilder,
        table_index: TableIndex,
        sig_index: TypeIndex,
        sig_ref: ir::SigRef,
        callee: ir::Value,
        call_args: &[ir::Value],
    ) -> WasmResult<Option<ir::Inst>>;

    /// Translate a `return_call` WebAssembly instruction at the builder's
    /// current position.
    ///
    /// Insert instructions at the builder's current position for a direct tail
    /// call to the function `callee_index`.
    ///
    /// The function reference `callee` was previously created by `make_direct_func()`.
    ///
    /// Return the call instruction whose results are the WebAssembly return values.
    fn translate_return_call(
        &mut self,
        builder: &mut FunctionBuilder,
        _callee_index: FuncIndex,
        callee: ir::FuncRef,
        call_args: &[ir::Value],
    ) -> WasmResult<()> {
        builder.ins().return_call(callee, call_args);
        Ok(())
    }

    /// Translate a `return_call_indirect` WebAssembly instruction at the
    /// builder's current position.
    ///
    /// Insert instructions at the builder's current position for an indirect
    /// tail call to the function `callee` in the table `table_index` with
    /// WebAssembly signature `sig_index`. The `callee` value will have type
    /// `i32`.
    ///
    /// The signature `sig_ref` was previously created by `make_indirect_sig()`.
    fn translate_return_call_indirect(
        &mut self,
        builder: &mut FunctionBuilder,
        table_index: TableIndex,
        sig_index: TypeIndex,
        sig_ref: ir::SigRef,
        callee: ir::Value,
        call_args: &[ir::Value],
    ) -> WasmResult<()>;

    /// Translate a `return_call_ref` WebAssembly instruction at the builder's
    /// given position.
    ///
    /// Insert instructions at the builder's current position for an indirect
    /// tail call to the function `callee`. The `callee` value will be a Wasm
    /// funcref that may need to be translated to a native function address
    /// depending on your implementation of this trait.
    ///
    /// The signature `sig_ref` was previously created by `make_indirect_sig()`.
    fn translate_return_call_ref(
        &mut self,
        builder: &mut FunctionBuilder,
        sig_ref: ir::SigRef,
        callee: ir::Value,
        call_args: &[ir::Value],
    ) -> WasmResult<()>;

    /// Translate a `call_ref` WebAssembly instruction at the builder's current
    /// position.
    ///
    /// Insert instructions at the builder's current position for an indirect
    /// call to the function `callee`. The `callee` value will be a Wasm funcref
    /// that may need to be translated to a native function address depending on
    /// your implementation of this trait.
    ///
    /// The signature `sig_ref` was previously created by `make_indirect_sig()`.
    ///
    /// Return the call instruction whose results are the WebAssembly return values.
    fn translate_call_ref(
        &mut self,
        builder: &mut FunctionBuilder,
        sig_ref: ir::SigRef,
        callee: ir::Value,
        call_args: &[ir::Value],
    ) -> WasmResult<ir::Inst>;

    /// Translate a `memory.grow` WebAssembly instruction.
    ///
    /// The `index` provided identifies the linear memory to grow, and `heap` is the heap reference
    /// returned by `make_heap` for the same index.
    ///
    /// The `val` value is the requested memory size in pages.
    ///
    /// Returns the old size (in pages) of the memory.
    fn translate_memory_grow(
        &mut self,
        pos: FuncCursor,
        index: MemoryIndex,
        heap: Heap,
        val: ir::Value,
    ) -> WasmResult<ir::Value>;

    /// Translates a `memory.size` WebAssembly instruction.
    ///
    /// The `index` provided identifies the linear memory to query, and `heap` is the heap reference
    /// returned by `make_heap` for the same index.
    ///
    /// Returns the size in pages of the memory.
    fn translate_memory_size(
        &mut self,
        pos: FuncCursor,
        index: MemoryIndex,
        heap: Heap,
    ) -> WasmResult<ir::Value>;

    /// Translate a `memory.copy` WebAssembly instruction.
    ///
    /// The `index` provided identifies the linear memory to query, and `heap` is the heap reference
    /// returned by `make_heap` for the same index.
    fn translate_memory_copy(
        &mut self,
        pos: FuncCursor,
        src_index: MemoryIndex,
        src_heap: Heap,
        dst_index: MemoryIndex,
        dst_heap: Heap,
        dst: ir::Value,
        src: ir::Value,
        len: ir::Value,
    ) -> WasmResult<()>;

