#ifndef DLMALLOC_VERSION
#define DLMALLOC_VERSION 20806
#endif
#ifndef DLMALLOC_EXPORT
#define DLMALLOC_EXPORT extern
#endif
#ifndef WIN32
#ifdef _WIN32_WCE
#define LACKS_FCNTL_H
#define WIN32 1
#endif
#endif
#ifdef WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <tchar.h>
#define HAVE_MMAP 1
#define HAVE_MORECORE 0
#define LACKS_UNISTD_H
#define LACKS_SYS_PARAM_H
#define LACKS_SYS_MMAN_H
#define LACKS_STRING_H
#define LACKS_STRINGS_H
#define LACKS_SYS_TYPES_H
#define LACKS_SCHED_H
#ifndef MALLOC_FAILURE_ACTION
#define MALLOC_FAILURE_ACTION
#endif
#ifndef MMAP_CLEARS
#ifdef _WIN32_WCE
#define MMAP_CLEARS 0
#else
#define MMAP_CLEARS 1
#endif
#endif
#endif
#ifdef PORTABLE
#define HAVE_MMAP 1
#define HAVE_MORECORE 0
#define LACKS_UNISTD_H
#define LACKS_ERRNO_H
#define LACKS_SYS_PARAM_H
#define LACKS_SYS_MMAN_H
#define LACKS_STDLIB_H
#define LACKS_STRING_H
#define LACKS_STRINGS_H
#define LACKS_SYS_TYPES_H
#define LACKS_SCHED_H
#define LACKS_TIME_H
#define LACKS_FCNTL_H
#ifndef MALLOC_FAILURE_ACTION
#define MALLOC_FAILURE_ACTION
#endif
void custom_abort(void);
#define ABORT custom_abort()
#endif
#if defined(DARWIN) || defined(_DARWIN)
#ifndef HAVE_MORECORE
#define HAVE_MORECORE 0
#define HAVE_MMAP 1
#ifndef MALLOC_ALIGNMENT
#define MALLOC_ALIGNMENT ((size_t)16U)
#endif
#endif
#endif
#ifndef LACKS_SYS_TYPES_H
#include <sys/types.h>
#endif
#define MAX_SIZE_T (~(size_t)0)
#ifndef USE_LOCKS
#define USE_LOCKS ((defined(USE_SPIN_LOCKS) && USE_SPIN_LOCKS != 0) || \
(defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0))
#endif
#if USE_LOCKS
#if ((defined(__GNUC__) && \
((__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1)) || \
defined(__i386__) || defined(__x86_64__))) || \
(defined(_MSC_VER) && _MSC_VER>=1310))
#ifndef USE_SPIN_LOCKS
#define USE_SPIN_LOCKS 1
#endif
#elif USE_SPIN_LOCKS
#error "USE_SPIN_LOCKS defined without implementation"
#endif
#elif !defined(USE_SPIN_LOCKS)
#define USE_SPIN_LOCKS 0
#endif
#ifndef ONLY_MSPACES
#define ONLY_MSPACES 0
#endif
#ifndef MSPACES
#if ONLY_MSPACES
#define MSPACES 1
#else
#define MSPACES 0
#endif
#endif
#ifndef MALLOC_ALIGNMENT
#define MALLOC_ALIGNMENT ((size_t)(2 * sizeof(void *)))
#endif
#ifndef FOOTERS
#define FOOTERS 0
#endif
#ifndef ABORT
#define ABORT abort()
#endif
#ifndef ABORT_ON_ASSERT_FAILURE
#define ABORT_ON_ASSERT_FAILURE 1
#endif
#ifndef PROCEED_ON_ERROR
#define PROCEED_ON_ERROR 0
#endif
#ifndef INSECURE
#define INSECURE 0
#endif
#ifndef MALLOC_INSPECT_ALL
#define MALLOC_INSPECT_ALL 0
#endif
#ifndef HAVE_MMAP
#define HAVE_MMAP 1
#endif
#ifndef MMAP_CLEARS
#define MMAP_CLEARS 1
#endif
#ifndef HAVE_MREMAP
#ifdef linux
#define HAVE_MREMAP 1
#define _GNU_SOURCE
#else
#define HAVE_MREMAP 0
#endif
#endif
#ifndef MALLOC_FAILURE_ACTION
#define MALLOC_FAILURE_ACTION errno = ENOMEM;
#endif
#ifndef HAVE_MORECORE
#if ONLY_MSPACES
#define HAVE_MORECORE 0
#else
#define HAVE_MORECORE 1
#endif
#endif
#if !HAVE_MORECORE
#define MORECORE_CONTIGUOUS 0
#else
#define MORECORE_DEFAULT sbrk
#ifndef MORECORE_CONTIGUOUS
#define MORECORE_CONTIGUOUS 1
#endif
#endif
#ifndef DEFAULT_GRANULARITY
#if (MORECORE_CONTIGUOUS || defined(WIN32))
#define DEFAULT_GRANULARITY (0)
#else
#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
#endif
#endif
#ifndef DEFAULT_TRIM_THRESHOLD
#ifndef MORECORE_CANNOT_TRIM
#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
#else
#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
#endif
#endif
#ifndef DEFAULT_MMAP_THRESHOLD
#if HAVE_MMAP
#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
#else
#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
#endif
#endif
#ifndef MAX_RELEASE_CHECK_RATE
#if HAVE_MMAP
#define MAX_RELEASE_CHECK_RATE 4095
#else
#define MAX_RELEASE_CHECK_RATE MAX_SIZE_T
#endif
#endif
#ifndef USE_BUILTIN_FFS
#define USE_BUILTIN_FFS 0
#endif
#ifndef USE_DEV_RANDOM
#define USE_DEV_RANDOM 0
#endif
#ifndef NO_MALLINFO
#define NO_MALLINFO 0
#endif
#ifndef MALLINFO_FIELD_TYPE
#define MALLINFO_FIELD_TYPE size_t
#endif
#ifndef NO_MALLOC_STATS
#define NO_MALLOC_STATS 0
#endif
#ifndef NO_SEGMENT_TRAVERSAL
#define NO_SEGMENT_TRAVERSAL 0
#endif
#define M_TRIM_THRESHOLD (-1)
#define M_GRANULARITY (-2)
#define M_MMAP_THRESHOLD (-3)
#if !NO_MALLINFO
#ifdef HAVE_USR_INCLUDE_MALLOC_H
#include "/usr/include/malloc.h"
#else
#ifndef STRUCT_MALLINFO_DECLARED
#define _STRUCT_MALLINFO
#define STRUCT_MALLINFO_DECLARED 1
struct mallinfo {
MALLINFO_FIELD_TYPE arena;
MALLINFO_FIELD_TYPE ordblks;
MALLINFO_FIELD_TYPE smblks;
MALLINFO_FIELD_TYPE hblks;
MALLINFO_FIELD_TYPE hblkhd;
MALLINFO_FIELD_TYPE usmblks;
MALLINFO_FIELD_TYPE fsmblks;
MALLINFO_FIELD_TYPE uordblks;
MALLINFO_FIELD_TYPE fordblks;
MALLINFO_FIELD_TYPE keepcost;
};
#endif
#endif
#endif
#ifndef FORCEINLINE
#if defined(__GNUC__)
#define FORCEINLINE __inline __attribute__ ((always_inline))
#elif defined(_MSC_VER)
#define FORCEINLINE __forceinline
#endif
#endif
#ifndef NOINLINE
#if defined(__GNUC__)
#define NOINLINE __attribute__ ((noinline))
#elif defined(_MSC_VER)
#define NOINLINE __declspec(noinline)
#else
#define NOINLINE
#endif
#endif
#ifdef __cplusplus
extern "C" {
#ifndef FORCEINLINE
#define FORCEINLINE inline
#endif
#endif
#ifndef FORCEINLINE
#define FORCEINLINE
#endif
#if !ONLY_MSPACES
#ifndef USE_DL_PREFIX
#define dlcalloc calloc
#define dlfree free
#define dlmalloc malloc
#define dlmemalign memalign
#define dlposix_memalign posix_memalign
#define dlrealloc realloc
#define dlrealloc_in_place realloc_in_place
#define dlvalloc valloc
#define dlpvalloc pvalloc
#define dlmallinfo mallinfo
#define dlmallopt mallopt
#define dlmalloc_trim malloc_trim
#define dlmalloc_stats malloc_stats
#define dlmalloc_usable_size malloc_usable_size
#define dlmalloc_footprint malloc_footprint
#define dlmalloc_max_footprint malloc_max_footprint
#define dlmalloc_footprint_limit malloc_footprint_limit
#define dlmalloc_set_footprint_limit malloc_set_footprint_limit
#define dlmalloc_inspect_all malloc_inspect_all
#define dlindependent_calloc independent_calloc
#define dlindependent_comalloc independent_comalloc
#define dlbulk_free bulk_free
#endif
DLMALLOC_EXPORT void* dlmalloc(size_t);
DLMALLOC_EXPORT void dlfree(void*);
DLMALLOC_EXPORT void* dlcalloc(size_t, size_t);
DLMALLOC_EXPORT void* dlrealloc(void*, size_t);
DLMALLOC_EXPORT void* dlrealloc_in_place(void*, size_t);
DLMALLOC_EXPORT void* dlmemalign(size_t, size_t);
DLMALLOC_EXPORT int dlposix_memalign(void**, size_t, size_t);
DLMALLOC_EXPORT void* dlvalloc(size_t);
DLMALLOC_EXPORT int dlmallopt(int, int);
DLMALLOC_EXPORT size_t dlmalloc_footprint(void);
DLMALLOC_EXPORT size_t dlmalloc_max_footprint(void);
DLMALLOC_EXPORT size_t dlmalloc_footprint_limit();
DLMALLOC_EXPORT size_t dlmalloc_set_footprint_limit(size_t bytes);
#if MALLOC_INSPECT_ALL
DLMALLOC_EXPORT void dlmalloc_inspect_all(void(*handler)(void*, void *, size_t, void*),
void* arg);
#endif
#if !NO_MALLINFO
DLMALLOC_EXPORT struct mallinfo dlmallinfo(void);
#endif
DLMALLOC_EXPORT void** dlindependent_calloc(size_t, size_t, void**);
DLMALLOC_EXPORT void** dlindependent_comalloc(size_t, size_t*, void**);
DLMALLOC_EXPORT size_t dlbulk_free(void**, size_t n_elements);
DLMALLOC_EXPORT void* dlpvalloc(size_t);
DLMALLOC_EXPORT int dlmalloc_trim(size_t);
DLMALLOC_EXPORT void dlmalloc_stats(void);
size_t dlmalloc_usable_size(void*);
#endif
#if MSPACES
typedef void* mspace;
DLMALLOC_EXPORT mspace create_mspace(size_t capacity, int locked);
DLMALLOC_EXPORT size_t destroy_mspace(mspace msp);
DLMALLOC_EXPORT mspace create_mspace_with_base(void* base, size_t capacity, int locked);
DLMALLOC_EXPORT int mspace_track_large_chunks(mspace msp, int enable);
DLMALLOC_EXPORT void* mspace_malloc(mspace msp, size_t bytes);
DLMALLOC_EXPORT void mspace_free(mspace msp, void* mem);
DLMALLOC_EXPORT void* mspace_realloc(mspace msp, void* mem, size_t newsize);
DLMALLOC_EXPORT void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
DLMALLOC_EXPORT void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
DLMALLOC_EXPORT void** mspace_independent_calloc(mspace msp, size_t n_elements,
size_t elem_size, void* chunks[]);
DLMALLOC_EXPORT void** mspace_independent_comalloc(mspace msp, size_t n_elements,
size_t sizes[], void* chunks[]);
DLMALLOC_EXPORT size_t mspace_footprint(mspace msp);
DLMALLOC_EXPORT size_t mspace_max_footprint(mspace msp);
#if !NO_MALLINFO
DLMALLOC_EXPORT struct mallinfo mspace_mallinfo(mspace msp);
#endif
DLMALLOC_EXPORT size_t mspace_usable_size(const void* mem);
DLMALLOC_EXPORT void mspace_malloc_stats(mspace msp);
DLMALLOC_EXPORT int mspace_trim(mspace msp, size_t pad);
DLMALLOC_EXPORT int mspace_mallopt(int, int);
#endif
#ifdef __cplusplus
}
#endif
#ifdef _MSC_VER
#pragma warning( disable : 4146 )
#endif
#if !NO_MALLOC_STATS
# ifdef PORTABLE
int dprintf2(const char* src_fn,const int src_ln,const char* format,...);
#define dprintf(fmt,...) dprintf2(__FILE__,__LINE__,fmt,##__VA_ARGS__)
# else
#include <stdio.h>
#define dprintf(fmt,...) fprintf(stderr,fmt,##__VA_ARGS__)
# endif
#else
#define dprintf(fmt,...)
