cranelift_wasm/
func_translator.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
//! Stand-alone WebAssembly to Cranelift IR translator.
//!
//! This module defines the `FuncTranslator` type which can translate a single WebAssembly
//! function to Cranelift IR guided by a `FuncEnvironment` which provides information about the
//! WebAssembly module and the runtime environment.

use crate::code_translator::{bitcast_wasm_returns, translate_operator};
use crate::environ::FuncEnvironment;
use crate::state::FuncTranslationState;
use crate::translation_utils::get_vmctx_value_label;
use crate::WasmResult;
use cranelift_codegen::entity::EntityRef;
use cranelift_codegen::ir::{self, Block, InstBuilder, ValueLabel};
use cranelift_codegen::timing;
use cranelift_frontend::{FunctionBuilder, FunctionBuilderContext, Variable};
use wasmparser::{BinaryReader, FuncValidator, FunctionBody, WasmModuleResources};

/// WebAssembly to Cranelift IR function translator.
///
/// A `FuncTranslator` is used to translate a binary WebAssembly function into Cranelift IR guided
/// by a `FuncEnvironment` object. A single translator instance can be reused to translate multiple
/// functions which will reduce heap allocation traffic.
pub struct FuncTranslator {
    func_ctx: FunctionBuilderContext,
    state: FuncTranslationState,
}

impl FuncTranslator {
    /// Create a new translator.
    pub fn new() -> Self {
        Self {
            func_ctx: FunctionBuilderContext::new(),
            state: FuncTranslationState::new(),
        }
    }

    /// Returns the underlying `FunctionBuilderContext` that this translator
    /// uses.
    pub fn context(&mut self) -> &mut FunctionBuilderContext {
        &mut self.func_ctx
    }

    /// Translate a binary WebAssembly function from a `FunctionBody`.
    ///
    /// See [the WebAssembly specification][wasm].
    ///
    /// [wasm]: https://webassembly.github.io/spec/core/binary/modules.html#code-section
    ///
    /// The Cranelift IR function `func` should be completely empty except for the `func.signature`
    /// and `func.name` fields. The signature may contain special-purpose arguments which are not
    /// regarded as WebAssembly local variables. Any signature arguments marked as
    /// `ArgumentPurpose::Normal` are made accessible as WebAssembly local variables.
    pub fn translate_body<FE: FuncEnvironment + ?Sized>(
        &mut self,
        validator: &mut FuncValidator<impl WasmModuleResources>,
        body: FunctionBody<'_>,
        func: &mut ir::Function,
        environ: &mut FE,
    ) -> WasmResult<()> {
        let _tt = timing::wasm_translate_function();
        let mut reader = body.get_binary_reader();
        log::trace!(
            "translate({} bytes, {}{})",
            reader.bytes_remaining(),
            func.name,
            func.signature
        );
        debug_assert_eq!(func.dfg.num_blocks(), 0, "Function must be empty");
        debug_assert_eq!(func.dfg.num_insts(), 0, "Function must be empty");

        let mut builder = FunctionBuilder::new(func, &mut self.func_ctx);
        builder.set_srcloc(cur_srcloc(&reader));
        let entry_block = builder.create_block();
        builder.append_block_params_for_function_params(entry_block);
        builder.switch_to_block(entry_block);
        builder.seal_block(entry_block); // Declare all predecessors known.

        // Make sure the entry block is inserted in the layout before we make any callbacks to
        // `environ`. The callback functions may need to insert things in the entry block.
        builder.ensure_inserted_block();

        let num_params = declare_wasm_parameters(&mut builder, entry_block, environ);

        // Set up the translation state with a single pushed control block representing the whole
        // function and its return values.
        let exit_block = builder.create_block();
        builder.append_block_params_for_function_returns(exit_block);
        self.state.initialize(&builder.func.signature, exit_block);

        parse_local_decls(&mut reader, &mut builder, num_params, environ, validator)?;
        parse_function_body(validator, reader, &mut builder, &mut self.state, environ)?;

        builder.finalize();
        log::trace!("translated Wasm to CLIF:\n{}", func.display());
        Ok(())
    }
}

/// Declare local variables for the signature parameters that correspond to WebAssembly locals.
///
/// Return the number of local variables declared.
fn declare_wasm_parameters<FE: FuncEnvironment + ?Sized>(
    builder: &mut FunctionBuilder,
    entry_block: Block,
    environ: &FE,
) -> usize {
    let sig_len = builder.func.signature.params.len();
    let mut next_local = 0;
    for i in 0..sig_len {
        let param_type = builder.func.signature.params[i];
        // There may be additional special-purpose parameters in addition to the normal WebAssembly
        // signature parameters. For example, a `vmctx` pointer.
        if environ.is_wasm_parameter(&builder.func.signature, i) {
            // This is a normal WebAssembly signature parameter, so create a local for it.
            let local = Variable::new(next_local);
            builder.declare_var(local, param_type.value_type);
            next_local += 1;

            if environ.param_needs_stack_map(&builder.func.signature, i) {
                builder.declare_var_needs_stack_map(local);
            }