    /// Translate a `memory.fill` WebAssembly instruction.
    ///
    /// The `index` provided identifies the linear memory to query, and `heap` is the heap reference
    /// returned by `make_heap` for the same index.
    fn translate_memory_fill(
        &mut self,
        pos: FuncCursor,
        index: MemoryIndex,
        heap: Heap,
        dst: ir::Value,
        val: ir::Value,
        len: ir::Value,
    ) -> WasmResult<()>;

    /// Translate a `memory.init` WebAssembly instruction.
    ///
    /// The `index` provided identifies the linear memory to query, and `heap` is the heap reference
    /// returned by `make_heap` for the same index. `seg_index` is the index of the segment to copy
    /// from.
    fn translate_memory_init(
        &mut self,
        pos: FuncCursor,
        index: MemoryIndex,
        heap: Heap,
        seg_index: u32,
        dst: ir::Value,
        src: ir::Value,
        len: ir::Value,
    ) -> WasmResult<()>;

    /// Translate a `data.drop` WebAssembly instruction.
    fn translate_data_drop(&mut self, pos: FuncCursor, seg_index: u32) -> WasmResult<()>;

    /// Translate a `table.size` WebAssembly instruction.
    fn translate_table_size(&mut self, pos: FuncCursor, index: TableIndex)
        -> WasmResult<ir::Value>;

    /// Translate a `table.grow` WebAssembly instruction.
    fn translate_table_grow(
        &mut self,
        pos: FuncCursor,
        table_index: TableIndex,
        delta: ir::Value,
        init_value: ir::Value,
    ) -> WasmResult<ir::Value>;

    /// Translate a `table.get` WebAssembly instruction.
    fn translate_table_get(
        &mut self,
        builder: &mut FunctionBuilder,
        table_index: TableIndex,
        index: ir::Value,
    ) -> WasmResult<ir::Value>;

    /// Translate a `table.set` WebAssembly instruction.
    fn translate_table_set(
        &mut self,
        builder: &mut FunctionBuilder,
        table_index: TableIndex,
        value: ir::Value,
        index: ir::Value,
    ) -> WasmResult<()>;

    /// Translate a `table.copy` WebAssembly instruction.
    fn translate_table_copy(
        &mut self,
        pos: FuncCursor,
        dst_table_index: TableIndex,
        src_table_index: TableIndex,
        dst: ir::Value,
        src: ir::Value,
        len: ir::Value,
    ) -> WasmResult<()>;

    /// Translate a `table.fill` WebAssembly instruction.
    fn translate_table_fill(
        &mut self,
        pos: FuncCursor,
        table_index: TableIndex,
        dst: ir::Value,
        val: ir::Value,
        len: ir::Value,
    ) -> WasmResult<()>;

    /// Translate a `table.init` WebAssembly instruction.
    fn translate_table_init(
        &mut self,
        pos: FuncCursor,
        seg_index: u32,
        table_index: TableIndex,
        dst: ir::Value,
        src: ir::Value,
        len: ir::Value,
    ) -> WasmResult<()>;

    /// Translate a `elem.drop` WebAssembly instruction.
    fn translate_elem_drop(&mut self, pos: FuncCursor, seg_index: u32) -> WasmResult<()>;

    /// Translate a `ref.null T` WebAssembly instruction.
    ///
    /// By default, translates into a null reference type.
    ///
    /// Override this if you don't use Cranelift reference types for all Wasm
    /// reference types (e.g. you use a raw pointer for `funcref`s) or if the
    /// null sentinel is not a null reference type pointer for your type. If you
    /// override this method, then you should also override
    /// `translate_ref_is_null` as well.
    fn translate_ref_null(
        &mut self,
        mut pos: FuncCursor,
        ty: WasmHeapType,
    ) -> WasmResult<ir::Value> {
        let _ = ty;
        Ok(pos.ins().null(self.reference_type(ty)))
    }

