1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
#![allow(deprecated)]
// Copyright 2019 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
#![cfg_attr(docsrs, feature(doc_cfg, doc_auto_cfg))]
use futures::{prelude::*, ready};
use libp2p_core::{InboundUpgrade, OutboundUpgrade, UpgradeInfo};
use std::{io, iter, pin::Pin, task::Context, task::Poll};
#[deprecated(
note = "Will be removed in the next release, see https://github.com/libp2p/rust-libp2p/issues/4522 for details."
)]
#[derive(Debug, Copy, Clone)]
pub struct DeflateConfig {
compression: flate2::Compression,
}
impl Default for DeflateConfig {
fn default() -> Self {
DeflateConfig {
compression: flate2::Compression::fast(),
}
}
}
impl UpgradeInfo for DeflateConfig {
type Info = &'static str;
type InfoIter = iter::Once<Self::Info>;
fn protocol_info(&self) -> Self::InfoIter {
iter::once("/deflate/1.0.0")
}
}
impl<C> InboundUpgrade<C> for DeflateConfig
where
C: AsyncRead + AsyncWrite,
{
type Output = DeflateOutput<C>;
type Error = io::Error;
type Future = future::Ready<Result<Self::Output, Self::Error>>;
fn upgrade_inbound(self, r: C, _: Self::Info) -> Self::Future {
future::ok(DeflateOutput::new(r, self.compression))
}
}
impl<C> OutboundUpgrade<C> for DeflateConfig
where
C: AsyncRead + AsyncWrite,
{
type Output = DeflateOutput<C>;
type Error = io::Error;
type Future = future::Ready<Result<Self::Output, Self::Error>>;
fn upgrade_outbound(self, w: C, _: Self::Info) -> Self::Future {
future::ok(DeflateOutput::new(w, self.compression))
}
}
/// Decodes and encodes traffic using DEFLATE.
#[derive(Debug)]
pub struct DeflateOutput<S> {
/// Inner stream where we read compressed data from and write compressed data to.
inner: S,
/// Internal object used to hold the state of the compression.
compress: flate2::Compress,
/// Internal object used to hold the state of the decompression.
decompress: flate2::Decompress,
/// Temporary buffer between `compress` and `inner`. Stores compressed bytes that need to be
/// sent out once `inner` is ready to accept more.
write_out: Vec<u8>,
/// Temporary buffer between `decompress` and `inner`. Stores compressed bytes that need to be
/// given to `decompress`.
read_interm: Vec<u8>,
/// When we read from `inner` and `Ok(0)` is returned, we set this to `true` so that we don't
/// read from it again.
inner_read_eof: bool,
}
impl<S> DeflateOutput<S> {
fn new(inner: S, compression: flate2::Compression) -> Self {
DeflateOutput {
inner,
compress: flate2::Compress::new(compression, false),
decompress: flate2::Decompress::new(false),
write_out: Vec::with_capacity(256),
read_interm: Vec::with_capacity(256),
inner_read_eof: false,
}
}
/// Tries to write the content of `self.write_out` to `self.inner`.
/// Returns `Ready(Ok(()))` if `self.write_out` is empty.
fn flush_write_out(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), io::Error>>
where
S: AsyncWrite + Unpin,
{
loop {
if self.write_out.is_empty() {
return Poll::Ready(Ok(()));
}
match AsyncWrite::poll_write(Pin::new(&mut self.inner), cx, &self.write_out) {
Poll::Ready(Ok(0)) => return Poll::Ready(Err(io::ErrorKind::WriteZero.into())),
Poll::Ready(Ok(n)) => self.write_out = self.write_out.split_off(n),
Poll::Ready(Err(err)) => return Poll::Ready(Err(err)),
Poll::Pending => return Poll::Pending,
};
}
}
}
impl<S> AsyncRead for DeflateOutput<S>
where
S: AsyncRead + Unpin,
{
fn poll_read(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut [u8],
) -> Poll<Result<usize, io::Error>> {
// We use a `this` variable because the compiler doesn't allow multiple mutable borrows
// across a `Deref`.