#endif
#ifndef LACKS_ERRNO_H
#include <errno.h>
#else
#define ENOMEM 12
#define EINVAL 22
#endif
#ifdef DEBUG
#if ABORT_ON_ASSERT_FAILURE
#undef assert
#define assert(x) if(!(x)) ABORT
#else
#include <assert.h>
#endif
#else
#ifndef assert
#define assert(x)
#endif
#define DEBUG 0
#endif
#if !defined(WIN32) && !defined(LACKS_TIME_H)
#include <time.h>
#endif
#ifndef LACKS_STDLIB_H
#include <stdlib.h>
#endif
#ifndef LACKS_STRING_H
#include <string.h>
#endif
#if USE_BUILTIN_FFS
#ifndef LACKS_STRINGS_H
#include <strings.h>
#endif
#endif
#if HAVE_MMAP
#ifndef LACKS_SYS_MMAN_H
#if (defined(linux) && !defined(__USE_GNU))
#define __USE_GNU 1
#include <sys/mman.h>
#undef __USE_GNU
#else
#include <sys/mman.h>
#endif
#endif
#ifndef LACKS_FCNTL_H
#include <fcntl.h>
#endif
#endif
#ifndef LACKS_UNISTD_H
#include <unistd.h>
#else
#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
extern void* sbrk(ptrdiff_t);
#endif
#endif
#if USE_LOCKS
#ifndef WIN32
#if defined (__SVR4) && defined (__sun)
#include <thread.h>
#elif !defined(LACKS_SCHED_H)
#include <sched.h>
#endif
#if (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0) || !USE_SPIN_LOCKS
#include <pthread.h>
#endif
#elif defined(_MSC_VER)
#ifndef _M_AMD64
#ifdef __cplusplus
extern "C" {
#endif
LONG __cdecl _InterlockedCompareExchange(LONG volatile *Dest, LONG Exchange, LONG Comp);
LONG __cdecl _InterlockedExchange(LONG volatile *Target, LONG Value);
#ifdef __cplusplus
}
#endif
#endif
#pragma intrinsic (_InterlockedCompareExchange)
#pragma intrinsic (_InterlockedExchange)
#define interlockedcompareexchange _InterlockedCompareExchange
#define interlockedexchange _InterlockedExchange
#elif defined(WIN32) && defined(__GNUC__)
#define interlockedcompareexchange(a, b, c) __sync_val_compare_and_swap(a, c, b)
#define interlockedexchange __sync_lock_test_and_set
#endif
#else
#endif
#ifndef LOCK_AT_FORK
#define LOCK_AT_FORK 0
#endif
#if defined(_MSC_VER) && _MSC_VER>=1300
#ifndef BitScanForward
#ifdef __cplusplus
extern "C" {
#endif
unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
#ifdef __cplusplus
}
#endif
#define BitScanForward _BitScanForward
#define BitScanReverse _BitScanReverse
#pragma intrinsic(_BitScanForward)
#pragma intrinsic(_BitScanReverse)
#endif
#endif
#ifndef WIN32
#ifndef malloc_getpagesize
# ifdef _SC_PAGESIZE
# ifndef _SC_PAGE_SIZE
# define _SC_PAGE_SIZE _SC_PAGESIZE
# endif
# endif
# ifdef _SC_PAGE_SIZE
# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
# else
# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
extern size_t getpagesize();
# define malloc_getpagesize getpagesize()
# else
# ifdef WIN32
# define malloc_getpagesize getpagesize()
# else
# ifndef LACKS_SYS_PARAM_H
# include <sys/param.h>
# endif
# ifdef EXEC_PAGESIZE
# define malloc_getpagesize EXEC_PAGESIZE
# else
# ifdef NBPG
# ifndef CLSIZE
# define malloc_getpagesize NBPG
# else
# define malloc_getpagesize (NBPG * CLSIZE)
# endif
# else
# ifdef NBPC
# define malloc_getpagesize NBPC
# else
# ifdef PAGESIZE
# define malloc_getpagesize PAGESIZE
# else
# define malloc_getpagesize ((size_t)4096U)
# endif
# endif
# endif
# endif
# endif
# endif
# endif
#endif
#endif
#define SIZE_T_SIZE (sizeof(size_t))
#define SIZE_T_BITSIZE (sizeof(size_t) << 3)
#define SIZE_T_ZERO ((size_t)0)
#define SIZE_T_ONE ((size_t)1)
#define SIZE_T_TWO ((size_t)2)
#define SIZE_T_FOUR ((size_t)4)
#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
#define align_offset(A)\
((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
#define MFAIL ((void*)(MAX_SIZE_T))
#define CMFAIL ((char*)(MFAIL))
#if HAVE_MMAP
#ifndef WIN32
#ifdef PORTABLE
void* custom_mmap(size_t length);
int custom_munmap(void* ptr,size_t length);
void* custom_direct_mmap(size_t length);
#define MMAP_DEFAULT(s) custom_mmap(s)
#define MUNMAP_DEFAULT(a,s) custom_munmap(a,s)
#define DIRECT_MMAP_DEFAULT(s) custom_direct_mmap(s)
#else
#define MUNMAP_DEFAULT(a, s) munmap((a), (s))
#define MMAP_PROT (PROT_READ|PROT_WRITE)
#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
#define MAP_ANONYMOUS MAP_ANON
#endif
#ifdef MAP_ANONYMOUS
#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
#define MMAP_DEFAULT(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
#else
#define MMAP_FLAGS (MAP_PRIVATE)
static int dev_zero_fd = -1;
#define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \
(dev_zero_fd = open("/dev/zero", O_RDWR), \
mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
#endif
#define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s)
#endif
#else
static FORCEINLINE void* win32mmap(size_t size) {
void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
return (ptr != 0)? ptr: MFAIL;
}
static FORCEINLINE void* win32direct_mmap(size_t size) {
void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
PAGE_READWRITE);
return (ptr != 0)? ptr: MFAIL;
}
static FORCEINLINE int win32munmap(void* ptr, size_t size) {
MEMORY_BASIC_INFORMATION minfo;
char* cptr = (char*)ptr;
while (size) {
if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
return -1;
if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
minfo.State != MEM_COMMIT || minfo.RegionSize > size)
return -1;
if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
return -1;
cptr += minfo.RegionSize;
size -= minfo.RegionSize;
}
return 0;
}
#define MMAP_DEFAULT(s) win32mmap(s)
#define MUNMAP_DEFAULT(a, s) win32munmap((a), (s))
#define DIRECT_MMAP_DEFAULT(s) win32direct_mmap(s)
#endif
#endif
#if HAVE_MREMAP
#ifndef WIN32
#define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
#endif
#endif
#if HAVE_MORECORE
#ifdef MORECORE
#define CALL_MORECORE(S) MORECORE(S)
#else
#define CALL_MORECORE(S) MORECORE_DEFAULT(S)
#endif
#else
#define CALL_MORECORE(S) MFAIL
#endif
#if HAVE_MMAP
#define USE_MMAP_BIT (SIZE_T_ONE)
#ifdef MMAP
#define CALL_MMAP(s) MMAP(s)
#else
#define CALL_MMAP(s) MMAP_DEFAULT(s)
#endif
#ifdef MUNMAP
#define CALL_MUNMAP(a, s) MUNMAP((a), (s))
#else
#define CALL_MUNMAP(a, s) MUNMAP_DEFAULT((a), (s))
#endif
#ifdef DIRECT_MMAP
#define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
#else
#define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s)
#endif
#else
#define USE_MMAP_BIT (SIZE_T_ZERO)
#define MMAP(s) MFAIL
#define MUNMAP(a, s) (-1)
#define DIRECT_MMAP(s) MFAIL
#define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
#define CALL_MMAP(s) MMAP(s)
#define CALL_MUNMAP(a, s) MUNMAP((a), (s))
#endif
#if HAVE_MMAP && HAVE_MREMAP
#ifdef MREMAP
#define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv))
#else
#define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv))
#endif
#else
#define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
#endif
#define USE_NONCONTIGUOUS_BIT (4U)
#define EXTERN_BIT (8U)
#if !USE_LOCKS
#define USE_LOCK_BIT (0U)
#define INITIAL_LOCK(l) (0)
#define DESTROY_LOCK(l) (0)
#define ACQUIRE_MALLOC_GLOBAL_LOCK()
#define RELEASE_MALLOC_GLOBAL_LOCK()
#else
#if USE_LOCKS > 1
typedef void* MLOCK_T;
void init_lock(MLOCK_T *lock);
void final_lock(MLOCK_T *lock);
void acquire_lock(MLOCK_T *lock);
void release_lock(MLOCK_T *lock);
static MLOCK_T malloc_global_mutex;
#define INITIAL_LOCK(lk) init_lock(lk)
#define DESTROY_LOCK(lk) final_lock(lk)
#define ACQUIRE_LOCK(lk) (acquire_lock(lk),0)
#define RELEASE_LOCK(lk) release_lock(lk)
#elif USE_SPIN_LOCKS
#if defined(__GNUC__)&& (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1))
#define CAS_LOCK(sl) __sync_lock_test_and_set(sl, 1)
#define CLEAR_LOCK(sl) __sync_lock_release(sl)
#elif (defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)))
static FORCEINLINE int x86_cas_lock(int *sl) {
int ret;
int val = 1;
int cmp = 0;
__asm__ __volatile__ ("lock; cmpxchgl %1, %2"
: "=a" (ret)
: "r" (val), "m" (*(sl)), "0"(cmp)
: "memory", "cc");
return ret;
}
static FORCEINLINE void x86_clear_lock(int* sl) {
assert(*sl != 0);
int prev = 0;
int ret;
__asm__ __volatile__ ("lock; xchgl %0, %1"
: "=r" (ret)
: "m" (*(sl)), "0"(prev)
: "memory");
}
#define CAS_LOCK(sl) x86_cas_lock(sl)
#define CLEAR_LOCK(sl) x86_clear_lock(sl)
#else
#define CAS_LOCK(sl) interlockedexchange(sl, (LONG)1)
#define CLEAR_LOCK(sl) interlockedexchange (sl, (LONG)0)
#endif
#define SPINS_PER_YIELD 63
#if defined(_MSC_VER)
#define SLEEP_EX_DURATION 50
#define SPIN_LOCK_YIELD SleepEx(SLEEP_EX_DURATION, FALSE)
#elif defined (__SVR4) && defined (__sun)
#define SPIN_LOCK_YIELD thr_yield();
#elif !defined(LACKS_SCHED_H)
#define SPIN_LOCK_YIELD sched_yield();
#else
#define SPIN_LOCK_YIELD
#endif
#if !defined(USE_RECURSIVE_LOCKS) || USE_RECURSIVE_LOCKS == 0
static int spin_acquire_lock(int *sl) {
int spins = 0;
while (*(volatile int *)sl != 0 || CAS_LOCK(sl)) {
if ((++spins & SPINS_PER_YIELD) == 0) {
SPIN_LOCK_YIELD;
}
}
return 0;
}
#define MLOCK_T int
#define TRY_LOCK(sl) !CAS_LOCK(sl)
#define RELEASE_LOCK(sl) CLEAR_LOCK(sl)
#define ACQUIRE_LOCK(sl) (CAS_LOCK(sl)? spin_acquire_lock(sl) : 0)
#define INITIAL_LOCK(sl) (*sl = 0)
#define DESTROY_LOCK(sl) (0)
static MLOCK_T malloc_global_mutex = 0;
#else
#ifdef WIN32
#define THREAD_ID_T unsigned __int32
#define CURRENT_THREAD GetCurrentThreadId()
#define EQ_OWNER(X,Y) ((X) == (Y))
#else
#define THREAD_ID_T pthread_t
#define CURRENT_THREAD pthread_self()
#define EQ_OWNER(X,Y) pthread_equal(X, Y)
#endif
struct malloc_recursive_lock {
int sl;
unsigned int c;
THREAD_ID_T threadid;
};
#define MLOCK_T struct malloc_recursive_lock
static MLOCK_T malloc_global_mutex = { 0, 0, (THREAD_ID_T)0};
static FORCEINLINE void recursive_release_lock(MLOCK_T *lk) {
assert(lk->sl != 0);
if (--lk->c == 0) {
CLEAR_LOCK(&lk->sl);
}
}
static FORCEINLINE int recursive_acquire_lock(MLOCK_T *lk) {
THREAD_ID_T mythreadid = CURRENT_THREAD;
int spins = 0;
for (;;) {
if (*((volatile int *)(&lk->sl)) == 0) {
if (!CAS_LOCK(&lk->sl)) {
lk->threadid = mythreadid;
lk->c = 1;
return 0;
}
}
else if (EQ_OWNER(lk->threadid, mythreadid)) {
++lk->c;
return 0;
}
if ((++spins & SPINS_PER_YIELD) == 0) {
SPIN_LOCK_YIELD;
}
}
}
static FORCEINLINE int recursive_try_lock(MLOCK_T *lk) {
THREAD_ID_T mythreadid = CURRENT_THREAD;
if (*((volatile int *)(&lk->sl)) == 0) {
if (!CAS_LOCK(&lk->sl)) {
lk->threadid = mythreadid;
lk->c = 1;
return 1;
}
}
else if (EQ_OWNER(lk->threadid, mythreadid)) {
++lk->c;
return 1;
}
return 0;
}
#define RELEASE_LOCK(lk) recursive_release_lock(lk)
#define TRY_LOCK(lk) recursive_try_lock(lk)
#define ACQUIRE_LOCK(lk) recursive_acquire_lock(lk)
#define INITIAL_LOCK(lk) ((lk)->threadid = (THREAD_ID_T)0, (lk)->sl = 0, (lk)->c = 0)
#define DESTROY_LOCK(lk) (0)
#endif
#elif defined(WIN32)
#define MLOCK_T CRITICAL_SECTION
#define ACQUIRE_LOCK(lk) (EnterCriticalSection(lk), 0)
#define RELEASE_LOCK(lk) LeaveCriticalSection(lk)
#define TRY_LOCK(lk) TryEnterCriticalSection(lk)
#define INITIAL_LOCK(lk) (!InitializeCriticalSectionAndSpinCount((lk), 0x80000000|4000))
#define DESTROY_LOCK(lk) (DeleteCriticalSection(lk), 0)
#define NEED_GLOBAL_LOCK_INIT
static MLOCK_T malloc_global_mutex;
static volatile LONG malloc_global_mutex_status;
static void init_malloc_global_mutex() {
for (;;) {
long stat = malloc_global_mutex_status;
if (stat > 0)
return;
if (stat == 0 &&
interlockedcompareexchange(&malloc_global_mutex_status, (LONG)-1, (LONG)0) == 0) {
InitializeCriticalSection(&malloc_global_mutex);
interlockedexchange(&malloc_global_mutex_status, (LONG)1);
return;
}
SleepEx(0, FALSE);
}
}
#else
#define MLOCK_T pthread_mutex_t
#define ACQUIRE_LOCK(lk) pthread_mutex_lock(lk)
#define RELEASE_LOCK(lk) pthread_mutex_unlock(lk)
#define TRY_LOCK(lk) (!pthread_mutex_trylock(lk))
#define INITIAL_LOCK(lk) pthread_init_lock(lk)
#define DESTROY_LOCK(lk) pthread_mutex_destroy(lk)
#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0 && defined(linux) && !defined(PTHREAD_MUTEX_RECURSIVE)
extern int pthread_mutexattr_setkind_np __P ((pthread_mutexattr_t *__attr,
int __kind));
#define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP
#define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y)
#endif
static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER;
static int pthread_init_lock (MLOCK_T *lk) {
pthread_mutexattr_t attr;
if (pthread_mutexattr_init(&attr)) return 1;
#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0
if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1;
#endif
if (pthread_mutex_init(lk, &attr)) return 1;
if (pthread_mutexattr_destroy(&attr)) return 1;
return 0;
}
#endif
#define USE_LOCK_BIT (2U)
#ifndef ACQUIRE_MALLOC_GLOBAL_LOCK
#define ACQUIRE_MALLOC_GLOBAL_LOCK() ACQUIRE_LOCK(&malloc_global_mutex);
