rustc-ap-rustc_index 654.0.0

Automatically published version of the package `rustc_index` in the rust-lang/rust repository from commit 513a6473d69b3af34e6cdaa4efb288fe5283c3e9 The publishing script for this crate lives at: https://github.com/alexcrichton/rustc-auto-publish
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
use crate::vec::{Idx, IndexVec};
use smallvec::SmallVec;
use std::fmt;
use std::iter;
use std::marker::PhantomData;
use std::mem;
use std::slice;

#[cfg(test)]
mod tests;

pub type Word = u64;
pub const WORD_BYTES: usize = mem::size_of::<Word>();
pub const WORD_BITS: usize = WORD_BYTES * 8;

/// A fixed-size bitset type with a dense representation.
///
/// NOTE: Use [`GrowableBitSet`] if you need support for resizing after creation.
///
/// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
/// just be `usize`.
///
/// All operations that involve an element will panic if the element is equal
/// to or greater than the domain size. All operations that involve two bitsets
/// will panic if the bitsets have differing domain sizes.
///
/// [`GrowableBitSet`]: struct.GrowableBitSet.html
#[derive(Clone, Eq, PartialEq, RustcDecodable, RustcEncodable)]
pub struct BitSet<T: Idx> {
    domain_size: usize,
    words: Vec<Word>,
    marker: PhantomData<T>,
}

impl<T: Idx> BitSet<T> {
    /// Creates a new, empty bitset with a given `domain_size`.
    #[inline]
    pub fn new_empty(domain_size: usize) -> BitSet<T> {
        let num_words = num_words(domain_size);
        BitSet { domain_size, words: vec![0; num_words], marker: PhantomData }
    }

    /// Creates a new, filled bitset with a given `domain_size`.
    #[inline]
    pub fn new_filled(domain_size: usize) -> BitSet<T> {
        let num_words = num_words(domain_size);
        let mut result = BitSet { domain_size, words: vec![!0; num_words], marker: PhantomData };
        result.clear_excess_bits();
        result
    }

    /// Gets the domain size.
    pub fn domain_size(&self) -> usize {
        self.domain_size
    }

    /// Clear all elements.
    #[inline]
    pub fn clear(&mut self) {
        for word in &mut self.words {
            *word = 0;
        }
    }

    /// Clear excess bits in the final word.
    fn clear_excess_bits(&mut self) {
        let num_bits_in_final_word = self.domain_size % WORD_BITS;
        if num_bits_in_final_word > 0 {
            let mask = (1 << num_bits_in_final_word) - 1;
            let final_word_idx = self.words.len() - 1;
            self.words[final_word_idx] &= mask;
        }
    }

    /// Efficiently overwrite `self` with `other`.
    pub fn overwrite(&mut self, other: &BitSet<T>) {
        assert!(self.domain_size == other.domain_size);
        self.words.clone_from_slice(&other.words);
    }

    /// Count the number of set bits in the set.
    pub fn count(&self) -> usize {
        self.words.iter().map(|e| e.count_ones() as usize).sum()
    }

    /// Returns `true` if `self` contains `elem`.
    #[inline]
    pub fn contains(&self, elem: T) -> bool {
        assert!(elem.index() < self.domain_size);
        let (word_index, mask) = word_index_and_mask(elem);
        (self.words[word_index] & mask) != 0
    }

    /// Is `self` is a (non-strict) superset of `other`?
    #[inline]
    pub fn superset(&self, other: &BitSet<T>) -> bool {
        assert_eq!(self.domain_size, other.domain_size);
        self.words.iter().zip(&other.words).all(|(a, b)| (a & b) == *b)
    }

    /// Is the set empty?
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.words.iter().all(|a| *a == 0)
    }

    /// Insert `elem`. Returns whether the set has changed.
    #[inline]
    pub fn insert(&mut self, elem: T) -> bool {
        assert!(elem.index() < self.domain_size);
        let (word_index, mask) = word_index_and_mask(elem);
        let word_ref = &mut self.words[word_index];
        let word = *word_ref;
        let new_word = word | mask;
        *word_ref = new_word;
        new_word != word
    }

    /// Sets all bits to true.
    pub fn insert_all(&mut self) {
        for word in &mut self.words {
            *word = !0;
        }
        self.clear_excess_bits();
    }

