gcp-bigquery-client 0.24.1

An ergonomic async client library for GCP BigQuery.
Documentation
GCP BigQuery Client
===================

[<img alt="github" src="https://img.shields.io/badge/github-lquerel/gcp_bigquery_client-8da0cb?style=for-the-badge&labelColor=555555&logo=github" height="20">](https://github.com/lquerel/gcp-bigquery-client)
[<img alt="crates.io" src="https://img.shields.io/crates/v/gcp_bigquery_client.svg?style=for-the-badge&color=fc8d62&logo=rust" height="20">](https://crates.io/crates/gcp-bigquery-client)
[<img alt="docs.rs" src="https://img.shields.io/badge/docs.rs-gcp_bigquery_client-66c2a5?style=for-the-badge&labelColor=555555&logoColor=white&logo=" height="20">](https://docs.rs/gcp-bigquery-client)

An ergonomic Rust async client library for GCP BigQuery.
* Support all BigQuery API endpoints (not all covered by unit tests yet)
* Support Service Account Key authentication, workload identity, installed flow and other yup-oauth2 mechanisms
* Create tables and rows via builder patterns
* Persist complex Rust structs in structured BigQuery tables
* Async API
* Support for JSON column types
* Support `serde::de::DeserializeOwned` for get methods
* Support BigQuery emulator
* Partial support for BigQuery Storage Write API

Features:
- rust-tls (default): RUSTLS-based
- native-tls: OpenSSL-based


<br>
Contributions are welcome.
<br>
Please post your suggestions and ideas on this GitHub [discussion section](https://github.com/lquerel/gcp-bigquery-client/discussions).

---

## Example

This example performs the following operations:

* Load a set of environment variables to set `$PROJECT_ID`, `$DATASET_ID`, `$TABLE_ID` and `$GOOGLE_APPLICATION_CREDENTIALS`
* Init the BigQuery client
* Create a dataset in the GCP project `$PROJECT_ID`
* Create a table in the previously created dataset (table schema)
* Insert a set of rows in the previously created table via the BigQuery Streaming API. The inserted 
rows are based on a regular Rust struct implementing the trait Serialize. 
* Perform a select query on the previously created table
* Drop the table previously created
* Drop the dataset previously created 

```rust
    // Init BigQuery client
    let client = gcp_bigquery_client::Client::from_service_account_key_file(gcp_sa_key).await?;

    // Delete the dataset if needed
    let result = client.dataset().delete(project_id, dataset_id, true).await;
    if let Ok(_) = result {
        println!("Removed previous dataset '{}'", dataset_id);
    }

    // Create a new dataset
    let dataset = client
        .dataset()
        .create(
            Dataset::new(project_id, dataset_id)
                .location("US")
                .friendly_name("Just a demo dataset")
                .label("owner", "me")
                .label("env", "prod"),
        )
        .await?;

    // Create a new table
    let table = dataset
        .create_table(
            &client,
            Table::from_dataset(
                &dataset,
                table_id,
                TableSchema::new(vec![
                    TableFieldSchema::timestamp("ts"),
                    TableFieldSchema::integer("int_value"),
                    TableFieldSchema::float("float_value"),
                    TableFieldSchema::bool("bool_value"),
                    TableFieldSchema::string("string_value"),
                    TableFieldSchema::record(
                        "record_value",
                        vec![
                            TableFieldSchema::integer("int_value"),
                            TableFieldSchema::string("string_value"),
                            TableFieldSchema::record(
                                "record_value",
                                vec![
                                    TableFieldSchema::integer("int_value"),
                                    TableFieldSchema::string("string_value"),
                                ],
                            ),
                        ],
                    ),
                ]),
            )
            .friendly_name("Demo table")
            .description("A nice description for this table")
            .label("owner", "me")
            .label("env", "prod")
            .expiration_time(SystemTime::now() + Duration::from_secs(3600))
            .time_partitioning(
                TimePartitioning::per_day()
                    .expiration_ms(Duration::from_secs(3600 * 24 * 7))
                    .field("ts"),
            ),
        )
        .await?;
    println!("Table created -> {:?}", table);

    // Insert data via BigQuery Streaming API
    let mut insert_request = TableDataInsertAllRequest::new();
    insert_request.add_row(
        None,
        MyRow {
            ts: OffsetDateTime::now_utc(),
            int_value: 1,
            float_value: 1.0,
            bool_value: false,
            string_value: "first".into(),
            record_value: FirstRecordLevel {
                int_value: 10,
                string_value: "sub_level_1.1".into(),
                record_value: SecondRecordLevel {
                    int_value: 20,
                    string_value: "leaf".to_string(),
                },
            },
        },
    )?;
    insert_request.add_row(
        None,
        MyRow {
            ts: OffsetDateTime::now_utc(),
            int_value: 2,
            float_value: 2.0,
            bool_value: true,
            string_value: "second".into(),
            record_value: FirstRecordLevel {
                int_value: 11,
                string_value: "sub_level_1.2".into(),
                record_value: SecondRecordLevel {
                    int_value: 21,
                    string_value: "leaf".to_string(),
                },
            },
        },
    )?;
    insert_request.add_row(
        None,
        MyRow {
            ts: OffsetDateTime::now_utc(),
            int_value: 3,
            float_value: 3.0,
            bool_value: false,
            string_value: "third".into(),
            record_value: FirstRecordLevel {
                int_value: 12,
                string_value: "sub_level_1.3".into(),
                record_value: SecondRecordLevel {
                    int_value: 22,
                    string_value: "leaf".to_string(),
                },
            },
        },
    )?;
    insert_request.add_row(
        None,
        MyRow {
            ts: OffsetDateTime::now_utc(),
            int_value: 4,
            float_value: 4.0,
            bool_value: true,
            string_value: "fourth".into(),
            record_value: FirstRecordLevel {
                int_value: 13,
                string_value: "sub_level_1.4".into(),
                record_value: SecondRecordLevel {
                    int_value: 23,
                    string_value: "leaf".to_string(),
                },
            },
        },
    )?;

    client
        .tabledata()
        .insert_all(project_id, dataset_id, table_id, insert_request)
        .await?;

    // Query
    let mut query_response = client
        .job()
        .query(
            project_id,
            QueryRequest::new(format!(
                "SELECT COUNT(*) AS c FROM `{}.{}.{}`",
                project_id, dataset_id, table_id
            )),
        )
        .await?;
    let mut rs = ResultSet::new_from_query_response(query_response);
    while rs.next_row() {
        println!("Number of rows inserted: {}", rs.get_i64_by_name("c")?.unwrap());
    }

    // Delete the table previously created
    client.table().delete(project_id, dataset_id, table_id).await?;

    // Delete the dataset previously created
    client.dataset().delete(project_id, dataset_id, true).await?;
```

An example of BigQuery load job can be found in the examples directory.

## Status

The API of this crate is still subject to change up to version 1.0.

List of endpoints implemented:
- [X] Dataset - All methods
- [X] Table - All methods
- [X] Tabledata - All methods 
- [X] Job - All methods
- [X] Model - All methods (not tested)
- [X] Project (not tested)
- [X] Routine - All methods (not tested)
- [X] Storage Write API - Partial support

## License

<sup>
Licensed under either of <a href="LICENSE-APACHE">Apache License, Version
2.0</a> or <a href="LICENSE-MIT">MIT license</a> at your option.
</sup>

<br>

<sub>
Unless you explicitly state otherwise, any contribution intentionally submitted
for inclusion in this crate by you, as defined in the Apache-2.0 license, shall
be dual licensed as above, without any additional terms or conditions.
</sub>