#endif
#ifndef RELEASE_MALLOC_GLOBAL_LOCK
#define RELEASE_MALLOC_GLOBAL_LOCK() RELEASE_LOCK(&malloc_global_mutex);
#endif
#endif
struct malloc_chunk {
size_t prev_foot;
size_t head;
struct malloc_chunk* fd;
struct malloc_chunk* bk;
};
typedef struct malloc_chunk mchunk;
typedef struct malloc_chunk* mchunkptr;
typedef struct malloc_chunk* sbinptr;
typedef unsigned int bindex_t;
typedef unsigned int binmap_t;
typedef unsigned int flag_t;
#define MCHUNK_SIZE (sizeof(mchunk))
#if FOOTERS
#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
#else
#define CHUNK_OVERHEAD (SIZE_T_SIZE)
#endif
#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
#define MIN_CHUNK_SIZE\
((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
#define pad_request(req) \
(((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
#define request2size(req) \
(((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
#define PINUSE_BIT (SIZE_T_ONE)
#define CINUSE_BIT (SIZE_T_TWO)
#define FLAG4_BIT (SIZE_T_FOUR)
#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
#define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT)
#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
#define cinuse(p) ((p)->head & CINUSE_BIT)
#define pinuse(p) ((p)->head & PINUSE_BIT)
#define flag4inuse(p) ((p)->head & FLAG4_BIT)
#define is_inuse(p) (((p)->head & INUSE_BITS) != PINUSE_BIT)
#define is_mmapped(p) (((p)->head & INUSE_BITS) == 0)
#define chunksize(p) ((p)->head & ~(FLAG_BITS))
#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
#define set_flag4(p) ((p)->head |= FLAG4_BIT)
#define clear_flag4(p) ((p)->head &= ~FLAG4_BIT)
#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS)))
#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
#define set_size_and_pinuse_of_free_chunk(p, s)\
((p)->head = (s|PINUSE_BIT), set_foot(p, s))
#define set_free_with_pinuse(p, s, n)\
(clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
#define overhead_for(p)\
(is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
#if MMAP_CLEARS
#define calloc_must_clear(p) (!is_mmapped(p))
#else
#define calloc_must_clear(p) (1)
#endif
struct malloc_tree_chunk {
size_t prev_foot;
size_t head;
struct malloc_tree_chunk* fd;
struct malloc_tree_chunk* bk;
struct malloc_tree_chunk* child[2];
struct malloc_tree_chunk* parent;
bindex_t index;
};
typedef struct malloc_tree_chunk tchunk;
typedef struct malloc_tree_chunk* tchunkptr;
typedef struct malloc_tree_chunk* tbinptr;
#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
struct malloc_segment {
char* base;
size_t size;
struct malloc_segment* next;
flag_t sflags;
};
#define is_mmapped_segment(S) ((S)->sflags & USE_MMAP_BIT)
#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)
typedef struct malloc_segment msegment;
typedef struct malloc_segment* msegmentptr;
#define NSMALLBINS (32U)
#define NTREEBINS (32U)
#define SMALLBIN_SHIFT (3U)
#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
#define TREEBIN_SHIFT (8U)
#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
struct malloc_state {
binmap_t smallmap;
binmap_t treemap;
size_t dvsize;
size_t topsize;
char* least_addr;
mchunkptr dv;
mchunkptr top;
size_t trim_check;
size_t release_checks;
size_t magic;
mchunkptr smallbins[(NSMALLBINS+1)*2];
tbinptr treebins[NTREEBINS];
size_t footprint;
size_t max_footprint;
size_t footprint_limit;
flag_t mflags;
#if USE_LOCKS
MLOCK_T mutex;
#endif
msegment seg;
void* extp;
size_t exts;
};
typedef struct malloc_state* mstate;
struct malloc_params {
size_t magic;
size_t page_size;
size_t granularity;
size_t mmap_threshold;
size_t trim_threshold;
flag_t default_mflags;
};
static struct malloc_params mparams;
#define ensure_initialization() (void)(mparams.magic != 0 || init_mparams())
#if !ONLY_MSPACES
static struct malloc_state _gm_;
#define gm (&_gm_)
#define is_global(M) ((M) == &_gm_)
#endif
#define is_initialized(M) ((M)->top != 0)
#define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
#if USE_LOCKS
#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
#else
#define disable_lock(M)
#endif
#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
#if HAVE_MMAP
#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
#else
#define disable_mmap(M)
#endif
#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
#define set_lock(M,L)\
((M)->mflags = (L)?\
((M)->mflags | USE_LOCK_BIT) :\
((M)->mflags & ~USE_LOCK_BIT))
#define page_align(S)\
(((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE))
#define granularity_align(S)\
(((S) + (mparams.granularity - SIZE_T_ONE))\
& ~(mparams.granularity - SIZE_T_ONE))
#ifdef WIN32
#define mmap_align(S) granularity_align(S)
#else
#define mmap_align(S) page_align(S)
#endif
#define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT)
#define is_page_aligned(S)\
(((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
#define is_granularity_aligned(S)\
(((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
#define segment_holds(S, A)\
((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
static msegmentptr segment_holding(mstate m, char* addr) {
msegmentptr sp = &m->seg;
for (;;) {
if (addr >= sp->base && addr < sp->base + sp->size)
return sp;
if ((sp = sp->next) == 0)
return 0;
}
}
static int has_segment_link(mstate m, msegmentptr ss) {
msegmentptr sp = &m->seg;
for (;;) {
if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
return 1;
if ((sp = sp->next) == 0)
return 0;
}
}
#ifndef MORECORE_CANNOT_TRIM
#define should_trim(M,s) ((s) > (M)->trim_check)
#else
#define should_trim(M,s) (0)
#endif
#define TOP_FOOT_SIZE\
(align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
#if USE_LOCKS
#define PREACTION(M) ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
#else
#ifndef PREACTION
#define PREACTION(M) (0)
#endif
#ifndef POSTACTION
#define POSTACTION(M)
#endif
#endif
#if PROCEED_ON_ERROR
int malloc_corruption_error_count;
static void reset_on_error(mstate m);
#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
#define USAGE_ERROR_ACTION(m, p)
#else
#ifndef CORRUPTION_ERROR_ACTION
#define CORRUPTION_ERROR_ACTION(m) ABORT
#endif
#ifndef USAGE_ERROR_ACTION
#define USAGE_ERROR_ACTION(m,p) ABORT
#endif
#endif
#if ! DEBUG
#define check_free_chunk(M,P)
#define check_inuse_chunk(M,P)
#define check_malloced_chunk(M,P,N)
#define check_mmapped_chunk(M,P)
#define check_malloc_state(M)
#define check_top_chunk(M,P)
#else
#define check_free_chunk(M,P) do_check_free_chunk(M,P)
#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
#define check_top_chunk(M,P) do_check_top_chunk(M,P)
#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
#define check_malloc_state(M) do_check_malloc_state(M)
static void do_check_any_chunk(mstate m, mchunkptr p);
static void do_check_top_chunk(mstate m, mchunkptr p);
static void do_check_mmapped_chunk(mstate m, mchunkptr p);
static void do_check_inuse_chunk(mstate m, mchunkptr p);
static void do_check_free_chunk(mstate m, mchunkptr p);
static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
static void do_check_tree(mstate m, tchunkptr t);
static void do_check_treebin(mstate m, bindex_t i);
static void do_check_smallbin(mstate m, bindex_t i);
static void do_check_malloc_state(mstate m);
static int bin_find(mstate m, mchunkptr x);
static size_t traverse_and_check(mstate m);
#endif
#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
#define small_index(s) (bindex_t)((s) >> SMALLBIN_SHIFT)
#define small_index2size(i) ((i) << SMALLBIN_SHIFT)
#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
#define treebin_at(M,i) (&((M)->treebins[i]))
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
#define compute_tree_index(S, I)\
{\
unsigned int X = S >> TREEBIN_SHIFT;\
if (X == 0)\
I = 0;\
else if (X > 0xFFFF)\
I = NTREEBINS-1;\
else {\
unsigned int K = (unsigned) sizeof(X)*__CHAR_BIT__ - 1 - (unsigned) __builtin_clz(X); \
I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
}\
}
#elif defined (__INTEL_COMPILER)
#define compute_tree_index(S, I)\
{\
size_t X = S >> TREEBIN_SHIFT;\
if (X == 0)\
I = 0;\
else if (X > 0xFFFF)\
I = NTREEBINS-1;\
else {\
unsigned int K = _bit_scan_reverse (X); \
I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
}\
}
#elif defined(_MSC_VER) && _MSC_VER>=1300
#define compute_tree_index(S, I)\
{\
size_t X = S >> TREEBIN_SHIFT;\
if (X == 0)\
I = 0;\
else if (X > 0xFFFF)\
I = NTREEBINS-1;\
else {\
unsigned int K;\
_BitScanReverse((unsigned __int32 *) &K, (unsigned __int32) X);\
I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
}\
}
#else
#define compute_tree_index(S, I)\
{\
size_t X = S >> TREEBIN_SHIFT;\
if (X == 0)\
I = 0;\
else if (X > 0xFFFF)\
I = NTREEBINS-1;\
else {\
unsigned int Y = (unsigned int)X;\
unsigned int N = ((Y - 0x100) >> 16) & 8;\
unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
N += K;\
N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
K = 14 - N + ((Y <<= K) >> 15);\
I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
}\
}
#endif
#define bit_for_tree_index(i) \
(i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
#define leftshift_for_tree_index(i) \
((i == NTREEBINS-1)? 0 : \
((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
#define minsize_for_tree_index(i) \
((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
(((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
#define idx2bit(i) ((binmap_t)(1) << (i))
#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
#define least_bit(x) ((x) & -(x))
#define left_bits(x) ((x<<1) | -(x<<1))
#define same_or_left_bits(x) ((x) | -(x))
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
#define compute_bit2idx(X, I)\
{\
unsigned int J;\
J = __builtin_ctz(X); \
I = (bindex_t)J;\
}
#elif defined (__INTEL_COMPILER)
#define compute_bit2idx(X, I)\
{\
unsigned int J;\
J = _bit_scan_forward (X); \
I = (bindex_t)J;\
}
#elif defined(_MSC_VER) && _MSC_VER>=1300
#define compute_bit2idx(X, I)\
{\
unsigned int J;\
_BitScanForward((unsigned __int32 *) &J, X);\
I = (bindex_t)J;\
}
#elif USE_BUILTIN_FFS
#define compute_bit2idx(X, I) I = ffs(X)-1
#else
#define compute_bit2idx(X, I)\
{\
unsigned int Y = X - 1;\
unsigned int K = Y >> (16-4) & 16;\
unsigned int N = K; Y >>= K;\
N += K = Y >> (8-3) & 8; Y >>= K;\
N += K = Y >> (4-2) & 4; Y >>= K;\
N += K = Y >> (2-1) & 2; Y >>= K;\
N += K = Y >> (1-0) & 1; Y >>= K;\
I = (bindex_t)(N + Y);\
}
#endif
#if !INSECURE
#define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
#define ok_next(p, n) ((char*)(p) < (char*)(n))
#define ok_inuse(p) is_inuse(p)
#define ok_pinuse(p) pinuse(p)
#else
#define ok_address(M, a) (1)
#define ok_next(b, n) (1)
#define ok_inuse(p) (1)
#define ok_pinuse(p) (1)
#endif
#if (FOOTERS && !INSECURE)
#define ok_magic(M) ((M)->magic == mparams.magic)
#else
#define ok_magic(M) (1)
#endif
#if !INSECURE
#if defined(__GNUC__) && __GNUC__ >= 3
#define RTCHECK(e) __builtin_expect(e, 1)
#else
#define RTCHECK(e) (e)
#endif
#else
#define RTCHECK(e) (1)
#endif
#if !FOOTERS
#define mark_inuse_foot(M,p,s)
#define set_inuse(M,p,s)\
((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
#define set_inuse_and_pinuse(M,p,s)\
((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
#else
#define mark_inuse_foot(M,p,s)\
(((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
#define get_mstate_for(p)\
((mstate)(((mchunkptr)((char*)(p) +\
(chunksize(p))))->prev_foot ^ mparams.magic))
#define set_inuse(M,p,s)\
((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
(((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
mark_inuse_foot(M,p,s))
#define set_inuse_and_pinuse(M,p,s)\
((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
(((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
mark_inuse_foot(M,p,s))
#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
mark_inuse_foot(M, p, s))
#endif
#if LOCK_AT_FORK
static void pre_fork(void) { ACQUIRE_LOCK(&(gm)->mutex); }
static void post_fork_parent(void) { RELEASE_LOCK(&(gm)->mutex); }
static void post_fork_child(void) { INITIAL_LOCK(&(gm)->mutex); }
#endif
static int init_mparams(void) {
#ifdef NEED_GLOBAL_LOCK_INIT
if (malloc_global_mutex_status <= 0)
init_malloc_global_mutex();
#endif
ACQUIRE_MALLOC_GLOBAL_LOCK();
if (mparams.magic == 0) {
size_t magic;
size_t psize;
size_t gsize;
#ifndef WIN32
psize = malloc_getpagesize;
gsize = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : psize);
#else
{
SYSTEM_INFO system_info;
GetSystemInfo(&system_info);
psize = system_info.dwPageSize;
gsize = ((DEFAULT_GRANULARITY != 0)?