    /// Returns `true` if the set has changed.
    #[inline]
    pub fn remove(&mut self, elem: T) -> bool {
        assert!(elem.index() < self.domain_size);
        let (word_index, mask) = word_index_and_mask(elem);
        let word_ref = &mut self.words[word_index];
        let word = *word_ref;
        let new_word = word & !mask;
        *word_ref = new_word;
        new_word != word
    }

    /// Sets `self = self | other` and returns `true` if `self` changed
    /// (i.e., if new bits were added).
    pub fn union(&mut self, other: &impl UnionIntoBitSet<T>) -> bool {
        other.union_into(self)
    }

    /// Sets `self = self - other` and returns `true` if `self` changed.
    /// (i.e., if any bits were removed).
    pub fn subtract(&mut self, other: &impl SubtractFromBitSet<T>) -> bool {
        other.subtract_from(self)
    }

    /// Sets `self = self & other` and return `true` if `self` changed.
    /// (i.e., if any bits were removed).
    pub fn intersect(&mut self, other: &BitSet<T>) -> bool {
        assert_eq!(self.domain_size, other.domain_size);
        bitwise(&mut self.words, &other.words, |a, b| a & b)
    }

    /// Gets a slice of the underlying words.
    pub fn words(&self) -> &[Word] {
        &self.words
    }

    /// Iterates over the indices of set bits in a sorted order.
    #[inline]
    pub fn iter(&self) -> BitIter<'_, T> {
        BitIter::new(&self.words)
    }

    /// Duplicates the set as a hybrid set.
    pub fn to_hybrid(&self) -> HybridBitSet<T> {
        // Note: we currently don't bother trying to make a Sparse set.
        HybridBitSet::Dense(self.to_owned())
    }

    /// Set `self = self | other`. In contrast to `union` returns `true` if the set contains at
    /// least one bit that is not in `other` (i.e. `other` is not a superset of `self`).
    ///
    /// This is an optimization for union of a hybrid bitset.
    fn reverse_union_sparse(&mut self, sparse: &SparseBitSet<T>) -> bool {
        assert!(sparse.domain_size == self.domain_size);
        self.clear_excess_bits();

        let mut not_already = false;
        // Index of the current word not yet merged.
        let mut current_index = 0;
        // Mask of bits that came from the sparse set in the current word.
        let mut new_bit_mask = 0;
        for (word_index, mask) in sparse.iter().map(|x| word_index_and_mask(*x)) {
            // Next bit is in a word not inspected yet.
            if word_index > current_index {
                self.words[current_index] |= new_bit_mask;
                // Were there any bits in the old word that did not occur in the sparse set?
                not_already |= (self.words[current_index] ^ new_bit_mask) != 0;
                // Check all words we skipped for any set bit.
                not_already |= self.words[current_index + 1..word_index].iter().any(|&x| x != 0);
                // Update next word.
                current_index = word_index;
                // Reset bit mask, no bits have been merged yet.
                new_bit_mask = 0;
            }
            // Add bit and mark it as coming from the sparse set.
            // self.words[word_index] |= mask;
            new_bit_mask |= mask;
        }
        self.words[current_index] |= new_bit_mask;
        // Any bits in the last inspected word that were not in the sparse set?
        not_already |= (self.words[current_index] ^ new_bit_mask) != 0;
        // Any bits in the tail? Note `clear_excess_bits` before.
        not_already |= self.words[current_index + 1..].iter().any(|&x| x != 0);

        not_already
    }
}

/// This is implemented by all the bitsets so that BitSet::union() can be
/// passed any type of bitset.
pub trait UnionIntoBitSet<T: Idx> {
    // Performs `other = other | self`.
    fn union_into(&self, other: &mut BitSet<T>) -> bool;
}