let this = &mut *self;
loop {
// Read from `self.inner` into `self.read_interm` if necessary.
if this.read_interm.is_empty() && !this.inner_read_eof {
this.read_interm
.resize(this.read_interm.capacity() + 256, 0);
match AsyncRead::poll_read(Pin::new(&mut this.inner), cx, &mut this.read_interm) {
Poll::Ready(Ok(0)) => {
this.inner_read_eof = true;
this.read_interm.clear();
}
Poll::Ready(Ok(n)) => this.read_interm.truncate(n),
Poll::Ready(Err(err)) => {
this.read_interm.clear();
return Poll::Ready(Err(err));
}
Poll::Pending => {
this.read_interm.clear();
return Poll::Pending;
}
}
}
debug_assert!(!this.read_interm.is_empty() || this.inner_read_eof);
let before_out = this.decompress.total_out();
let before_in = this.decompress.total_in();
let ret = this.decompress.decompress(
&this.read_interm,
buf,
if this.inner_read_eof {
flate2::FlushDecompress::Finish
} else {
flate2::FlushDecompress::None
},
)?;
// Remove from `self.read_interm` the bytes consumed by the decompressor.
let consumed = (this.decompress.total_in() - before_in) as usize;
this.read_interm = this.read_interm.split_off(consumed);
let read = (this.decompress.total_out() - before_out) as usize;
if read != 0 || ret == flate2::Status::StreamEnd {
return Poll::Ready(Ok(read));
}
}
}
}
impl<S> AsyncWrite for DeflateOutput<S>
where
S: AsyncWrite + Unpin,
{
fn poll_write(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<Result<usize, io::Error>> {
// We use a `this` variable because the compiler doesn't allow multiple mutable borrows
// across a `Deref`.
let this = &mut *self;
// We don't want to accumulate too much data in `self.write_out`, so we only proceed if it
// is empty.
ready!(this.flush_write_out(cx))?;
// We special-case this, otherwise an empty buffer would make the loop below infinite.
if buf.is_empty() {
return Poll::Ready(Ok(0));
}
// Unfortunately, the compressor might be in a "flushing mode", not accepting any input
// data. We don't want to return `Ok(0)` in that situation, as that would be wrong.
// Instead, we invoke the compressor in a loop until it accepts some of our data.
loop {
let before_in = this.compress.total_in();
this.write_out.reserve(256); // compress_vec uses the Vec's capacity
let ret = this.compress.compress_vec(
buf,
&mut this.write_out,
flate2::FlushCompress::None,
)?;
let written = (this.compress.total_in() - before_in) as usize;
if written != 0 || ret == flate2::Status::StreamEnd {
return Poll::Ready(Ok(written));
}
}
}
fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
// We use a `this` variable because the compiler doesn't allow multiple mutable borrows
// across a `Deref`.
let this = &mut *self;
ready!(this.flush_write_out(cx))?;
this.compress
.compress_vec(&[], &mut this.write_out, flate2::FlushCompress::Sync)?;
loop {
ready!(this.flush_write_out(cx))?;
debug_assert!(this.write_out.is_empty());
// We ask the compressor to flush everything into `self.write_out`.
this.write_out.reserve(256); // compress_vec uses the Vec's capacity
this.compress
.compress_vec(&[], &mut this.write_out, flate2::FlushCompress::None)?;
if this.write_out.is_empty() {
break;
}
}
AsyncWrite::poll_flush(Pin::new(&mut this.inner), cx)
}
fn poll_close(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
// We use a `this` variable because the compiler doesn't allow multiple mutable borrows
// across a `Deref`.
let this = &mut *self;
loop {
ready!(this.flush_write_out(cx))?;
// We ask the compressor to flush everything into `self.write_out`.
debug_assert!(this.write_out.is_empty());
this.write_out.reserve(256); // compress_vec uses the Vec's capacity
this.compress
.compress_vec(&[], &mut this.write_out, flate2::FlushCompress::Finish)?;
if this.write_out.is_empty() {
break;
}
}
AsyncWrite::poll_close(Pin::new(&mut this.inner), cx)
}
}