DEFAULT_GRANULARITY : system_info.dwAllocationGranularity);
}
#endif
if ((sizeof(size_t) != sizeof(char*)) ||
(MAX_SIZE_T < MIN_CHUNK_SIZE) ||
(sizeof(int) < 4) ||
(MALLOC_ALIGNMENT < (size_t)8U) ||
((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
((gsize & (gsize-SIZE_T_ONE)) != 0) ||
((psize & (psize-SIZE_T_ONE)) != 0))
ABORT;
mparams.granularity = gsize;
mparams.page_size = psize;
mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
#if MORECORE_CONTIGUOUS
mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
#else
mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
#endif
#if !ONLY_MSPACES
gm->mflags = mparams.default_mflags;
(void)INITIAL_LOCK(&gm->mutex);
#endif
#if LOCK_AT_FORK
pthread_atfork(&pre_fork, &post_fork_parent, &post_fork_child);
#endif
{
#if USE_DEV_RANDOM
int fd;
unsigned char buf[sizeof(size_t)];
if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
read(fd, buf, sizeof(buf)) == sizeof(buf)) {
magic = *((size_t *) buf);
close(fd);
}
else
#endif
#ifdef WIN32
magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U);
#elif defined(LACKS_TIME_H)
magic = (size_t)&magic ^ (size_t)0x55555555U;
#else
magic = (size_t)(time(0) ^ (size_t)0x55555555U);
#endif
magic |= (size_t)8U;
magic &= ~(size_t)7U;
(*(volatile size_t *)(&(mparams.magic))) = magic;
}
}
RELEASE_MALLOC_GLOBAL_LOCK();
return 1;
}
static int change_mparam(int param_number, int value) {
size_t val;
ensure_initialization();
val = (value == -1)? MAX_SIZE_T : (size_t)value;
switch(param_number) {
case M_TRIM_THRESHOLD:
mparams.trim_threshold = val;
return 1;
case M_GRANULARITY:
if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
mparams.granularity = val;
return 1;
}
else
return 0;
case M_MMAP_THRESHOLD:
mparams.mmap_threshold = val;
return 1;
default:
return 0;
}
}
#if DEBUG
static void do_check_any_chunk(mstate m, mchunkptr p) {
assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
assert(ok_address(m, p));
}
static void do_check_top_chunk(mstate m, mchunkptr p) {
msegmentptr sp = segment_holding(m, (char*)p);
size_t sz = p->head & ~INUSE_BITS;
assert(sp != 0);
assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
assert(ok_address(m, p));
assert(sz == m->topsize);
assert(sz > 0);
assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
assert(pinuse(p));
assert(!pinuse(chunk_plus_offset(p, sz)));
}
static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
size_t sz = chunksize(p);
size_t len = (sz + (p->prev_foot) + MMAP_FOOT_PAD);
assert(is_mmapped(p));
assert(use_mmap(m));
assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
assert(ok_address(m, p));
assert(!is_small(sz));
assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
}
static void do_check_inuse_chunk(mstate m, mchunkptr p) {
do_check_any_chunk(m, p);
assert(is_inuse(p));
assert(next_pinuse(p));
assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
if (is_mmapped(p))
do_check_mmapped_chunk(m, p);
}
static void do_check_free_chunk(mstate m, mchunkptr p) {
size_t sz = chunksize(p);
mchunkptr next = chunk_plus_offset(p, sz);
do_check_any_chunk(m, p);
assert(!is_inuse(p));
assert(!next_pinuse(p));
assert (!is_mmapped(p));
if (p != m->dv && p != m->top) {
if (sz >= MIN_CHUNK_SIZE) {
assert((sz & CHUNK_ALIGN_MASK) == 0);
assert(is_aligned(chunk2mem(p)));
assert(next->prev_foot == sz);
assert(pinuse(p));
assert (next == m->top || is_inuse(next));
assert(p->fd->bk == p);
assert(p->bk->fd == p);
}
else
assert(sz == SIZE_T_SIZE);
}
}
static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
if (mem != 0) {
mchunkptr p = mem2chunk(mem);
size_t sz = p->head & ~INUSE_BITS;
do_check_inuse_chunk(m, p);
assert((sz & CHUNK_ALIGN_MASK) == 0);
assert(sz >= MIN_CHUNK_SIZE);
assert(sz >= s);
assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
}
}
static void do_check_tree(mstate m, tchunkptr t) {
tchunkptr head = 0;
tchunkptr u = t;
bindex_t tindex = t->index;
size_t tsize = chunksize(t);
bindex_t idx;
compute_tree_index(tsize, idx);
assert(tindex == idx);
assert(tsize >= MIN_LARGE_SIZE);
assert(tsize >= minsize_for_tree_index(idx));
assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
do {
do_check_any_chunk(m, ((mchunkptr)u));
assert(u->index == tindex);
assert(chunksize(u) == tsize);
assert(!is_inuse(u));
assert(!next_pinuse(u));
assert(u->fd->bk == u);
assert(u->bk->fd == u);
if (u->parent == 0) {
assert(u->child[0] == 0);
assert(u->child[1] == 0);
}
else {
assert(head == 0);
head = u;
assert(u->parent != u);
assert (u->parent->child[0] == u ||
u->parent->child[1] == u ||
*((tbinptr*)(u->parent)) == u);
if (u->child[0] != 0) {
assert(u->child[0]->parent == u);
assert(u->child[0] != u);
do_check_tree(m, u->child[0]);
}
if (u->child[1] != 0) {
assert(u->child[1]->parent == u);
assert(u->child[1] != u);
do_check_tree(m, u->child[1]);
}
if (u->child[0] != 0 && u->child[1] != 0) {
assert(chunksize(u->child[0]) < chunksize(u->child[1]));
}
}
u = u->fd;
} while (u != t);
assert(head != 0);
}
static void do_check_treebin(mstate m, bindex_t i) {
tbinptr* tb = treebin_at(m, i);
tchunkptr t = *tb;
int empty = (m->treemap & (1U << i)) == 0;
if (t == 0)
assert(empty);
if (!empty)
do_check_tree(m, t);
}
static void do_check_smallbin(mstate m, bindex_t i) {
sbinptr b = smallbin_at(m, i);
mchunkptr p = b->bk;
unsigned int empty = (m->smallmap & (1U << i)) == 0;
if (p == b)
assert(empty);
if (!empty) {
for (; p != b; p = p->bk) {
size_t size = chunksize(p);
mchunkptr q;
do_check_free_chunk(m, p);
assert(small_index(size) == i);
assert(p->bk == b || chunksize(p->bk) == chunksize(p));
q = next_chunk(p);
if (q->head != FENCEPOST_HEAD)
do_check_inuse_chunk(m, q);
}
}
}
static int bin_find(mstate m, mchunkptr x) {
size_t size = chunksize(x);
if (is_small(size)) {
bindex_t sidx = small_index(size);
sbinptr b = smallbin_at(m, sidx);
if (smallmap_is_marked(m, sidx)) {
mchunkptr p = b;
do {
if (p == x)
return 1;
} while ((p = p->fd) != b);
}
}
else {
bindex_t tidx;
compute_tree_index(size, tidx);
if (treemap_is_marked(m, tidx)) {
tchunkptr t = *treebin_at(m, tidx);
size_t sizebits = size << leftshift_for_tree_index(tidx);
while (t != 0 && chunksize(t) != size) {
t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
sizebits <<= 1;
}
if (t != 0) {
tchunkptr u = t;
do {
if (u == (tchunkptr)x)
return 1;
} while ((u = u->fd) != t);
}
}
}
return 0;
}
static size_t traverse_and_check(mstate m) {
size_t sum = 0;
if (is_initialized(m)) {
msegmentptr s = &m->seg;
sum += m->topsize + TOP_FOOT_SIZE;
while (s != 0) {
mchunkptr q = align_as_chunk(s->base);
mchunkptr lastq = 0;
assert(pinuse(q));
while (segment_holds(s, q) &&
q != m->top && q->head != FENCEPOST_HEAD) {
sum += chunksize(q);
if (is_inuse(q)) {
assert(!bin_find(m, q));
do_check_inuse_chunk(m, q);
}
else {
assert(q == m->dv || bin_find(m, q));
assert(lastq == 0 || is_inuse(lastq));
do_check_free_chunk(m, q);
}
lastq = q;
q = next_chunk(q);
}
s = s->next;
}
}
return sum;
}
static void do_check_malloc_state(mstate m) {
bindex_t i;
size_t total;
for (i = 0; i < NSMALLBINS; ++i)
do_check_smallbin(m, i);
for (i = 0; i < NTREEBINS; ++i)
do_check_treebin(m, i);
if (m->dvsize != 0) {
do_check_any_chunk(m, m->dv);
assert(m->dvsize == chunksize(m->dv));
assert(m->dvsize >= MIN_CHUNK_SIZE);
assert(bin_find(m, m->dv) == 0);
}
if (m->top != 0) {
do_check_top_chunk(m, m->top);
assert(m->topsize > 0);
assert(bin_find(m, m->top) == 0);
}
total = traverse_and_check(m);
assert(total <= m->footprint);
assert(m->footprint <= m->max_footprint);
}
#endif
#if !NO_MALLINFO
static struct mallinfo internal_mallinfo(mstate m) {
struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
ensure_initialization();
if (!PREACTION(m)) {
check_malloc_state(m);
if (is_initialized(m)) {
size_t nfree = SIZE_T_ONE;
size_t mfree = m->topsize + TOP_FOOT_SIZE;
size_t sum = mfree;
msegmentptr s = &m->seg;
while (s != 0) {
mchunkptr q = align_as_chunk(s->base);
while (segment_holds(s, q) &&
q != m->top && q->head != FENCEPOST_HEAD) {
size_t sz = chunksize(q);
sum += sz;
if (!is_inuse(q)) {
mfree += sz;
++nfree;
}
q = next_chunk(q);
}
s = s->next;
}
nm.arena = sum;
nm.ordblks = nfree;
nm.hblkhd = m->footprint - sum;
nm.usmblks = m->max_footprint;
nm.uordblks = m->footprint - mfree;
nm.fordblks = mfree;
nm.keepcost = m->topsize;
}
POSTACTION(m);
}
return nm;
}
#endif
#if !NO_MALLOC_STATS
static void internal_malloc_stats(mstate m) {
ensure_initialization();
if (!PREACTION(m)) {
size_t maxfp = 0;
size_t fp = 0;
size_t used = 0;
check_malloc_state(m);
if (is_initialized(m)) {
msegmentptr s = &m->seg;
maxfp = m->max_footprint;
fp = m->footprint;
used = fp - (m->topsize + TOP_FOOT_SIZE);
while (s != 0) {
mchunkptr q = align_as_chunk(s->base);
while (segment_holds(s, q) &&
q != m->top && q->head != FENCEPOST_HEAD) {
if (!is_inuse(q))
used -= chunksize(q);
q = next_chunk(q);
}
s = s->next;
}
}
POSTACTION(m);
dprintf("max system bytes = %10lu\n", (unsigned long)(maxfp));
dprintf("system bytes = %10lu\n", (unsigned long)(fp));
dprintf("in use bytes = %10lu\n", (unsigned long)(used));
}
}
#endif
#define insert_small_chunk(M, P, S) {\
bindex_t I = small_index(S);\
mchunkptr B = smallbin_at(M, I);\
mchunkptr F = B;\
assert(S >= MIN_CHUNK_SIZE);\
if (!smallmap_is_marked(M, I))\
mark_smallmap(M, I);\
else if (RTCHECK(ok_address(M, B->fd)))\
F = B->fd;\
else {\
CORRUPTION_ERROR_ACTION(M);\
}\
B->fd = P;\
F->bk = P;\
P->fd = F;\
P->bk = B;\
}
#define unlink_small_chunk(M, P, S) {\
mchunkptr F = P->fd;\
mchunkptr B = P->bk;\
bindex_t I = small_index(S);\
assert(P != B);\
assert(P != F);\
assert(chunksize(P) == small_index2size(I));\
if (RTCHECK(F == smallbin_at(M,I) || (ok_address(M, F) && F->bk == P))) { \
if (B == F) {\
clear_smallmap(M, I);\
}\
else if (RTCHECK(B == smallbin_at(M,I) ||\
(ok_address(M, B) && B->fd == P))) {\
F->bk = B;\
B->fd = F;\
}\
else {\
CORRUPTION_ERROR_ACTION(M);\
}\
}\
else {\
CORRUPTION_ERROR_ACTION(M);\
}\
}
#define unlink_first_small_chunk(M, B, P, I) {\
mchunkptr F = P->fd;\
assert(P != B);\
assert(P != F);\
assert(chunksize(P) == small_index2size(I));\
if (B == F) {\
clear_smallmap(M, I);\
}\
else if (RTCHECK(ok_address(M, F) && F->bk == P)) {\
F->bk = B;\
B->fd = F;\
}\
else {\
CORRUPTION_ERROR_ACTION(M);\
}\
}
#define replace_dv(M, P, S) {\
size_t DVS = M->dvsize;\
assert(is_small(DVS));\
if (DVS != 0) {\
mchunkptr DV = M->dv;\
insert_small_chunk(M, DV, DVS);\
}\
M->dvsize = S;\
M->dv = P;\
}
#define insert_large_chunk(M, X, S) {\
tbinptr* H;\
bindex_t I;\
compute_tree_index(S, I);\
H = treebin_at(M, I);\
X->index = I;\
X->child[0] = X->child[1] = 0;\
if (!treemap_is_marked(M, I)) {\
mark_treemap(M, I);\
*H = X;\
X->parent = (tchunkptr)H;\
X->fd = X->bk = X;\
}\
else {\
tchunkptr T = *H;\
size_t K = S << leftshift_for_tree_index(I);\
for (;;) {\
if (chunksize(T) != S) {\
tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
K <<= 1;\
if (*C != 0)\
T = *C;\
else if (RTCHECK(ok_address(M, C))) {\
*C = X;\
X->parent = T;\
X->fd = X->bk = X;\
break;\
}\
else {\
CORRUPTION_ERROR_ACTION(M);\
break;\
}\
}\
else {\
tchunkptr F = T->fd;\
if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
T->fd = F->bk = X;\
X->fd = F;\
X->bk = T;\
X->parent = 0;\
break;\
}\
else {\
CORRUPTION_ERROR_ACTION(M);\
break;\
}\
}\
}\
}\
}
#define unlink_large_chunk(M, X) {\
tchunkptr XP = X->parent;\