/// This is implemented by all the bitsets so that BitSet::subtract() can be
/// passed any type of bitset.
pub trait SubtractFromBitSet<T: Idx> {
    // Performs `other = other - self`.
    fn subtract_from(&self, other: &mut BitSet<T>) -> bool;
}

impl<T: Idx> UnionIntoBitSet<T> for BitSet<T> {
    fn union_into(&self, other: &mut BitSet<T>) -> bool {
        assert_eq!(self.domain_size, other.domain_size);
        bitwise(&mut other.words, &self.words, |a, b| a | b)
    }
}

impl<T: Idx> SubtractFromBitSet<T> for BitSet<T> {
    fn subtract_from(&self, other: &mut BitSet<T>) -> bool {
        assert_eq!(self.domain_size, other.domain_size);
        bitwise(&mut other.words, &self.words, |a, b| a & !b)
    }
}

impl<T: Idx> fmt::Debug for BitSet<T> {
    fn fmt(&self, w: &mut fmt::Formatter<'_>) -> fmt::Result {
        w.debug_list().entries(self.iter()).finish()
    }
}

impl<T: Idx> ToString for BitSet<T> {
    fn to_string(&self) -> String {
        let mut result = String::new();
        let mut sep = '[';

        // Note: this is a little endian printout of bytes.

        // i tracks how many bits we have printed so far.
        let mut i = 0;
        for word in &self.words {
            let mut word = *word;
            for _ in 0..WORD_BYTES {
                // for each byte in `word`:
                let remain = self.domain_size - i;
                // If less than a byte remains, then mask just that many bits.
                let mask = if remain <= 8 { (1 << remain) - 1 } else { 0xFF };
                assert!(mask <= 0xFF);
                let byte = word & mask;

                result.push_str(&format!("{}{:02x}", sep, byte));

                if remain <= 8 {
                    break;
                }
                word >>= 8;
                i += 8;
                sep = '-';
            }
            sep = '|';
        }
        result.push(']');

        result
    }
}

pub struct BitIter<'a, T: Idx> {
    /// A copy of the current word, but with any already-visited bits cleared.
    /// (This lets us use `trailing_zeros()` to find the next set bit.) When it
    /// is reduced to 0, we move onto the next word.
    word: Word,

    /// The offset (measured in bits) of the current word.
    offset: usize,

    /// Underlying iterator over the words.
    iter: slice::Iter<'a, Word>,

    marker: PhantomData<T>,
}

impl<'a, T: Idx> BitIter<'a, T> {
    #[inline]
    fn new(words: &'a [Word]) -> BitIter<'a, T> {
        // We initialize `word` and `offset` to degenerate values. On the first
        // call to `next()` we will fall through to getting the first word from
        // `iter`, which sets `word` to the first word (if there is one) and
        // `offset` to 0. Doing it this way saves us from having to maintain
        // additional state about whether we have started.
        BitIter {
            word: 0,
            offset: usize::MAX - (WORD_BITS - 1),
            iter: words.iter(),
            marker: PhantomData,
        }
    }
}

impl<'a, T: Idx> Iterator for BitIter<'a, T> {
    type Item = T;
    fn next(&mut self) -> Option<T> {
        loop {
            if self.word != 0 {
                // Get the position of the next set bit in the current word,
                // then clear the bit.
                let bit_pos = self.word.trailing_zeros() as usize;
                let bit = 1 << bit_pos;
                self.word ^= bit;
                return Some(T::new(bit_pos + self.offset));
            }

            // Move onto the next word. `wrapping_add()` is needed to handle
            // the degenerate initial value given to `offset` in `new()`.
            let word = self.iter.next()?;
            self.word = *word;
            self.offset = self.offset.wrapping_add(WORD_BITS);
        }
    }
}

#[inline]
fn bitwise<Op>(out_vec: &mut [Word], in_vec: &[Word], op: Op) -> bool
where
    Op: Fn(Word, Word) -> Word,
{
    assert_eq!(out_vec.len(), in_vec.len());
    let mut changed = false;
    for (out_elem, in_elem) in out_vec.iter_mut().zip(in_vec.iter()) {
        let old_val = *out_elem;
        let new_val = op(old_val, *in_elem);
        *out_elem = new_val;
        changed |= old_val != new_val;
    }
    changed
}

const SPARSE_MAX: usize = 8;