    /// Translate a `ref.is_null` WebAssembly instruction.
    ///
    /// By default, assumes that `value` is a Cranelift reference type, and that
    /// a null Cranelift reference type is the null value for all Wasm reference
    /// types.
    ///
    /// If you override this method, you probably also want to override
    /// `translate_ref_null` as well.
    fn translate_ref_is_null(
        &mut self,
        mut pos: FuncCursor,
        value: ir::Value,
    ) -> WasmResult<ir::Value> {
        let is_null = pos.ins().is_null(value);
        Ok(pos.ins().uextend(ir::types::I32, is_null))
    }

    /// Translate a `ref.func` WebAssembly instruction.
    fn translate_ref_func(
        &mut self,
        pos: FuncCursor,
        func_index: FuncIndex,
    ) -> WasmResult<ir::Value>;

    /// Translate a `global.get` WebAssembly instruction at `pos` for a global
    /// that is custom.
    fn translate_custom_global_get(
        &mut self,
        pos: FuncCursor,
        global_index: GlobalIndex,
    ) -> WasmResult<ir::Value>;

    /// Translate a `global.set` WebAssembly instruction at `pos` for a global
    /// that is custom.
    fn translate_custom_global_set(
        &mut self,
        pos: FuncCursor,
        global_index: GlobalIndex,
        val: ir::Value,
    ) -> WasmResult<()>;

    /// Translate an `i32.atomic.wait` or `i64.atomic.wait` WebAssembly instruction.
    /// The `index` provided identifies the linear memory containing the value
    /// to wait on, and `heap` is the heap reference returned by `make_heap`
    /// for the same index.  Whether the waited-on value is 32- or 64-bit can be
    /// determined by examining the type of `expected`, which must be only I32 or I64.
    ///
    /// Note that the `addr` here is the host linear memory address rather
    /// than a relative wasm linear memory address. The type of this value is
    /// the same as the host's pointer.
    ///
    /// Returns an i32, which is negative if the helper call failed.
    fn translate_atomic_wait(
        &mut self,
        pos: FuncCursor,
        index: MemoryIndex,
        heap: Heap,
        addr: ir::Value,
        expected: ir::Value,
        timeout: ir::Value,
    ) -> WasmResult<ir::Value>;

    /// Translate an `atomic.notify` WebAssembly instruction.
    /// The `index` provided identifies the linear memory containing the value
    /// to wait on, and `heap` is the heap reference returned by `make_heap`
    /// for the same index.
    ///
    /// Note that the `addr` here is the host linear memory address rather
    /// than a relative wasm linear memory address. The type of this value is
    /// the same as the host's pointer.
    ///
    /// Returns an i64, which is negative if the helper call failed.
    fn translate_atomic_notify(
        &mut self,
        pos: FuncCursor,
        index: MemoryIndex,
        heap: Heap,
        addr: ir::Value,
        count: ir::Value,
    ) -> WasmResult<ir::Value>;

    /// Translate an `i32` value into an `i31ref`.
    fn translate_ref_i31(&mut self, pos: FuncCursor, val: ir::Value) -> WasmResult<ir::Value>;

    /// Sign-extend an `i31ref` into an `i32`.
    fn translate_i31_get_s(&mut self, pos: FuncCursor, i31ref: ir::Value) -> WasmResult<ir::Value>;

    /// Zero-extend an `i31ref` into an `i32`.
    fn translate_i31_get_u(&mut self, pos: FuncCursor, i31ref: ir::Value) -> WasmResult<ir::Value>;

    /// Emit code at the beginning of every wasm loop.
    ///
    /// This can be used to insert explicit interrupt or safepoint checking at
    /// the beginnings of loops.
    fn translate_loop_header(&mut self, _builder: &mut FunctionBuilder) -> WasmResult<()> {
        // By default, don't emit anything.
        Ok(())
    }

    /// Optional callback for the `FunctionEnvironment` performing this translation to maintain
    /// internal state or prepare custom state for the operator to translate
    fn before_translate_operator(
        &mut self,
        _op: &Operator,
        _builder: &mut FunctionBuilder,
        _state: &FuncTranslationState,
    ) -> WasmResult<()> {
        Ok(())
    }

    /// Optional callback for the `FunctionEnvironment` performing this translation to maintain
    /// internal state or finalize custom state for the operator that was translated
    fn after_translate_operator(
        &mut self,
        _op: &Operator,
        _builder: &mut FunctionBuilder,
        _state: &FuncTranslationState,
    ) -> WasmResult<()> {
        Ok(())
    }