tchunkptr R;\
if (X->bk != X) {\
tchunkptr F = X->fd;\
R = X->bk;\
if (RTCHECK(ok_address(M, F) && F->bk == X && R->fd == X)) {\
F->bk = R;\
R->fd = F;\
}\
else {\
CORRUPTION_ERROR_ACTION(M);\
}\
}\
else {\
tchunkptr* RP;\
if (((R = *(RP = &(X->child[1]))) != 0) ||\
((R = *(RP = &(X->child[0]))) != 0)) {\
tchunkptr* CP;\
while ((*(CP = &(R->child[1])) != 0) ||\
(*(CP = &(R->child[0])) != 0)) {\
R = *(RP = CP);\
}\
if (RTCHECK(ok_address(M, RP)))\
*RP = 0;\
else {\
CORRUPTION_ERROR_ACTION(M);\
}\
}\
}\
if (XP != 0) {\
tbinptr* H = treebin_at(M, X->index);\
if (X == *H) {\
if ((*H = R) == 0) \
clear_treemap(M, X->index);\
}\
else if (RTCHECK(ok_address(M, XP))) {\
if (XP->child[0] == X) \
XP->child[0] = R;\
else \
XP->child[1] = R;\
}\
else\
CORRUPTION_ERROR_ACTION(M);\
if (R != 0) {\
if (RTCHECK(ok_address(M, R))) {\
tchunkptr C0, C1;\
R->parent = XP;\
if ((C0 = X->child[0]) != 0) {\
if (RTCHECK(ok_address(M, C0))) {\
R->child[0] = C0;\
C0->parent = R;\
}\
else\
CORRUPTION_ERROR_ACTION(M);\
}\
if ((C1 = X->child[1]) != 0) {\
if (RTCHECK(ok_address(M, C1))) {\
R->child[1] = C1;\
C1->parent = R;\
}\
else\
CORRUPTION_ERROR_ACTION(M);\
}\
}\
else\
CORRUPTION_ERROR_ACTION(M);\
}\
}\
}
#define insert_chunk(M, P, S)\
if (is_small(S)) insert_small_chunk(M, P, S)\
else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
#define unlink_chunk(M, P, S)\
if (is_small(S)) unlink_small_chunk(M, P, S)\
else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
#if ONLY_MSPACES
#define internal_malloc(m, b) mspace_malloc(m, b)
#define internal_free(m, mem) mspace_free(m,mem);
#else
#if MSPACES
#define internal_malloc(m, b)\
((m == gm)? dlmalloc(b) : mspace_malloc(m, b))
#define internal_free(m, mem)\
if (m == gm) dlfree(mem); else mspace_free(m,mem);
#else
#define internal_malloc(m, b) dlmalloc(b)
#define internal_free(m, mem) dlfree(mem)
#endif
#endif
static void* mmap_alloc(mstate m, size_t nb) {
size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
if (m->footprint_limit != 0) {
size_t fp = m->footprint + mmsize;
if (fp <= m->footprint || fp > m->footprint_limit)
return 0;
}
if (mmsize > nb) {
char* mm = (char*)(CALL_DIRECT_MMAP(mmsize));
if (mm != CMFAIL) {
size_t offset = align_offset(chunk2mem(mm));
size_t psize = mmsize - offset - MMAP_FOOT_PAD;
mchunkptr p = (mchunkptr)(mm + offset);
p->prev_foot = offset;
p->head = psize;
mark_inuse_foot(m, p, psize);
chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
if (m->least_addr == 0 || mm < m->least_addr)
m->least_addr = mm;
if ((m->footprint += mmsize) > m->max_footprint)
m->max_footprint = m->footprint;
assert(is_aligned(chunk2mem(p)));
check_mmapped_chunk(m, p);
return chunk2mem(p);
}
}
return 0;
}
static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb, int flags) {
size_t oldsize = chunksize(oldp);
(void)flags;
if (is_small(nb))
return 0;
if (oldsize >= nb + SIZE_T_SIZE &&
(oldsize - nb) <= (mparams.granularity << 1))
return oldp;
else {
size_t offset = oldp->prev_foot;
size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
oldmmsize, newmmsize, flags);
if (cp != CMFAIL) {
mchunkptr newp = (mchunkptr)(cp + offset);
size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
newp->head = psize;
mark_inuse_foot(m, newp, psize);
chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
if (cp < m->least_addr)
m->least_addr = cp;
if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
m->max_footprint = m->footprint;
check_mmapped_chunk(m, newp);
return newp;
}
}
return 0;
}
static void init_top(mstate m, mchunkptr p, size_t psize) {
size_t offset = align_offset(chunk2mem(p));
p = (mchunkptr)((char*)p + offset);
psize -= offset;
m->top = p;
m->topsize = psize;
p->head = psize | PINUSE_BIT;
chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
m->trim_check = mparams.trim_threshold;
}
static void init_bins(mstate m) {
bindex_t i;
for (i = 0; i < NSMALLBINS; ++i) {
sbinptr bin = smallbin_at(m,i);
bin->fd = bin->bk = bin;
}
}
#if PROCEED_ON_ERROR
static void reset_on_error(mstate m) {
int i;
++malloc_corruption_error_count;
m->smallmap = m->treemap = 0;
m->dvsize = m->topsize = 0;
m->seg.base = 0;
m->seg.size = 0;
m->seg.next = 0;
m->top = m->dv = 0;
for (i = 0; i < NTREEBINS; ++i)
*treebin_at(m, i) = 0;
init_bins(m);
}
#endif
static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
size_t nb) {
mchunkptr p = align_as_chunk(newbase);
mchunkptr oldfirst = align_as_chunk(oldbase);
size_t psize = (char*)oldfirst - (char*)p;
mchunkptr q = chunk_plus_offset(p, nb);
size_t qsize = psize - nb;
set_size_and_pinuse_of_inuse_chunk(m, p, nb);
assert((char*)oldfirst > (char*)q);
assert(pinuse(oldfirst));
assert(qsize >= MIN_CHUNK_SIZE);
if (oldfirst == m->top) {
size_t tsize = m->topsize += qsize;
m->top = q;
q->head = tsize | PINUSE_BIT;
check_top_chunk(m, q);
}
else if (oldfirst == m->dv) {
size_t dsize = m->dvsize += qsize;
m->dv = q;
set_size_and_pinuse_of_free_chunk(q, dsize);
}
else {
if (!is_inuse(oldfirst)) {
size_t nsize = chunksize(oldfirst);
unlink_chunk(m, oldfirst, nsize);
oldfirst = chunk_plus_offset(oldfirst, nsize);
qsize += nsize;
}
set_free_with_pinuse(q, qsize, oldfirst);
insert_chunk(m, q, qsize);
check_free_chunk(m, q);
}
check_malloced_chunk(m, chunk2mem(p), nb);
return chunk2mem(p);
}
static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
char* old_top = (char*)m->top;
msegmentptr oldsp = segment_holding(m, old_top);
char* old_end = oldsp->base + oldsp->size;
size_t ssize = pad_request(sizeof(struct malloc_segment));
char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
size_t offset = align_offset(chunk2mem(rawsp));
char* asp = rawsp + offset;
char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
mchunkptr sp = (mchunkptr)csp;
msegmentptr ss = (msegmentptr)(chunk2mem(sp));
mchunkptr tnext = chunk_plus_offset(sp, ssize);
mchunkptr p = tnext;
int nfences = 0;
init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
assert(is_aligned(ss));
set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
*ss = m->seg;
m->seg.base = tbase;
m->seg.size = tsize;
m->seg.sflags = mmapped;
m->seg.next = ss;
for (;;) {
mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
p->head = FENCEPOST_HEAD;
++nfences;
if ((char*)(&(nextp->head)) < old_end)
p = nextp;
else
break;
}
assert(nfences >= 2);
if (csp != old_top) {
mchunkptr q = (mchunkptr)old_top;
size_t psize = csp - old_top;
mchunkptr tn = chunk_plus_offset(q, psize);
set_free_with_pinuse(q, psize, tn);
insert_chunk(m, q, psize);
}
check_top_chunk(m, m->top);
}
static void* sys_alloc(mstate m, size_t nb) {
char* tbase = CMFAIL;
size_t tsize = 0;
flag_t mmap_flag = 0;
size_t asize;
ensure_initialization();
if (use_mmap(m) && nb >= mparams.mmap_threshold && m->topsize != 0) {
void* mem = mmap_alloc(m, nb);
if (mem != 0)
return mem;
}
asize = granularity_align(nb + SYS_ALLOC_PADDING);
if (asize <= nb)
return 0;
if (m->footprint_limit != 0) {
size_t fp = m->footprint + asize;
if (fp <= m->footprint || fp > m->footprint_limit)
return 0;
}
if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
char* br = CMFAIL;
size_t ssize = asize;
msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
ACQUIRE_MALLOC_GLOBAL_LOCK();
if (ss == 0) {
char* base = (char*)CALL_MORECORE(0);
if (base != CMFAIL) {
size_t fp;
if (!is_page_aligned(base))
ssize += (page_align((size_t)base) - (size_t)base);
fp = m->footprint + ssize;
if (ssize > nb && ssize < HALF_MAX_SIZE_T &&
(m->footprint_limit == 0 ||
(fp > m->footprint && fp <= m->footprint_limit)) &&
(br = (char*)(CALL_MORECORE(ssize))) == base) {
tbase = base;
tsize = ssize;
}
}
}
else {
ssize = granularity_align(nb - m->topsize + SYS_ALLOC_PADDING);
if (ssize < HALF_MAX_SIZE_T &&
(br = (char*)(CALL_MORECORE(ssize))) == ss->base+ss->size) {
tbase = br;
tsize = ssize;
}
}
if (tbase == CMFAIL) {
if (br != CMFAIL) {
if (ssize < HALF_MAX_SIZE_T &&
ssize < nb + SYS_ALLOC_PADDING) {
size_t esize = granularity_align(nb + SYS_ALLOC_PADDING - ssize);
if (esize < HALF_MAX_SIZE_T) {
char* end = (char*)CALL_MORECORE(esize);
if (end != CMFAIL)
ssize += esize;
else {
(void) CALL_MORECORE(-ssize);
br = CMFAIL;
}
}
}
}
if (br != CMFAIL) {
tbase = br;
tsize = ssize;
}
else
disable_contiguous(m);
}
RELEASE_MALLOC_GLOBAL_LOCK();
}
if (HAVE_MMAP && tbase == CMFAIL) {
char* mp = (char*)(CALL_MMAP(asize));
if (mp != CMFAIL) {
tbase = mp;
tsize = asize;
mmap_flag = USE_MMAP_BIT;
}
}
if (HAVE_MORECORE && tbase == CMFAIL) {
if (asize < HALF_MAX_SIZE_T) {
char* br = CMFAIL;
char* end = CMFAIL;
ACQUIRE_MALLOC_GLOBAL_LOCK();
br = (char*)(CALL_MORECORE(asize));
end = (char*)(CALL_MORECORE(0));
RELEASE_MALLOC_GLOBAL_LOCK();
if (br != CMFAIL && end != CMFAIL && br < end) {
size_t ssize = end - br;
if (ssize > nb + TOP_FOOT_SIZE) {
tbase = br;
tsize = ssize;
}
}
}
}
if (tbase != CMFAIL) {
if ((m->footprint += tsize) > m->max_footprint)
m->max_footprint = m->footprint;
if (!is_initialized(m)) {
if (m->least_addr == 0 || tbase < m->least_addr)
m->least_addr = tbase;
m->seg.base = tbase;
m->seg.size = tsize;
m->seg.sflags = mmap_flag;
m->magic = mparams.magic;
m->release_checks = MAX_RELEASE_CHECK_RATE;
init_bins(m);
#if !ONLY_MSPACES
if (is_global(m))
init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
else
#endif
{
mchunkptr mn = next_chunk(mem2chunk(m));
init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
}
}
else {
msegmentptr sp = &m->seg;
while (sp != 0 && tbase != sp->base + sp->size)
sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
if (sp != 0 &&
!is_extern_segment(sp) &&
(sp->sflags & USE_MMAP_BIT) == mmap_flag &&
segment_holds(sp, m->top)) {
sp->size += tsize;
init_top(m, m->top, m->topsize + tsize);
}
else {
if (tbase < m->least_addr)
m->least_addr = tbase;
sp = &m->seg;
while (sp != 0 && sp->base != tbase + tsize)
sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
if (sp != 0 &&
!is_extern_segment(sp) &&
(sp->sflags & USE_MMAP_BIT) == mmap_flag) {
char* oldbase = sp->base;
sp->base = tbase;
sp->size += tsize;
return prepend_alloc(m, tbase, oldbase, nb);
}
else
add_segment(m, tbase, tsize, mmap_flag);
}
}
if (nb < m->topsize) {
size_t rsize = m->topsize -= nb;
mchunkptr p = m->top;
mchunkptr r = m->top = chunk_plus_offset(p, nb);
r->head = rsize | PINUSE_BIT;
set_size_and_pinuse_of_inuse_chunk(m, p, nb);
check_top_chunk(m, m->top);
check_malloced_chunk(m, chunk2mem(p), nb);
return chunk2mem(p);
}
}
MALLOC_FAILURE_ACTION;
return 0;
}
static size_t release_unused_segments(mstate m) {
size_t released = 0;
int nsegs = 0;
msegmentptr pred = &m->seg;
msegmentptr sp = pred->next;
while (sp != 0) {
char* base = sp->base;
size_t size = sp->size;
msegmentptr next = sp->next;
++nsegs;
if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
mchunkptr p = align_as_chunk(base);
size_t psize = chunksize(p);
if (!is_inuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
tchunkptr tp = (tchunkptr)p;
assert(segment_holds(sp, (char*)sp));
if (p == m->dv) {
m->dv = 0;
m->dvsize = 0;
}
else {
unlink_large_chunk(m, tp);
}
if (CALL_MUNMAP(base, size) == 0) {
released += size;
m->footprint -= size;
sp = pred;
sp->next = next;
}
else {
insert_large_chunk(m, tp, psize);
}
}
}
if (NO_SEGMENT_TRAVERSAL)
break;
pred = sp;
sp = next;
}
m->release_checks = (((size_t) nsegs > (size_t) MAX_RELEASE_CHECK_RATE)?