/// A fixed-size bitset type with a sparse representation and a maximum of
/// `SPARSE_MAX` elements. The elements are stored as a sorted `SmallVec` with
/// no duplicates; although `SmallVec` can spill its elements to the heap, that
/// never happens within this type because of the `SPARSE_MAX` limit.
///
/// This type is used by `HybridBitSet`; do not use directly.
#[derive(Clone, Debug)]
pub struct SparseBitSet<T: Idx> {
    domain_size: usize,
    elems: SmallVec<[T; SPARSE_MAX]>,
}

impl<T: Idx> SparseBitSet<T> {
    fn new_empty(domain_size: usize) -> Self {
        SparseBitSet { domain_size, elems: SmallVec::new() }
    }

    fn len(&self) -> usize {
        self.elems.len()
    }

    fn is_empty(&self) -> bool {
        self.elems.len() == 0
    }

    fn contains(&self, elem: T) -> bool {
        assert!(elem.index() < self.domain_size);
        self.elems.contains(&elem)
    }

    fn insert(&mut self, elem: T) -> bool {
        assert!(elem.index() < self.domain_size);
        let changed = if let Some(i) = self.elems.iter().position(|&e| e >= elem) {
            if self.elems[i] == elem {
                // `elem` is already in the set.
                false
            } else {
                // `elem` is smaller than one or more existing elements.
                self.elems.insert(i, elem);
                true
            }
        } else {
            // `elem` is larger than all existing elements.
            self.elems.push(elem);
            true
        };
        assert!(self.len() <= SPARSE_MAX);
        changed
    }

    fn remove(&mut self, elem: T) -> bool {
        assert!(elem.index() < self.domain_size);
        if let Some(i) = self.elems.iter().position(|&e| e == elem) {
            self.elems.remove(i);
            true
        } else {
            false
        }
    }

    fn to_dense(&self) -> BitSet<T> {
        let mut dense = BitSet::new_empty(self.domain_size);
        for elem in self.elems.iter() {
            dense.insert(*elem);
        }
        dense
    }

    fn iter(&self) -> slice::Iter<'_, T> {
        self.elems.iter()
    }
}

impl<T: Idx> UnionIntoBitSet<T> for SparseBitSet<T> {
    fn union_into(&self, other: &mut BitSet<T>) -> bool {
        assert_eq!(self.domain_size, other.domain_size);
        let mut changed = false;
        for elem in self.iter() {
            changed |= other.insert(*elem);
        }
        changed
    }
}

impl<T: Idx> SubtractFromBitSet<T> for SparseBitSet<T> {
    fn subtract_from(&self, other: &mut BitSet<T>) -> bool {
        assert_eq!(self.domain_size, other.domain_size);
        let mut changed = false;
        for elem in self.iter() {
            changed |= other.remove(*elem);
        }
        changed
    }
}

/// A fixed-size bitset type with a hybrid representation: sparse when there
/// are up to a `SPARSE_MAX` elements in the set, but dense when there are more
/// than `SPARSE_MAX`.
///
/// This type is especially efficient for sets that typically have a small
/// number of elements, but a large `domain_size`, and are cleared frequently.
///
/// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
/// just be `usize`.
///
/// All operations that involve an element will panic if the element is equal
/// to or greater than the domain size. All operations that involve two bitsets
/// will panic if the bitsets have differing domain sizes.
#[derive(Clone, Debug)]
pub enum HybridBitSet<T: Idx> {
    Sparse(SparseBitSet<T>),
    Dense(BitSet<T>),
}

impl<T: Idx> HybridBitSet<T> {
    pub fn new_empty(domain_size: usize) -> Self {
        HybridBitSet::Sparse(SparseBitSet::new_empty(domain_size))
    }

    fn domain_size(&self) -> usize {
        match self {
            HybridBitSet::Sparse(sparse) => sparse.domain_size,
            HybridBitSet::Dense(dense) => dense.domain_size,
        }
    }

    pub fn clear(&mut self) {
        let domain_size = self.domain_size();
        *self = HybridBitSet::new_empty(domain_size);
    }

    pub fn contains(&self, elem: T) -> bool {
        match self {
            HybridBitSet::Sparse(sparse) => sparse.contains(elem),
            HybridBitSet::Dense(dense) => dense.contains(elem),
        }
    }

    pub fn superset(&self, other: &HybridBitSet<T>) -> bool {
        match (self, other) {
            (HybridBitSet::Dense(self_dense), HybridBitSet::Dense(other_dense)) => {
                self_dense.superset(other_dense)
            }
            _ => {
                assert!(self.domain_size() == other.domain_size());
                other.iter().all(|elem| self.contains(elem))
            }
        }
    }