    /// Optional callback for the `FuncEnvironment` performing this translation
    /// to maintain, prepare, or finalize custom, internal state when we
    /// statically determine that a Wasm memory access will unconditionally
    /// trap, rendering the rest of the block unreachable. Called just before
    /// the unconditional trap is emitted.
    fn before_unconditionally_trapping_memory_access(
        &mut self,
        _builder: &mut FunctionBuilder,
    ) -> WasmResult<()> {
        Ok(())
    }

    /// Optional callback for the `FunctionEnvironment` performing this translation to perform work
    /// before the function body is translated.
    fn before_translate_function(
        &mut self,
        _builder: &mut FunctionBuilder,
        _state: &FuncTranslationState,
    ) -> WasmResult<()> {
        Ok(())
    }

    /// Optional callback for the `FunctionEnvironment` performing this translation to perform work
    /// after the function body is translated.
    fn after_translate_function(
        &mut self,
        _builder: &mut FunctionBuilder,
        _state: &FuncTranslationState,
    ) -> WasmResult<()> {
        Ok(())
    }

    /// Whether or not to force relaxed simd instructions to have deterministic
    /// lowerings meaning they will produce the same results across all hosts,
    /// regardless of the cost to performance.
    fn relaxed_simd_deterministic(&self) -> bool {
        true
    }

    /// Whether or not the target being translated for has a native fma
    /// instruction. If it does not then when relaxed simd isn't deterministic
    /// the translation of the `f32x4.relaxed_fma` instruction, for example,
    /// will do a multiplication and then an add instead of the fused version.
    fn has_native_fma(&self) -> bool {
        false
    }

    /// Returns whether this is an x86 target, which may alter lowerings of
    /// relaxed simd instructions.
    fn is_x86(&self) -> bool {
        false
    }

    /// Returns whether the CLIF `x86_blendv` instruction should be used for the
    /// relaxed simd `*.relaxed_laneselect` instruction for the specified type.
    fn use_x86_blendv_for_relaxed_laneselect(&self, ty: Type) -> bool {
        let _ = ty;
        false
    }

    /// Returns whether the CLIF `x86_pshufb` instruction should be used for the
    /// `i8x16.relaxed_swizzle` instruction.
    fn use_x86_pshufb_for_relaxed_swizzle(&self) -> bool {
        false
    }

    /// Returns whether the CLIF `x86_pmulhrsw` instruction should be used for
    /// the `i8x16.relaxed_q15mulr_s` instruction.
    fn use_x86_pmulhrsw_for_relaxed_q15mul(&self) -> bool {
        false
    }

    /// Returns whether the CLIF `x86_pmaddubsw` instruction should be used for
    /// the relaxed-simd dot-product instructions instruction.
    fn use_x86_pmaddubsw_for_dot(&self) -> bool {
        false
    }

    /// Inserts code before a function return.
    fn handle_before_return(&mut self, _retvals: &[ir::Value], _builder: &mut FunctionBuilder) {}

    /// Inserts code before a load.
    fn before_load(
        &mut self,
        _builder: &mut FunctionBuilder,
        _val_size: u8,
        _addr: ir::Value,
        _offset: u64,
    ) {
    }

    /// Inserts code before a store.
    fn before_store(
        &mut self,
        _builder: &mut FunctionBuilder,
        _val_size: u8,
        _addr: ir::Value,
        _offset: u64,
    ) {
    }

    /// Inserts code before updating a global.
    fn update_global(
        &mut self,
        _builder: &mut FunctionBuilder,
        _global_index: u32,
        _value: ir::Value,
    ) {
    }

    /// Inserts code before memory.grow.
    fn before_memory_grow(
        &mut self,
        _builder: &mut FunctionBuilder,
        _num_bytes: ir::Value,
        _mem_index: MemoryIndex,
    ) {
    }
}

/// An object satisfying the `ModuleEnvironment` trait can be passed as argument to the
/// [`translate_module`](fn.translate_module.html) function. These methods should not be called
/// by the user, they are only for `cranelift-wasm` internal use.
pub trait ModuleEnvironment<'data>: TypeConvert {
    /// Provides the number of types up front. By default this does nothing, but
    /// implementations can use this to preallocate memory if desired.
    fn reserve_types(&mut self, _num: u32) -> WasmResult<()> {
        Ok(())
    }