            let param_value = builder.block_params(entry_block)[i];
            builder.def_var(local, param_value);
        }
        if param_type.purpose == ir::ArgumentPurpose::VMContext {
            let param_value = builder.block_params(entry_block)[i];
            builder.set_val_label(param_value, get_vmctx_value_label());
        }
    }

    next_local
}

/// Parse the local variable declarations that precede the function body.
///
/// Declare local variables, starting from `num_params`.
fn parse_local_decls<FE: FuncEnvironment + ?Sized>(
    reader: &mut BinaryReader,
    builder: &mut FunctionBuilder,
    num_params: usize,
    environ: &mut FE,
    validator: &mut FuncValidator<impl WasmModuleResources>,
) -> WasmResult<()> {
    let mut next_local = num_params;
    let local_count = reader.read_var_u32()?;

    for _ in 0..local_count {
        builder.set_srcloc(cur_srcloc(reader));
        let pos = reader.original_position();
        let count = reader.read_var_u32()?;
        let ty = reader.read()?;
        validator.define_locals(pos, count, ty)?;
        declare_locals(builder, count, ty, &mut next_local, environ)?;
    }

    environ.after_locals(next_local);

    Ok(())
}

/// Declare `count` local variables of the same type, starting from `next_local`.
///
/// Fail if too many locals are declared in the function, or if the type is not valid for a local.
fn declare_locals<FE: FuncEnvironment + ?Sized>(
    builder: &mut FunctionBuilder,
    count: u32,
    wasm_type: wasmparser::ValType,
    next_local: &mut usize,
    environ: &mut FE,
) -> WasmResult<()> {
    // All locals are initialized to 0.
    use wasmparser::ValType::*;
    let (ty, init, needs_stack_map) = match wasm_type {
        I32 => (
            ir::types::I32,
            Some(builder.ins().iconst(ir::types::I32, 0)),
            false,
        ),
        I64 => (
            ir::types::I64,
            Some(builder.ins().iconst(ir::types::I64, 0)),
            false,
        ),
        F32 => (
            ir::types::F32,
            Some(builder.ins().f32const(ir::immediates::Ieee32::with_bits(0))),
            false,
        ),
        F64 => (
            ir::types::F64,
            Some(builder.ins().f64const(ir::immediates::Ieee64::with_bits(0))),
            false,
        ),
        V128 => {
            let constant_handle = builder.func.dfg.constants.insert([0; 16].to_vec().into());
            (
                ir::types::I8X16,
                Some(builder.ins().vconst(ir::types::I8X16, constant_handle)),
                false,
            )
        }
        Ref(rt) => {
            let hty = environ.convert_heap_type(rt.heap_type());
            let (ty, needs_stack_map) = environ.reference_type(hty);
            let init = if rt.is_nullable() {
                Some(environ.translate_ref_null(builder.cursor(), hty)?)
            } else {
                None
            };
            (ty, init, needs_stack_map)
        }
    };

    for _ in 0..count {
        let local = Variable::new(*next_local);
        builder.declare_var(local, ty);
        if needs_stack_map {
            builder.declare_var_needs_stack_map(local);
        }
        if let Some(init) = init {
            builder.def_var(local, init);
            builder.set_val_label(init, ValueLabel::new(*next_local));
        }
        *next_local += 1;
    }
    Ok(())
}

/// Parse the function body in `reader`.
///
/// This assumes that the local variable declarations have already been parsed and function
/// arguments and locals are declared in the builder.
fn parse_function_body<FE: FuncEnvironment + ?Sized>(
    validator: &mut FuncValidator<impl WasmModuleResources>,
    mut reader: BinaryReader,
    builder: &mut FunctionBuilder,
    state: &mut FuncTranslationState,
    environ: &mut FE,
) -> WasmResult<()> {
    // The control stack is initialized with a single block representing the whole function.
    debug_assert_eq!(state.control_stack.len(), 1, "State not initialized");

    environ.before_translate_function(builder, state)?;
    while !reader.eof() {
        let pos = reader.original_position();
        builder.set_srcloc(cur_srcloc(&reader));
        let op = reader.read_operator()?;
        validator.op(pos, &op)?;
        environ.before_translate_operator(&op, builder, state)?;
        translate_operator(validator, &op, builder, state, environ)?;
        environ.after_translate_operator(&op, builder, state)?;
    }
    environ.after_translate_function(builder, state)?;
    let pos = reader.original_position();
    validator.finish(pos)?;

    // The final `End` operator left us in the exit block where we need to manually add a return
    // instruction.
    //
    // If the exit block is unreachable, it may not have the correct arguments, so we would
    // generate a return instruction that doesn't match the signature.
    if state.reachable {
        if !builder.is_unreachable() {
            environ.handle_before_return(&state.stack, builder);
            bitcast_wasm_returns(environ, &mut state.stack, builder);
            builder.ins().return_(&state.stack);
        }
    }

    // Discard any remaining values on the stack. Either we just returned them,
    // or the end of the function is unreachable.
    state.stack.clear();

    Ok(())
}

/// Get the current source location from a reader.
fn cur_srcloc(reader: &BinaryReader) -> ir::SourceLoc {
    // We record source locations as byte code offsets relative to the beginning of the file.
    // This will wrap around if byte code is larger than 4 GB.
    ir::SourceLoc::new(reader.original_position() as u32)
}