    pub fn is_empty(&self) -> bool {
        match self {
            HybridBitSet::Sparse(sparse) => sparse.is_empty(),
            HybridBitSet::Dense(dense) => dense.is_empty(),
        }
    }

    pub fn insert(&mut self, elem: T) -> bool {
        // No need to check `elem` against `self.domain_size` here because all
        // the match cases check it, one way or another.
        match self {
            HybridBitSet::Sparse(sparse) if sparse.len() < SPARSE_MAX => {
                // The set is sparse and has space for `elem`.
                sparse.insert(elem)
            }
            HybridBitSet::Sparse(sparse) if sparse.contains(elem) => {
                // The set is sparse and does not have space for `elem`, but
                // that doesn't matter because `elem` is already present.
                false
            }
            HybridBitSet::Sparse(sparse) => {
                // The set is sparse and full. Convert to a dense set.
                let mut dense = sparse.to_dense();
                let changed = dense.insert(elem);
                assert!(changed);
                *self = HybridBitSet::Dense(dense);
                changed
            }
            HybridBitSet::Dense(dense) => dense.insert(elem),
        }
    }

    pub fn insert_all(&mut self) {
        let domain_size = self.domain_size();
        match self {
            HybridBitSet::Sparse(_) => {
                *self = HybridBitSet::Dense(BitSet::new_filled(domain_size));
            }
            HybridBitSet::Dense(dense) => dense.insert_all(),
        }
    }

    pub fn remove(&mut self, elem: T) -> bool {
        // Note: we currently don't bother going from Dense back to Sparse.
        match self {
            HybridBitSet::Sparse(sparse) => sparse.remove(elem),
            HybridBitSet::Dense(dense) => dense.remove(elem),
        }
    }

    pub fn union(&mut self, other: &HybridBitSet<T>) -> bool {
        match self {
            HybridBitSet::Sparse(self_sparse) => {
                match other {
                    HybridBitSet::Sparse(other_sparse) => {
                        // Both sets are sparse. Add the elements in
                        // `other_sparse` to `self` one at a time. This
                        // may or may not cause `self` to be densified.
                        assert_eq!(self.domain_size(), other.domain_size());
                        let mut changed = false;
                        for elem in other_sparse.iter() {
                            changed |= self.insert(*elem);
                        }
                        changed
                    }
                    HybridBitSet::Dense(other_dense) => {
                        // `self` is sparse and `other` is dense. To
                        // merge them, we have two available strategies:
                        // * Densify `self` then merge other
                        // * Clone other then integrate bits from `self`
                        // The second strategy requires dedicated method
                        // since the usual `union` returns the wrong
                        // result. In the dedicated case the computation
                        // is slightly faster if the bits of the sparse
                        // bitset map to only few words of the dense
                        // representation, i.e. indices are near each
                        // other.
                        //
                        // Benchmarking seems to suggest that the second
                        // option is worth it.
                        let mut new_dense = other_dense.clone();
                        let changed = new_dense.reverse_union_sparse(self_sparse);
                        *self = HybridBitSet::Dense(new_dense);
                        changed
                    }
                }
            }

            HybridBitSet::Dense(self_dense) => self_dense.union(other),
        }
    }

    /// Converts to a dense set, consuming itself in the process.
    pub fn to_dense(self) -> BitSet<T> {
        match self {
            HybridBitSet::Sparse(sparse) => sparse.to_dense(),
            HybridBitSet::Dense(dense) => dense,
        }
    }

    pub fn iter(&self) -> HybridIter<'_, T> {
        match self {
            HybridBitSet::Sparse(sparse) => HybridIter::Sparse(sparse.iter()),
            HybridBitSet::Dense(dense) => HybridIter::Dense(dense.iter()),
        }
    }
}

impl<T: Idx> UnionIntoBitSet<T> for HybridBitSet<T> {
    fn union_into(&self, other: &mut BitSet<T>) -> bool {
        match self {
            HybridBitSet::Sparse(sparse) => sparse.union_into(other),
            HybridBitSet::Dense(dense) => dense.union_into(other),
        }
    }
}

impl<T: Idx> SubtractFromBitSet<T> for HybridBitSet<T> {
    fn subtract_from(&self, other: &mut BitSet<T>) -> bool {
        match self {
            HybridBitSet::Sparse(sparse) => sparse.subtract_from(other),
            HybridBitSet::Dense(dense) => dense.subtract_from(other),
        }
    }
}

pub enum HybridIter<'a, T: Idx> {
    Sparse(slice::Iter<'a, T>),
    Dense(BitIter<'a, T>),
}

impl<'a, T: Idx> Iterator for HybridIter<'a, T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        match self {
            HybridIter::Sparse(sparse) => sparse.next().copied(),
            HybridIter::Dense(dense) => dense.next(),
        }
    }
}