    /// Declares a function signature to the environment.
    fn declare_type_func(&mut self, wasm_func_type: WasmFuncType) -> WasmResult<()>;

    /// Translates a type index to its signature index, only called for type
    /// indices which point to functions.
    fn type_to_signature(&self, index: TypeIndex) -> WasmResult<ModuleInternedTypeIndex> {
        let _ = index;
        Err(WasmError::Unsupported("module linking".to_string()))
    }

    /// Provides the number of imports up front. By default this does nothing, but
    /// implementations can use this to preallocate memory if desired.
    fn reserve_imports(&mut self, _num: u32) -> WasmResult<()> {
        Ok(())
    }

    /// Declares a function import to the environment.
    fn declare_func_import(
        &mut self,
        index: TypeIndex,
        module: &'data str,
        field: &'data str,
    ) -> WasmResult<()>;

    /// Declares a table import to the environment.
    fn declare_table_import(
        &mut self,
        table: Table,
        module: &'data str,
        field: &'data str,
    ) -> WasmResult<()>;

    /// Declares a memory import to the environment.
    fn declare_memory_import(
        &mut self,
        memory: Memory,
        module: &'data str,
        field: &'data str,
    ) -> WasmResult<()>;

    /// Declares an tag import to the environment.
    fn declare_tag_import(
        &mut self,
        tag: Tag,
        module: &'data str,
        field: &'data str,
    ) -> WasmResult<()> {
        let _ = (tag, module, field);
        Err(WasmError::Unsupported("wasm tags".to_string()))
    }

    /// Declares a global import to the environment.
    fn declare_global_import(
        &mut self,
        global: Global,
        module: &'data str,
        field: &'data str,
    ) -> WasmResult<()>;

    /// Notifies the implementation that all imports have been declared.
    fn finish_imports(&mut self) -> WasmResult<()> {
        Ok(())
    }

    /// Provides the number of defined functions up front. By default this does nothing, but
    /// implementations can use this to preallocate memory if desired.
    fn reserve_func_types(&mut self, _num: u32) -> WasmResult<()> {
        Ok(())
    }

    /// Declares the type (signature) of a local function in the module.
    fn declare_func_type(&mut self, index: TypeIndex) -> WasmResult<()>;

    /// Provides the number of defined tables up front. By default this does nothing, but
    /// implementations can use this to preallocate memory if desired.
    fn reserve_tables(&mut self, _num: u32) -> WasmResult<()> {
        Ok(())
    }

    /// Declares a table to the environment.
    fn declare_table(&mut self, table: Table) -> WasmResult<()>;

    /// Provides the number of defined memories up front. By default this does nothing, but
    /// implementations can use this to preallocate memory if desired.
    fn reserve_memories(&mut self, _num: u32) -> WasmResult<()> {
        Ok(())
    }

    /// Declares a memory to the environment
    fn declare_memory(&mut self, memory: Memory) -> WasmResult<()>;

    /// Provides the number of defined tags up front. By default this does nothing, but
    /// implementations can use this to preallocate memory if desired.
    fn reserve_tags(&mut self, _num: u32) -> WasmResult<()> {
        Ok(())
    }

    /// Declares an tag to the environment
    fn declare_tag(&mut self, tag: Tag) -> WasmResult<()> {
        let _ = tag;
        Err(WasmError::Unsupported("wasm tags".to_string()))
    }

    /// Provides the number of defined globals up front. By default this does nothing, but
    /// implementations can use this to preallocate memory if desired.
    fn reserve_globals(&mut self, _num: u32) -> WasmResult<()> {
        Ok(())
    }

    /// Declares a global to the environment.
    fn declare_global(&mut self, global: Global, init: ConstExpr) -> WasmResult<()>;

    /// Provides the number of exports up front. By default this does nothing, but
    /// implementations can use this to preallocate memory if desired.
    fn reserve_exports(&mut self, _num: u32) -> WasmResult<()> {
        Ok(())
    }

    /// Declares a function export to the environment.
    fn declare_func_export(&mut self, func_index: FuncIndex, name: &'data str) -> WasmResult<()>;

    /// Declares a table export to the environment.
    fn declare_table_export(&mut self, table_index: TableIndex, name: &'data str)
        -> WasmResult<()>;