(size_t) nsegs : (size_t) MAX_RELEASE_CHECK_RATE);
return released;
}
static int sys_trim(mstate m, size_t pad) {
size_t released = 0;
ensure_initialization();
if (pad < MAX_REQUEST && is_initialized(m)) {
pad += TOP_FOOT_SIZE;
if (m->topsize > pad) {
size_t unit = mparams.granularity;
size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
SIZE_T_ONE) * unit;
msegmentptr sp = segment_holding(m, (char*)m->top);
if (!is_extern_segment(sp)) {
if (is_mmapped_segment(sp)) {
if (HAVE_MMAP &&
sp->size >= extra &&
!has_segment_link(m, sp)) {
size_t newsize = sp->size - extra;
(void)newsize;
if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
(CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
released = extra;
}
}
}
else if (HAVE_MORECORE) {
if (extra >= HALF_MAX_SIZE_T)
extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
ACQUIRE_MALLOC_GLOBAL_LOCK();
{
char* old_br = (char*)(CALL_MORECORE(0));
if (old_br == sp->base + sp->size) {
char* rel_br = (char*)(CALL_MORECORE(-extra));
char* new_br = (char*)(CALL_MORECORE(0));
if (rel_br != CMFAIL && new_br < old_br)
released = old_br - new_br;
}
}
RELEASE_MALLOC_GLOBAL_LOCK();
}
}
if (released != 0) {
sp->size -= released;
m->footprint -= released;
init_top(m, m->top, m->topsize - released);
check_top_chunk(m, m->top);
}
}
if (HAVE_MMAP)
released += release_unused_segments(m);
if (released == 0 && m->topsize > m->trim_check)
m->trim_check = MAX_SIZE_T;
}
return (released != 0)? 1 : 0;
}
static void dispose_chunk(mstate m, mchunkptr p, size_t psize) {
mchunkptr next = chunk_plus_offset(p, psize);
if (!pinuse(p)) {
mchunkptr prev;
size_t prevsize = p->prev_foot;
if (is_mmapped(p)) {
psize += prevsize + MMAP_FOOT_PAD;
if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
m->footprint -= psize;
return;
}
prev = chunk_minus_offset(p, prevsize);
psize += prevsize;
p = prev;
if (RTCHECK(ok_address(m, prev))) {
if (p != m->dv) {
unlink_chunk(m, p, prevsize);
}
else if ((next->head & INUSE_BITS) == INUSE_BITS) {
m->dvsize = psize;
set_free_with_pinuse(p, psize, next);
return;
}
}
else {
CORRUPTION_ERROR_ACTION(m);
return;
}
}
if (RTCHECK(ok_address(m, next))) {
if (!cinuse(next)) {
if (next == m->top) {
size_t tsize = m->topsize += psize;
m->top = p;
p->head = tsize | PINUSE_BIT;
if (p == m->dv) {
m->dv = 0;
m->dvsize = 0;
}
return;
}
else if (next == m->dv) {
size_t dsize = m->dvsize += psize;
m->dv = p;
set_size_and_pinuse_of_free_chunk(p, dsize);
return;
}
else {
size_t nsize = chunksize(next);
psize += nsize;
unlink_chunk(m, next, nsize);
set_size_and_pinuse_of_free_chunk(p, psize);
if (p == m->dv) {
m->dvsize = psize;
return;
}
}
}
else {
set_free_with_pinuse(p, psize, next);
}
insert_chunk(m, p, psize);
}
else {
CORRUPTION_ERROR_ACTION(m);
}
}
static void* tmalloc_large(mstate m, size_t nb) {
tchunkptr v = 0;
size_t rsize = -nb;
tchunkptr t;
bindex_t idx;
compute_tree_index(nb, idx);
if ((t = *treebin_at(m, idx)) != 0) {
size_t sizebits = nb << leftshift_for_tree_index(idx);
tchunkptr rst = 0;
for (;;) {
tchunkptr rt;
size_t trem = chunksize(t) - nb;
if (trem < rsize) {
v = t;
if ((rsize = trem) == 0)
break;
}
rt = t->child[1];
t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
if (rt != 0 && rt != t)
rst = rt;
if (t == 0) {
t = rst;
break;
}
sizebits <<= 1;
}
}
if (t == 0 && v == 0) {
binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
if (leftbits != 0) {
bindex_t i;
binmap_t leastbit = least_bit(leftbits);
compute_bit2idx(leastbit, i);
t = *treebin_at(m, i);
}
}
while (t != 0) {
size_t trem = chunksize(t) - nb;
if (trem < rsize) {
rsize = trem;
v = t;
}
t = leftmost_child(t);
}
if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
if (RTCHECK(ok_address(m, v))) {
mchunkptr r = chunk_plus_offset(v, nb);
assert(chunksize(v) == rsize + nb);
if (RTCHECK(ok_next(v, r))) {
unlink_large_chunk(m, v);
if (rsize < MIN_CHUNK_SIZE)
set_inuse_and_pinuse(m, v, (rsize + nb));
else {
set_size_and_pinuse_of_inuse_chunk(m, v, nb);
set_size_and_pinuse_of_free_chunk(r, rsize);
insert_chunk(m, r, rsize);
}
return chunk2mem(v);
}
}
CORRUPTION_ERROR_ACTION(m);
}
return 0;
}
static void* tmalloc_small(mstate m, size_t nb) {
tchunkptr t, v;
size_t rsize;
bindex_t i;
binmap_t leastbit = least_bit(m->treemap);
compute_bit2idx(leastbit, i);
v = t = *treebin_at(m, i);
rsize = chunksize(t) - nb;
while ((t = leftmost_child(t)) != 0) {
size_t trem = chunksize(t) - nb;
if (trem < rsize) {
rsize = trem;
v = t;
}
}
if (RTCHECK(ok_address(m, v))) {
mchunkptr r = chunk_plus_offset(v, nb);
assert(chunksize(v) == rsize + nb);
if (RTCHECK(ok_next(v, r))) {
unlink_large_chunk(m, v);
if (rsize < MIN_CHUNK_SIZE)
set_inuse_and_pinuse(m, v, (rsize + nb));
else {
set_size_and_pinuse_of_inuse_chunk(m, v, nb);
set_size_and_pinuse_of_free_chunk(r, rsize);
replace_dv(m, r, rsize);
}
return chunk2mem(v);
}
}
CORRUPTION_ERROR_ACTION(m);
return 0;
}
#if !ONLY_MSPACES
void* dlmalloc(size_t bytes) {
#if USE_LOCKS
ensure_initialization();
#endif
if (!PREACTION(gm)) {
void* mem;
size_t nb;
if (bytes <= MAX_SMALL_REQUEST) {
bindex_t idx;
binmap_t smallbits;
nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
idx = small_index(nb);
smallbits = gm->smallmap >> idx;
if ((smallbits & 0x3U) != 0) {
mchunkptr b, p;
idx += ~smallbits & 1;
b = smallbin_at(gm, idx);
p = b->fd;
assert(chunksize(p) == small_index2size(idx));
unlink_first_small_chunk(gm, b, p, idx);
set_inuse_and_pinuse(gm, p, small_index2size(idx));
mem = chunk2mem(p);
check_malloced_chunk(gm, mem, nb);
goto postaction;
}
else if (nb > gm->dvsize) {
if (smallbits != 0) {
mchunkptr b, p, r;
size_t rsize;
bindex_t i;
binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
binmap_t leastbit = least_bit(leftbits);
compute_bit2idx(leastbit, i);
b = smallbin_at(gm, i);
p = b->fd;
assert(chunksize(p) == small_index2size(i));
unlink_first_small_chunk(gm, b, p, i);
rsize = small_index2size(i) - nb;
if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
set_inuse_and_pinuse(gm, p, small_index2size(i));
else {
set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
r = chunk_plus_offset(p, nb);
set_size_and_pinuse_of_free_chunk(r, rsize);
replace_dv(gm, r, rsize);
}
mem = chunk2mem(p);
check_malloced_chunk(gm, mem, nb);
goto postaction;
}
else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
check_malloced_chunk(gm, mem, nb);
goto postaction;
}
}
}
else if (bytes >= MAX_REQUEST)
nb = MAX_SIZE_T;
else {
nb = pad_request(bytes);
if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
check_malloced_chunk(gm, mem, nb);
goto postaction;
}
}
if (nb <= gm->dvsize) {
size_t rsize = gm->dvsize - nb;
mchunkptr p = gm->dv;
if (rsize >= MIN_CHUNK_SIZE) {
mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
gm->dvsize = rsize;
set_size_and_pinuse_of_free_chunk(r, rsize);
set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
}
else {
size_t dvs = gm->dvsize;
gm->dvsize = 0;
gm->dv = 0;
set_inuse_and_pinuse(gm, p, dvs);
}
mem = chunk2mem(p);
check_malloced_chunk(gm, mem, nb);
goto postaction;
}
else if (nb < gm->topsize) {
size_t rsize = gm->topsize -= nb;
mchunkptr p = gm->top;
mchunkptr r = gm->top = chunk_plus_offset(p, nb);
r->head = rsize | PINUSE_BIT;
set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
mem = chunk2mem(p);
check_top_chunk(gm, gm->top);
check_malloced_chunk(gm, mem, nb);
goto postaction;
}
mem = sys_alloc(gm, nb);
postaction:
POSTACTION(gm);
return mem;
}
return 0;
}
void dlfree(void* mem) {
if (mem != 0) {
mchunkptr p = mem2chunk(mem);
#if FOOTERS
mstate fm = get_mstate_for(p);
if (!ok_magic(fm)) {
USAGE_ERROR_ACTION(fm, p);
return;
}
#else
#define fm gm
#endif
if (!PREACTION(fm)) {
check_inuse_chunk(fm, p);
if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
size_t psize = chunksize(p);
mchunkptr next = chunk_plus_offset(p, psize);
if (!pinuse(p)) {
size_t prevsize = p->prev_foot;
if (is_mmapped(p)) {
psize += prevsize + MMAP_FOOT_PAD;
if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
fm->footprint -= psize;
goto postaction;
}
else {
mchunkptr prev = chunk_minus_offset(p, prevsize);
psize += prevsize;
p = prev;
if (RTCHECK(ok_address(fm, prev))) {
if (p != fm->dv) {
unlink_chunk(fm, p, prevsize);
}
else if ((next->head & INUSE_BITS) == INUSE_BITS) {
fm->dvsize = psize;
set_free_with_pinuse(p, psize, next);
goto postaction;
}
}
else
goto erroraction;
}
}
if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
if (!cinuse(next)) {
if (next == fm->top) {
size_t tsize = fm->topsize += psize;
fm->top = p;
p->head = tsize | PINUSE_BIT;
if (p == fm->dv) {
fm->dv = 0;
fm->dvsize = 0;
}
if (should_trim(fm, tsize))
sys_trim(fm, 0);
goto postaction;
}
else if (next == fm->dv) {
size_t dsize = fm->dvsize += psize;
fm->dv = p;
set_size_and_pinuse_of_free_chunk(p, dsize);
goto postaction;
}
else {
size_t nsize = chunksize(next);
psize += nsize;
unlink_chunk(fm, next, nsize);
set_size_and_pinuse_of_free_chunk(p, psize);
if (p == fm->dv) {
fm->dvsize = psize;
goto postaction;
}
}
}
else
set_free_with_pinuse(p, psize, next);
if (is_small(psize)) {
insert_small_chunk(fm, p, psize);
check_free_chunk(fm, p);
}
else {
tchunkptr tp = (tchunkptr)p;
insert_large_chunk(fm, tp, psize);
check_free_chunk(fm, p);
if (--fm->release_checks == 0)
release_unused_segments(fm);
}
goto postaction;
}
}
erroraction:
USAGE_ERROR_ACTION(fm, p);
postaction:
POSTACTION(fm);
}
}
#if !FOOTERS
#undef fm
#endif
}
void* dlcalloc(size_t n_elements, size_t elem_size) {
void* mem;
size_t req = 0;
if (n_elements != 0) {
req = n_elements * elem_size;
if (((n_elements | elem_size) & ~(size_t)0xffff) &&
(req / n_elements != elem_size))
req = MAX_SIZE_T;
}
mem = dlmalloc(req);
if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
memset(mem, 0, req);
return mem;
}
#endif
static mchunkptr try_realloc_chunk(mstate m, mchunkptr p, size_t nb,
int can_move) {
mchunkptr newp = 0;
size_t oldsize = chunksize(p);
mchunkptr next = chunk_plus_offset(p, oldsize);
if (RTCHECK(ok_address(m, p) && ok_inuse(p) &&
ok_next(p, next) && ok_pinuse(next))) {
if (is_mmapped(p)) {
newp = mmap_resize(m, p, nb, can_move);
}
else if (oldsize >= nb) {
size_t rsize = oldsize - nb;
if (rsize >= MIN_CHUNK_SIZE) {
mchunkptr r = chunk_plus_offset(p, nb);
set_inuse(m, p, nb);
set_inuse(m, r, rsize);
dispose_chunk(m, r, rsize);
}
newp = p;
}
else if (next == m->top) {
if (oldsize + m->topsize > nb) {
size_t newsize = oldsize + m->topsize;
size_t newtopsize = newsize - nb;
mchunkptr newtop = chunk_plus_offset(p, nb);
set_inuse(m, p, nb);
newtop->head = newtopsize |PINUSE_BIT;
m->top = newtop;
m->topsize = newtopsize;
newp = p;
}
}
else if (next == m->dv) {
size_t dvs = m->dvsize;
if (oldsize + dvs >= nb) {
size_t dsize = oldsize + dvs - nb;
if (dsize >= MIN_CHUNK_SIZE) {
mchunkptr r = chunk_plus_offset(p, nb);
mchunkptr n = chunk_plus_offset(r, dsize);