/// A resizable bitset type with a dense representation.
///
/// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
/// just be `usize`.
///
/// All operations that involve an element will panic if the element is equal
/// to or greater than the domain size.
#[derive(Clone, Debug, PartialEq)]
pub struct GrowableBitSet<T: Idx> {
    bit_set: BitSet<T>,
}

impl<T: Idx> GrowableBitSet<T> {
    /// Ensure that the set can hold at least `min_domain_size` elements.
    pub fn ensure(&mut self, min_domain_size: usize) {
        if self.bit_set.domain_size < min_domain_size {
            self.bit_set.domain_size = min_domain_size;
        }

        let min_num_words = num_words(min_domain_size);
        if self.bit_set.words.len() < min_num_words {
            self.bit_set.words.resize(min_num_words, 0)
        }
    }

    pub fn new_empty() -> GrowableBitSet<T> {
        GrowableBitSet { bit_set: BitSet::new_empty(0) }
    }

    pub fn with_capacity(capacity: usize) -> GrowableBitSet<T> {
        GrowableBitSet { bit_set: BitSet::new_empty(capacity) }
    }

    /// Returns `true` if the set has changed.
    #[inline]
    pub fn insert(&mut self, elem: T) -> bool {
        self.ensure(elem.index() + 1);
        self.bit_set.insert(elem)
    }

    #[inline]
    pub fn contains(&self, elem: T) -> bool {
        let (word_index, mask) = word_index_and_mask(elem);
        if let Some(word) = self.bit_set.words.get(word_index) { (word & mask) != 0 } else { false }
    }
}

/// A fixed-size 2D bit matrix type with a dense representation.
///
/// `R` and `C` are index types used to identify rows and columns respectively;
/// typically newtyped `usize` wrappers, but they can also just be `usize`.
///
/// All operations that involve a row and/or column index will panic if the
/// index exceeds the relevant bound.
#[derive(Clone, Debug, Eq, PartialEq, RustcDecodable, RustcEncodable)]
pub struct BitMatrix<R: Idx, C: Idx> {
    num_rows: usize,
    num_columns: usize,
    words: Vec<Word>,
    marker: PhantomData<(R, C)>,
}

impl<R: Idx, C: Idx> BitMatrix<R, C> {
    /// Creates a new `rows x columns` matrix, initially empty.
    pub fn new(num_rows: usize, num_columns: usize) -> BitMatrix<R, C> {
        // For every element, we need one bit for every other
        // element. Round up to an even number of words.
        let words_per_row = num_words(num_columns);
        BitMatrix {
            num_rows,
            num_columns,
            words: vec![0; num_rows * words_per_row],
            marker: PhantomData,
        }
    }

    /// Creates a new matrix, with `row` used as the value for every row.
    pub fn from_row_n(row: &BitSet<C>, num_rows: usize) -> BitMatrix<R, C> {
        let num_columns = row.domain_size();
        let words_per_row = num_words(num_columns);
        assert_eq!(words_per_row, row.words().len());
        BitMatrix {
            num_rows,
            num_columns,
            words: iter::repeat(row.words()).take(num_rows).flatten().cloned().collect(),
            marker: PhantomData,
        }
    }

    pub fn rows(&self) -> impl Iterator<Item = R> {
        (0..self.num_rows).map(R::new)
    }

    /// The range of bits for a given row.
    fn range(&self, row: R) -> (usize, usize) {
        let words_per_row = num_words(self.num_columns);
        let start = row.index() * words_per_row;
        (start, start + words_per_row)
    }

    /// Sets the cell at `(row, column)` to true. Put another way, insert
    /// `column` to the bitset for `row`.
    ///
    /// Returns `true` if this changed the matrix.
    pub fn insert(&mut self, row: R, column: C) -> bool {
        assert!(row.index() < self.num_rows && column.index() < self.num_columns);
        let (start, _) = self.range(row);
        let (word_index, mask) = word_index_and_mask(column);
        let words = &mut self.words[..];
        let word = words[start + word_index];
        let new_word = word | mask;
        words[start + word_index] = new_word;
        word != new_word
    }