    /// Declares a memory export to the environment.
    fn declare_memory_export(
        &mut self,
        memory_index: MemoryIndex,
        name: &'data str,
    ) -> WasmResult<()>;

    /// Declares an tag export to the environment.
    fn declare_tag_export(&mut self, tag_index: TagIndex, name: &'data str) -> WasmResult<()> {
        let _ = (tag_index, name);
        Err(WasmError::Unsupported("wasm tags".to_string()))
    }

    /// Declares a global export to the environment.
    fn declare_global_export(
        &mut self,
        global_index: GlobalIndex,
        name: &'data str,
    ) -> WasmResult<()>;

    /// Notifies the implementation that all exports have been declared.
    fn finish_exports(&mut self) -> WasmResult<()> {
        Ok(())
    }

    /// Declares the optional start function.
    fn declare_start_func(&mut self, index: FuncIndex) -> WasmResult<()>;

    /// Provides the number of element initializers up front. By default this does nothing, but
    /// implementations can use this to preallocate memory if desired.
    fn reserve_table_elements(&mut self, _num: u32) -> WasmResult<()> {
        Ok(())
    }

    /// Fills a declared table with references to functions in the module.
    fn declare_table_elements(
        &mut self,
        table_index: TableIndex,
        base: Option<GlobalIndex>,
        offset: u32,
        elements: Box<[FuncIndex]>,
    ) -> WasmResult<()>;

    /// Declare a passive element segment.
    fn declare_passive_element(
        &mut self,
        index: ElemIndex,
        elements: Box<[FuncIndex]>,
    ) -> WasmResult<()>;

    /// Indicates that a declarative element segment was seen in the wasm
    /// module.
    fn declare_elements(&mut self, elements: Box<[FuncIndex]>) -> WasmResult<()> {
        let _ = elements;
        Ok(())
    }

    /// Provides the number of passive data segments up front.
    ///
    /// By default this does nothing, but implementations may use this to
    /// pre-allocate memory if desired.
    fn reserve_passive_data(&mut self, count: u32) -> WasmResult<()> {
        let _ = count;
        Ok(())
    }

    /// Declare a passive data segment.
    fn declare_passive_data(&mut self, data_index: DataIndex, data: &'data [u8]) -> WasmResult<()>;

    /// Indicates how many functions the code section reports and the byte
    /// offset of where the code sections starts.
    fn reserve_function_bodies(&mut self, bodies: u32, code_section_offset: u64) {
        let _ = (bodies, code_section_offset);
    }

    /// Provides the contents of a function body.
    fn define_function_body(
        &mut self,
        validator: FuncValidator<ValidatorResources>,
        body: FunctionBody<'data>,
    ) -> WasmResult<()>;

    /// Provides the number of data initializers up front. By default this does nothing, but
    /// implementations can use this to preallocate memory if desired.
    fn reserve_data_initializers(&mut self, _num: u32) -> WasmResult<()> {
        Ok(())
    }

    /// Fills a declared memory with bytes at module instantiation.
    fn declare_data_initialization(
        &mut self,
        memory_index: MemoryIndex,
        base: Option<GlobalIndex>,
        offset: u64,
        data: &'data [u8],
    ) -> WasmResult<()>;

    /// Declares the name of a module to the environment.
    ///
    /// By default this does nothing, but implementations can use this to read
    /// the module name subsection of the custom name section if desired.
    fn declare_module_name(&mut self, _name: &'data str) {}

    /// Declares the name of a function to the environment.
    ///
    /// By default this does nothing, but implementations can use this to read
    /// the function name subsection of the custom name section if desired.
    fn declare_func_name(&mut self, _func_index: FuncIndex, _name: &'data str) {}

    /// Declares the name of a function's local to the environment.
    ///
    /// By default this does nothing, but implementations can use this to read
    /// the local name subsection of the custom name section if desired.
    fn declare_local_name(&mut self, _func_index: FuncIndex, _local_index: u32, _name: &'data str) {
    }

    /// Indicates that a custom section has been found in the wasm file
    fn custom_section(&mut self, _name: &'data str, _data: &'data [u8]) -> WasmResult<()> {
        Ok(())
    }

    /// Returns the list of enabled wasm features this translation will be using.
    fn wasm_features(&self) -> WasmFeatures {
        WasmFeatures::default()
    }
}