set_inuse(m, p, nb);
set_size_and_pinuse_of_free_chunk(r, dsize);
clear_pinuse(n);
m->dvsize = dsize;
m->dv = r;
}
else {
size_t newsize = oldsize + dvs;
set_inuse(m, p, newsize);
m->dvsize = 0;
m->dv = 0;
}
newp = p;
}
}
else if (!cinuse(next)) {
size_t nextsize = chunksize(next);
if (oldsize + nextsize >= nb) {
size_t rsize = oldsize + nextsize - nb;
unlink_chunk(m, next, nextsize);
if (rsize < MIN_CHUNK_SIZE) {
size_t newsize = oldsize + nextsize;
set_inuse(m, p, newsize);
}
else {
mchunkptr r = chunk_plus_offset(p, nb);
set_inuse(m, p, nb);
set_inuse(m, r, rsize);
dispose_chunk(m, r, rsize);
}
newp = p;
}
}
}
else {
USAGE_ERROR_ACTION(m, chunk2mem(p));
}
return newp;
}
static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
void* mem = 0;
if (alignment < MIN_CHUNK_SIZE)
alignment = MIN_CHUNK_SIZE;
if ((alignment & (alignment-SIZE_T_ONE)) != 0) {
size_t a = MALLOC_ALIGNMENT << 1;
while (a < alignment) a <<= 1;
alignment = a;
}
if (bytes >= MAX_REQUEST - alignment) {
if (m != 0) {
MALLOC_FAILURE_ACTION;
}
}
else {
size_t nb = request2size(bytes);
size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
mem = internal_malloc(m, req);
if (mem != 0) {
mchunkptr p = mem2chunk(mem);
if (PREACTION(m))
return 0;
if ((((size_t)(mem)) & (alignment - 1)) != 0) {
char* br = (char*)mem2chunk((size_t)(((size_t)((char*)mem + alignment -
SIZE_T_ONE)) &
-alignment));
char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
br : br+alignment;
mchunkptr newp = (mchunkptr)pos;
size_t leadsize = pos - (char*)(p);
size_t newsize = chunksize(p) - leadsize;
if (is_mmapped(p)) {
newp->prev_foot = p->prev_foot + leadsize;
newp->head = newsize;
}
else {
set_inuse(m, newp, newsize);
set_inuse(m, p, leadsize);
dispose_chunk(m, p, leadsize);
}
p = newp;
}
if (!is_mmapped(p)) {
size_t size = chunksize(p);
if (size > nb + MIN_CHUNK_SIZE) {
size_t remainder_size = size - nb;
mchunkptr remainder = chunk_plus_offset(p, nb);
set_inuse(m, p, nb);
set_inuse(m, remainder, remainder_size);
dispose_chunk(m, remainder, remainder_size);
}
}
mem = chunk2mem(p);
assert (chunksize(p) >= nb);
assert(((size_t)mem & (alignment - 1)) == 0);
check_inuse_chunk(m, p);
POSTACTION(m);
}
}
return mem;
}
static void** ialloc(mstate m,
size_t n_elements,
size_t* sizes,
int opts,
void* chunks[]) {
size_t element_size;
size_t contents_size;
size_t array_size;
void* mem;
mchunkptr p;
size_t remainder_size;
void** marray;
mchunkptr array_chunk;
flag_t was_enabled;
size_t size;
size_t i;
ensure_initialization();
if (chunks != 0) {
if (n_elements == 0)
return chunks;
marray = chunks;
array_size = 0;
}
else {
if (n_elements == 0)
return (void**)internal_malloc(m, 0);
marray = 0;
array_size = request2size(n_elements * (sizeof(void*)));
}
if (opts & 0x1) {
element_size = request2size(*sizes);
contents_size = n_elements * element_size;
}
else {
element_size = 0;
contents_size = 0;
for (i = 0; i != n_elements; ++i)
contents_size += request2size(sizes[i]);
}
size = contents_size + array_size;
was_enabled = use_mmap(m);
disable_mmap(m);
mem = internal_malloc(m, size - CHUNK_OVERHEAD);
if (was_enabled)
enable_mmap(m);
if (mem == 0)
return 0;
if (PREACTION(m)) return 0;
p = mem2chunk(mem);
remainder_size = chunksize(p);
assert(!is_mmapped(p));
if (opts & 0x2) {
memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
}
if (marray == 0) {
size_t array_chunk_size;
array_chunk = chunk_plus_offset(p, contents_size);
array_chunk_size = remainder_size - contents_size;
marray = (void**) (chunk2mem(array_chunk));
set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
remainder_size = contents_size;
}
for (i = 0; ; ++i) {
marray[i] = chunk2mem(p);
if (i != n_elements-1) {
if (element_size != 0)
size = element_size;
else
size = request2size(sizes[i]);
remainder_size -= size;
set_size_and_pinuse_of_inuse_chunk(m, p, size);
p = chunk_plus_offset(p, size);
}
else {
set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
break;
}
}
#if DEBUG
if (marray != chunks) {
if (element_size != 0) {
assert(remainder_size == element_size);
}
else {
assert(remainder_size == request2size(sizes[i]));
}
check_inuse_chunk(m, mem2chunk(marray));
}
for (i = 0; i != n_elements; ++i)
check_inuse_chunk(m, mem2chunk(marray[i]));
#endif
POSTACTION(m);
return marray;
}
static size_t internal_bulk_free(mstate m, void* array[], size_t nelem) {
size_t unfreed = 0;
if (!PREACTION(m)) {
void** a;
void** fence = &(array[nelem]);
for (a = array; a != fence; ++a) {
void* mem = *a;
if (mem != 0) {
mchunkptr p = mem2chunk(mem);
size_t psize = chunksize(p);
#if FOOTERS
if (get_mstate_for(p) != m) {
++unfreed;
continue;
}
#endif
check_inuse_chunk(m, p);
*a = 0;
if (RTCHECK(ok_address(m, p) && ok_inuse(p))) {
void ** b = a + 1;
mchunkptr next = next_chunk(p);
if (b != fence && *b == chunk2mem(next)) {
size_t newsize = chunksize(next) + psize;
set_inuse(m, p, newsize);
*b = chunk2mem(p);
}
else
dispose_chunk(m, p, psize);
}
else {
CORRUPTION_ERROR_ACTION(m);
break;
}
}
}
if (should_trim(m, m->topsize))
sys_trim(m, 0);
POSTACTION(m);
}
return unfreed;
}
#if MALLOC_INSPECT_ALL
static void internal_inspect_all(mstate m,
void(*handler)(void *start,
void *end,
size_t used_bytes,
void* callback_arg),
void* arg) {
if (is_initialized(m)) {
mchunkptr top = m->top;
msegmentptr s;
for (s = &m->seg; s != 0; s = s->next) {
mchunkptr q = align_as_chunk(s->base);
while (segment_holds(s, q) && q->head != FENCEPOST_HEAD) {
mchunkptr next = next_chunk(q);
size_t sz = chunksize(q);
size_t used;
void* start;
if (is_inuse(q)) {
used = sz - CHUNK_OVERHEAD;
start = chunk2mem(q);
}
else {
used = 0;
if (is_small(sz)) {
start = (void*)((char*)q + sizeof(struct malloc_chunk));
}
else {
start = (void*)((char*)q + sizeof(struct malloc_tree_chunk));
}
}
if (start < (void*)next)
handler(start, next, used, arg);
if (q == top)
break;
q = next;
}
}
}
}
#endif
#if !ONLY_MSPACES
void* dlrealloc(void* oldmem, size_t bytes) {
void* mem = 0;
if (oldmem == 0) {
mem = dlmalloc(bytes);
}
else if (bytes >= MAX_REQUEST) {
MALLOC_FAILURE_ACTION;
}
#ifdef REALLOC_ZERO_BYTES_FREES
else if (bytes == 0) {
dlfree(oldmem);
}
#endif
else {
size_t nb = request2size(bytes);
mchunkptr oldp = mem2chunk(oldmem);
#if ! FOOTERS
mstate m = gm;
#else
mstate m = get_mstate_for(oldp);
if (!ok_magic(m)) {
USAGE_ERROR_ACTION(m, oldmem);
return 0;
}
#endif
if (!PREACTION(m)) {
mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1);
POSTACTION(m);
if (newp != 0) {
check_inuse_chunk(m, newp);
mem = chunk2mem(newp);
}
else {
mem = internal_malloc(m, bytes);
if (mem != 0) {
size_t oc = chunksize(oldp) - overhead_for(oldp);
memcpy(mem, oldmem, (oc < bytes)? oc : bytes);
internal_free(m, oldmem);
}
}
}
}
return mem;
}
void* dlrealloc_in_place(void* oldmem, size_t bytes) {
void* mem = 0;
if (oldmem != 0) {
if (bytes >= MAX_REQUEST) {
MALLOC_FAILURE_ACTION;
}
else {
size_t nb = request2size(bytes);
mchunkptr oldp = mem2chunk(oldmem);
#if ! FOOTERS
mstate m = gm;
#else
mstate m = get_mstate_for(oldp);
if (!ok_magic(m)) {
USAGE_ERROR_ACTION(m, oldmem);
return 0;
}
#endif
if (!PREACTION(m)) {
mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0);
POSTACTION(m);
if (newp == oldp) {
check_inuse_chunk(m, newp);
mem = oldmem;
}
}
}
}
return mem;
}
void* dlmemalign(size_t alignment, size_t bytes) {
if (alignment <= MALLOC_ALIGNMENT) {
return dlmalloc(bytes);
}
return internal_memalign(gm, alignment, bytes);
}
int dlposix_memalign(void** pp, size_t alignment, size_t bytes) {
void* mem = 0;
if (alignment == MALLOC_ALIGNMENT)
mem = dlmalloc(bytes);
else {
size_t d = alignment / sizeof(void*);
size_t r = alignment % sizeof(void*);
if (r != 0 || d == 0 || (d & (d-SIZE_T_ONE)) != 0)
return EINVAL;
else if (bytes <= MAX_REQUEST - alignment) {
if (alignment < MIN_CHUNK_SIZE)
alignment = MIN_CHUNK_SIZE;
mem = internal_memalign(gm, alignment, bytes);
}
}
if (mem == 0)
return ENOMEM;
else {
*pp = mem;
return 0;
}
}
void* dlvalloc(size_t bytes) {
size_t pagesz;
ensure_initialization();
pagesz = mparams.page_size;
return dlmemalign(pagesz, bytes);
}
void* dlpvalloc(size_t bytes) {
size_t pagesz;
ensure_initialization();
pagesz = mparams.page_size;
return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
}
void** dlindependent_calloc(size_t n_elements, size_t elem_size,
void* chunks[]) {
size_t sz = elem_size;
return ialloc(gm, n_elements, &sz, 3, chunks);
}
void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
void* chunks[]) {
return ialloc(gm, n_elements, sizes, 0, chunks);
}
size_t dlbulk_free(void* array[], size_t nelem) {
return internal_bulk_free(gm, array, nelem);
}
#if MALLOC_INSPECT_ALL
void dlmalloc_inspect_all(void(*handler)(void *start,
void *end,
size_t used_bytes,
void* callback_arg),
void* arg) {
ensure_initialization();
if (!PREACTION(gm)) {
internal_inspect_all(gm, handler, arg);
POSTACTION(gm);
}
}
#endif
int dlmalloc_trim(size_t pad) {
int result = 0;
ensure_initialization();
if (!PREACTION(gm)) {
result = sys_trim(gm, pad);
POSTACTION(gm);
}
return result;
}
size_t dlmalloc_footprint(void) {
return gm->footprint;
}
size_t dlmalloc_max_footprint(void) {
return gm->max_footprint;
}
size_t dlmalloc_footprint_limit(void) {
size_t maf = gm->footprint_limit;
return maf == 0 ? MAX_SIZE_T : maf;
}
size_t dlmalloc_set_footprint_limit(size_t bytes) {
size_t result;
if (bytes == 0)
result = granularity_align(1);
if (bytes == MAX_SIZE_T)
result = 0;
else
result = granularity_align(bytes);
return gm->footprint_limit = result;
}
#if !NO_MALLINFO
struct mallinfo dlmallinfo(void) {
return internal_mallinfo(gm);
}
#endif
#if !NO_MALLOC_STATS
void dlmalloc_stats() {
internal_malloc_stats(gm);
}
#endif
int dlmallopt(int param_number, int value) {
return change_mparam(param_number, value);
}
size_t dlmalloc_usable_size(void* mem) {
if (mem != 0) {
mchunkptr p = mem2chunk(mem);
if (is_inuse(p))
return chunksize(p) - overhead_for(p);
}
return 0;
}
#endif
#if MSPACES
static mstate init_user_mstate(char* tbase, size_t tsize) {
size_t msize = pad_request(sizeof(struct malloc_state));
mchunkptr mn;
mchunkptr msp = align_as_chunk(tbase);
mstate m = (mstate)(chunk2mem(msp));
memset(m, 0, msize);
(void)INITIAL_LOCK(&m->mutex);
msp->head = (msize|INUSE_BITS);
m->seg.base = m->least_addr = tbase;
m->seg.size = m->footprint = m->max_footprint = tsize;
m->magic = mparams.magic;
m->release_checks = MAX_RELEASE_CHECK_RATE;
m->mflags = mparams.default_mflags;
m->extp = 0;
m->exts = 0;
disable_contiguous(m);
init_bins(m);
mn = next_chunk(mem2chunk(m));
init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
check_top_chunk(m, m->top);
return m;
}
mspace create_mspace(size_t capacity, int locked) {
mstate m = 0;
size_t msize;
ensure_initialization();
msize = pad_request(sizeof(struct malloc_state));
if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