    /// Do the bits from `row` contain `column`? Put another way, is
    /// the matrix cell at `(row, column)` true?  Put yet another way,
    /// if the matrix represents (transitive) reachability, can
    /// `row` reach `column`?
    pub fn contains(&self, row: R, column: C) -> bool {
        assert!(row.index() < self.num_rows && column.index() < self.num_columns);
        let (start, _) = self.range(row);
        let (word_index, mask) = word_index_and_mask(column);
        (self.words[start + word_index] & mask) != 0
    }

    /// Returns those indices that are true in rows `a` and `b`. This
    /// is an O(n) operation where `n` is the number of elements
    /// (somewhat independent from the actual size of the
    /// intersection, in particular).
    pub fn intersect_rows(&self, row1: R, row2: R) -> Vec<C> {
        assert!(row1.index() < self.num_rows && row2.index() < self.num_rows);
        let (row1_start, row1_end) = self.range(row1);
        let (row2_start, row2_end) = self.range(row2);
        let mut result = Vec::with_capacity(self.num_columns);
        for (base, (i, j)) in (row1_start..row1_end).zip(row2_start..row2_end).enumerate() {
            let mut v = self.words[i] & self.words[j];
            for bit in 0..WORD_BITS {
                if v == 0 {
                    break;
                }
                if v & 0x1 != 0 {
                    result.push(C::new(base * WORD_BITS + bit));
                }
                v >>= 1;
            }
        }
        result
    }

    /// Adds the bits from row `read` to the bits from row `write`, and
    /// returns `true` if anything changed.
    ///
    /// This is used when computing transitive reachability because if
    /// you have an edge `write -> read`, because in that case
    /// `write` can reach everything that `read` can (and
    /// potentially more).
    pub fn union_rows(&mut self, read: R, write: R) -> bool {
        assert!(read.index() < self.num_rows && write.index() < self.num_rows);
        let (read_start, read_end) = self.range(read);
        let (write_start, write_end) = self.range(write);
        let words = &mut self.words[..];
        let mut changed = false;
        for (read_index, write_index) in (read_start..read_end).zip(write_start..write_end) {
            let word = words[write_index];
            let new_word = word | words[read_index];
            words[write_index] = new_word;
            changed |= word != new_word;
        }
        changed
    }

    /// Adds the bits from `with` to the bits from row `write`, and
    /// returns `true` if anything changed.
    pub fn union_row_with(&mut self, with: &BitSet<C>, write: R) -> bool {
        assert!(write.index() < self.num_rows);
        assert_eq!(with.domain_size(), self.num_columns);
        let (write_start, write_end) = self.range(write);
        let mut changed = false;
        for (read_index, write_index) in (0..with.words().len()).zip(write_start..write_end) {
            let word = self.words[write_index];
            let new_word = word | with.words()[read_index];
            self.words[write_index] = new_word;
            changed |= word != new_word;
        }
        changed
    }

    /// Sets every cell in `row` to true.
    pub fn insert_all_into_row(&mut self, row: R) {
        assert!(row.index() < self.num_rows);
        let (start, end) = self.range(row);
        let words = &mut self.words[..];
        for index in start..end {
            words[index] = !0;
        }
        self.clear_excess_bits(row);
    }

    /// Clear excess bits in the final word of the row.
    fn clear_excess_bits(&mut self, row: R) {
        let num_bits_in_final_word = self.num_columns % WORD_BITS;
        if num_bits_in_final_word > 0 {
            let mask = (1 << num_bits_in_final_word) - 1;
            let (_, end) = self.range(row);
            let final_word_idx = end - 1;
            self.words[final_word_idx] &= mask;
        }
    }

    /// Gets a slice of the underlying words.
    pub fn words(&self) -> &[Word] {
        &self.words
    }

    /// Iterates through all the columns set to true in a given row of
    /// the matrix.
    pub fn iter(&self, row: R) -> BitIter<'_, C> {
        assert!(row.index() < self.num_rows);
        let (start, end) = self.range(row);
        BitIter::new(&self.words[start..end])
    }

    /// Returns the number of elements in `row`.
    pub fn count(&self, row: R) -> usize {
        let (start, end) = self.range(row);
        self.words[start..end].iter().map(|e| e.count_ones() as usize).sum()
    }
}

/// A fixed-column-size, variable-row-size 2D bit matrix with a moderately
/// sparse representation.
///
/// Initially, every row has no explicit representation. If any bit within a
/// row is set, the entire row is instantiated as `Some(<HybridBitSet>)`.
/// Furthermore, any previously uninstantiated rows prior to it will be
/// instantiated as `None`. Those prior rows may themselves become fully
/// instantiated later on if any of their bits are set.
///
/// `R` and `C` are index types used to identify rows and columns respectively;
/// typically newtyped `usize` wrappers, but they can also just be `usize`.
#[derive(Clone, Debug)]
pub struct SparseBitMatrix<R, C>
where
    R: Idx,
    C: Idx,
{
    num_columns: usize,
    rows: IndexVec<R, Option<HybridBitSet<C>>>,
}

impl<R: Idx, C: Idx> SparseBitMatrix<R, C> {
    /// Creates a new empty sparse bit matrix with no rows or columns.
    pub fn new(num_columns: usize) -> Self {
        Self { num_columns, rows: IndexVec::new() }
    }

    fn ensure_row(&mut self, row: R) -> &mut HybridBitSet<C> {
        // Instantiate any missing rows up to and including row `row` with an
        // empty HybridBitSet.
        self.rows.ensure_contains_elem(row, || None);

        // Then replace row `row` with a full HybridBitSet if necessary.
        let num_columns = self.num_columns;
        self.rows[row].get_or_insert_with(|| HybridBitSet::new_empty(num_columns))
    }

    /// Sets the cell at `(row, column)` to true. Put another way, insert
    /// `column` to the bitset for `row`.
    ///
    /// Returns `true` if this changed the matrix.
    pub fn insert(&mut self, row: R, column: C) -> bool {
        self.ensure_row(row).insert(column)
    }

    /// Do the bits from `row` contain `column`? Put another way, is
    /// the matrix cell at `(row, column)` true?  Put yet another way,
    /// if the matrix represents (transitive) reachability, can
    /// `row` reach `column`?
    pub fn contains(&self, row: R, column: C) -> bool {
        self.row(row).map_or(false, |r| r.contains(column))
    }

    /// Adds the bits from row `read` to the bits from row `write`, and
    /// returns `true` if anything changed.
    ///
    /// This is used when computing transitive reachability because if
    /// you have an edge `write -> read`, because in that case
    /// `write` can reach everything that `read` can (and
    /// potentially more).
    pub fn union_rows(&mut self, read: R, write: R) -> bool {
        if read == write || self.row(read).is_none() {
            return false;
        }

        self.ensure_row(write);
        if let (Some(read_row), Some(write_row)) = self.rows.pick2_mut(read, write) {
            write_row.union(read_row)
        } else {
            unreachable!()
        }
    }

    /// Union a row, `from`, into the `into` row.
    pub fn union_into_row(&mut self, into: R, from: &HybridBitSet<C>) -> bool {
        self.ensure_row(into).union(from)
    }

    /// Insert all bits in the given row.
    pub fn insert_all_into_row(&mut self, row: R) {
        self.ensure_row(row).insert_all();
    }

    pub fn rows(&self) -> impl Iterator<Item = R> {
        self.rows.indices()
    }

    /// Iterates through all the columns set to true in a given row of
    /// the matrix.
    pub fn iter<'a>(&'a self, row: R) -> impl Iterator<Item = C> + 'a {
        self.row(row).into_iter().flat_map(|r| r.iter())
    }

    pub fn row(&self, row: R) -> Option<&HybridBitSet<C>> {
        if let Some(Some(row)) = self.rows.get(row) { Some(row) } else { None }
    }
}

#[inline]
fn num_words<T: Idx>(domain_size: T) -> usize {
    (domain_size.index() + WORD_BITS - 1) / WORD_BITS
}

#[inline]
fn word_index_and_mask<T: Idx>(elem: T) -> (usize, Word) {
    let elem = elem.index();
    let word_index = elem / WORD_BITS;
    let mask = 1 << (elem % WORD_BITS);
    (word_index, mask)
}