size_t rs = ((capacity == 0)? mparams.granularity :
(capacity + TOP_FOOT_SIZE + msize));
size_t tsize = granularity_align(rs);
char* tbase = (char*)(CALL_MMAP(tsize));
if (tbase != CMFAIL) {
m = init_user_mstate(tbase, tsize);
m->seg.sflags = USE_MMAP_BIT;
set_lock(m, locked);
}
}
return (mspace)m;
}
mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
mstate m = 0;
size_t msize;
ensure_initialization();
msize = pad_request(sizeof(struct malloc_state));
if (capacity > msize + TOP_FOOT_SIZE &&
capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
m = init_user_mstate((char*)base, capacity);
m->seg.sflags = EXTERN_BIT;
set_lock(m, locked);
}
return (mspace)m;
}
int mspace_track_large_chunks(mspace msp, int enable) {
int ret = 0;
mstate ms = (mstate)msp;
if (!PREACTION(ms)) {
if (!use_mmap(ms)) {
ret = 1;
}
if (!enable) {
enable_mmap(ms);
} else {
disable_mmap(ms);
}
POSTACTION(ms);
}
return ret;
}
size_t destroy_mspace(mspace msp) {
size_t freed = 0;
mstate ms = (mstate)msp;
if (ok_magic(ms)) {
msegmentptr sp = &ms->seg;
(void)DESTROY_LOCK(&ms->mutex);
while (sp != 0) {
char* base = sp->base;
size_t size = sp->size;
flag_t flag = sp->sflags;
(void)base;
sp = sp->next;
if ((flag & USE_MMAP_BIT) && !(flag & EXTERN_BIT) &&
CALL_MUNMAP(base, size) == 0)
freed += size;
}
}
else {
USAGE_ERROR_ACTION(ms,ms);
}
return freed;
}
void* mspace_malloc(mspace msp, size_t bytes) {
mstate ms = (mstate)msp;
if (!ok_magic(ms)) {
USAGE_ERROR_ACTION(ms,ms);
return 0;
}
if (!PREACTION(ms)) {
void* mem;
size_t nb;
if (bytes <= MAX_SMALL_REQUEST) {
bindex_t idx;
binmap_t smallbits;
nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
idx = small_index(nb);
smallbits = ms->smallmap >> idx;
if ((smallbits & 0x3U) != 0) {
mchunkptr b, p;
idx += ~smallbits & 1;
b = smallbin_at(ms, idx);
p = b->fd;
assert(chunksize(p) == small_index2size(idx));
unlink_first_small_chunk(ms, b, p, idx);
set_inuse_and_pinuse(ms, p, small_index2size(idx));
mem = chunk2mem(p);
check_malloced_chunk(ms, mem, nb);
goto postaction;
}
else if (nb > ms->dvsize) {
if (smallbits != 0) {
mchunkptr b, p, r;
size_t rsize;
bindex_t i;
binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
binmap_t leastbit = least_bit(leftbits);
compute_bit2idx(leastbit, i);
b = smallbin_at(ms, i);
p = b->fd;
assert(chunksize(p) == small_index2size(i));
unlink_first_small_chunk(ms, b, p, i);
rsize = small_index2size(i) - nb;
if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
set_inuse_and_pinuse(ms, p, small_index2size(i));
else {
set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
r = chunk_plus_offset(p, nb);
set_size_and_pinuse_of_free_chunk(r, rsize);
replace_dv(ms, r, rsize);
}
mem = chunk2mem(p);
check_malloced_chunk(ms, mem, nb);
goto postaction;
}
else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
check_malloced_chunk(ms, mem, nb);
goto postaction;
}
}
}
else if (bytes >= MAX_REQUEST)
nb = MAX_SIZE_T;
else {
nb = pad_request(bytes);
if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
check_malloced_chunk(ms, mem, nb);
goto postaction;
}
}
if (nb <= ms->dvsize) {
size_t rsize = ms->dvsize - nb;
mchunkptr p = ms->dv;
if (rsize >= MIN_CHUNK_SIZE) {
mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
ms->dvsize = rsize;
set_size_and_pinuse_of_free_chunk(r, rsize);
set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
}
else {
size_t dvs = ms->dvsize;
ms->dvsize = 0;
ms->dv = 0;
set_inuse_and_pinuse(ms, p, dvs);
}
mem = chunk2mem(p);
check_malloced_chunk(ms, mem, nb);
goto postaction;
}
else if (nb < ms->topsize) {
size_t rsize = ms->topsize -= nb;
mchunkptr p = ms->top;
mchunkptr r = ms->top = chunk_plus_offset(p, nb);
r->head = rsize | PINUSE_BIT;
set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
mem = chunk2mem(p);
check_top_chunk(ms, ms->top);
check_malloced_chunk(ms, mem, nb);
goto postaction;
}
mem = sys_alloc(ms, nb);
postaction:
POSTACTION(ms);
return mem;
}
return 0;
}
void mspace_free(mspace msp, void* mem) {
if (mem != 0) {
mchunkptr p = mem2chunk(mem);
#if FOOTERS
mstate fm = get_mstate_for(p);
(void)msp;
#else
mstate fm = (mstate)msp;
#endif
if (!ok_magic(fm)) {
USAGE_ERROR_ACTION(fm, p);
return;
}
if (!PREACTION(fm)) {
check_inuse_chunk(fm, p);
if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
size_t psize = chunksize(p);
mchunkptr next = chunk_plus_offset(p, psize);
if (!pinuse(p)) {
size_t prevsize = p->prev_foot;
if (is_mmapped(p)) {
psize += prevsize + MMAP_FOOT_PAD;
if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
fm->footprint -= psize;
goto postaction;
}
else {
mchunkptr prev = chunk_minus_offset(p, prevsize);
psize += prevsize;
p = prev;
if (RTCHECK(ok_address(fm, prev))) {
if (p != fm->dv) {
unlink_chunk(fm, p, prevsize);
}
else if ((next->head & INUSE_BITS) == INUSE_BITS) {
fm->dvsize = psize;
set_free_with_pinuse(p, psize, next);
goto postaction;
}
}
else
goto erroraction;
}
}
if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
if (!cinuse(next)) {
if (next == fm->top) {
size_t tsize = fm->topsize += psize;
fm->top = p;
p->head = tsize | PINUSE_BIT;
if (p == fm->dv) {
fm->dv = 0;
fm->dvsize = 0;
}
if (should_trim(fm, tsize))
sys_trim(fm, 0);
goto postaction;
}
else if (next == fm->dv) {
size_t dsize = fm->dvsize += psize;
fm->dv = p;
set_size_and_pinuse_of_free_chunk(p, dsize);
goto postaction;
}
else {
size_t nsize = chunksize(next);
psize += nsize;
unlink_chunk(fm, next, nsize);
set_size_and_pinuse_of_free_chunk(p, psize);
if (p == fm->dv) {
fm->dvsize = psize;
goto postaction;
}
}
}
else
set_free_with_pinuse(p, psize, next);
if (is_small(psize)) {
insert_small_chunk(fm, p, psize);
check_free_chunk(fm, p);
}
else {
tchunkptr tp = (tchunkptr)p;
insert_large_chunk(fm, tp, psize);
check_free_chunk(fm, p);
if (--fm->release_checks == 0)
release_unused_segments(fm);
}
goto postaction;
}
}
erroraction:
USAGE_ERROR_ACTION(fm, p);
postaction:
POSTACTION(fm);
}
}
}
void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
void* mem;
size_t req = 0;
mstate ms = (mstate)msp;
if (!ok_magic(ms)) {
USAGE_ERROR_ACTION(ms,ms);
return 0;
}
if (n_elements != 0) {
req = n_elements * elem_size;
if (((n_elements | elem_size) & ~(size_t)0xffff) &&
(req / n_elements != elem_size))
req = MAX_SIZE_T;
}
mem = internal_malloc(ms, req);
if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
memset(mem, 0, req);
return mem;
}
void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
void* mem = 0;
if (oldmem == 0) {
mem = mspace_malloc(msp, bytes);
}
else if (bytes >= MAX_REQUEST) {
MALLOC_FAILURE_ACTION;
}
#ifdef REALLOC_ZERO_BYTES_FREES
else if (bytes == 0) {
mspace_free(msp, oldmem);
}
#endif
else {
size_t nb = request2size(bytes);
mchunkptr oldp = mem2chunk(oldmem);
#if ! FOOTERS
mstate m = (mstate)msp;
#else
mstate m = get_mstate_for(oldp);
if (!ok_magic(m)) {
USAGE_ERROR_ACTION(m, oldmem);
return 0;
}
#endif
if (!PREACTION(m)) {
mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1);
POSTACTION(m);
if (newp != 0) {
check_inuse_chunk(m, newp);
mem = chunk2mem(newp);
}
else {
mem = mspace_malloc(m, bytes);
if (mem != 0) {
size_t oc = chunksize(oldp) - overhead_for(oldp);
memcpy(mem, oldmem, (oc < bytes)? oc : bytes);
mspace_free(m, oldmem);
}
}
}
}
return mem;
}
void* mspace_realloc_in_place(mspace msp, void* oldmem, size_t bytes) {
void* mem = 0;
if (oldmem != 0) {
if (bytes >= MAX_REQUEST) {
MALLOC_FAILURE_ACTION;
}
else {
size_t nb = request2size(bytes);
mchunkptr oldp = mem2chunk(oldmem);
#if ! FOOTERS
mstate m = (mstate)msp;
#else
mstate m = get_mstate_for(oldp);
(void)msp;
if (!ok_magic(m)) {
USAGE_ERROR_ACTION(m, oldmem);
return 0;
}
#endif
if (!PREACTION(m)) {
mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0);
POSTACTION(m);
if (newp == oldp) {
check_inuse_chunk(m, newp);
mem = oldmem;
}
}
}
}
return mem;
}
void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
mstate ms = (mstate)msp;
if (!ok_magic(ms)) {
USAGE_ERROR_ACTION(ms,ms);
return 0;
}
if (alignment <= MALLOC_ALIGNMENT)
return mspace_malloc(msp, bytes);
return internal_memalign(ms, alignment, bytes);
}
void** mspace_independent_calloc(mspace msp, size_t n_elements,
size_t elem_size, void* chunks[]) {
size_t sz = elem_size;
mstate ms = (mstate)msp;
if (!ok_magic(ms)) {
USAGE_ERROR_ACTION(ms,ms);
return 0;
}
return ialloc(ms, n_elements, &sz, 3, chunks);
}
void** mspace_independent_comalloc(mspace msp, size_t n_elements,
size_t sizes[], void* chunks[]) {
mstate ms = (mstate)msp;
if (!ok_magic(ms)) {
USAGE_ERROR_ACTION(ms,ms);
return 0;
}
return ialloc(ms, n_elements, sizes, 0, chunks);
}
size_t mspace_bulk_free(mspace msp, void* array[], size_t nelem) {
return internal_bulk_free((mstate)msp, array, nelem);
}
#if MALLOC_INSPECT_ALL
void mspace_inspect_all(mspace msp,
void(*handler)(void *start,
void *end,
size_t used_bytes,
void* callback_arg),
void* arg) {
mstate ms = (mstate)msp;
if (ok_magic(ms)) {
if (!PREACTION(ms)) {
internal_inspect_all(ms, handler, arg);
POSTACTION(ms);
}
}
else {
USAGE_ERROR_ACTION(ms,ms);
}
}
#endif
int mspace_trim(mspace msp, size_t pad) {
int result = 0;
mstate ms = (mstate)msp;
if (ok_magic(ms)) {
if (!PREACTION(ms)) {
result = sys_trim(ms, pad);
POSTACTION(ms);
}
}
else {
USAGE_ERROR_ACTION(ms,ms);
}
return result;
}
#if !NO_MALLOC_STATS
void mspace_malloc_stats(mspace msp) {
mstate ms = (mstate)msp;
if (ok_magic(ms)) {
internal_malloc_stats(ms);
}
else {
USAGE_ERROR_ACTION(ms,ms);
}
}
#endif
size_t mspace_footprint(mspace msp) {
size_t result = 0;
mstate ms = (mstate)msp;
if (ok_magic(ms)) {
result = ms->footprint;
}
else {
USAGE_ERROR_ACTION(ms,ms);
}
return result;
}
size_t mspace_max_footprint(mspace msp) {
size_t result = 0;
mstate ms = (mstate)msp;
if (ok_magic(ms)) {
result = ms->max_footprint;
}
else {
USAGE_ERROR_ACTION(ms,ms);
}
return result;
}
size_t mspace_footprint_limit(mspace msp) {
size_t result = 0;
mstate ms = (mstate)msp;
if (ok_magic(ms)) {
size_t maf = ms->footprint_limit;
result = (maf == 0) ? MAX_SIZE_T : maf;
}
else {
USAGE_ERROR_ACTION(ms,ms);
}
return result;
}
size_t mspace_set_footprint_limit(mspace msp, size_t bytes) {
size_t result = 0;
mstate ms = (mstate)msp;
if (ok_magic(ms)) {
if (bytes == 0)
result = granularity_align(1);
if (bytes == MAX_SIZE_T)
result = 0;
else
result = granularity_align(bytes);
ms->footprint_limit = result;
}
else {
USAGE_ERROR_ACTION(ms,ms);
}
return result;
}
#if !NO_MALLINFO
struct mallinfo mspace_mallinfo(mspace msp) {
mstate ms = (mstate)msp;
if (!ok_magic(ms)) {
USAGE_ERROR_ACTION(ms,ms);
}
return internal_mallinfo(ms);
}
#endif
size_t mspace_usable_size(const void* mem) {
if (mem != 0) {
mchunkptr p = mem2chunk(mem);
if (is_inuse(p))
return chunksize(p) - overhead_for(p);
}
return 0;
}
int mspace_mallopt(int param_number, int value) {
return change_mparam(param_number, value);
}
#endif