
Schnorrkel Library Review

Web 3.0 Technologies Stiftung
July 24, 2019 – Version 1.0

Prepared for
Jeff Burdges
Peter Czaban

Prepared by
Ava Howell
Thomas Pornin



Executive Summary
Synopsis
During the summer of 2019, Web 3.0 Technologies en-
gaged NCC Group to conduct a cryptographic security
review of the Schnorrkel rust crate. Schnorrkel imple-
ments Schnorr signatures, verifiable random functions
(VRFs), hierarchical deterministic key derivation, and
multisignatures. It operates over the ristretto255
group, a prime order elliptic curve group constructed on
top of Curve25519. The entirety of the Schnorrkel crate
and the behavior of its dependencies were in scope.

Scope
• Schnorrkel Crate The main crate was in primary
scope for the assessment. This included checking
the correctness and implementation soundness of
all of the functionality implemented in the crate.
The current state of the Schnorrkel repository was
extracted at the start of the engagement and used for
the review.1

• Primary Dependencies Schnorrkel’s primary depen-
dencies were reviewed for correctness to the extent
that they were used by Schnorrkel. These included:
– clear_on_drop, used to remove secret key mate-

rial from memory once no longer needed.
– dalek-cryptography/merlin, used to compute

transcripts and do hashing operations.
– dalek-cryptography/subtle, used to perform

constant-time comparisons and choices.
– rand, used as an entropy source.

Testingwas performed through source code review over
the course of 10 person-days.

Key Findings
The assessment revealed a number of information and
low-severity issues related to cryptographic defense-in-
depth, best practices, and misuse resistance. These
included:

• API Callers May Pass Improperly Constructed
CSPRNG to Key Generation. Due to the design of the
Schnorrkel key generation API, callers must properly
construct the CSPRNG to be used for key generation.
This may lead to mis-use, since there are a broad
variety of ways to improperly construct a CSPRNG.
See finding NCC-1905_Web3Foundation_Schnorrkel-
001 on page 5.

• Possibly Unreliable Clearing of Secrets in Memory.
Automatic clearing of secret values in RAM before
deallocation relies on an external crate that is not

robust against future compiler versions or usage
contexts, for which the clearing may silently fail to be
applied. See finding NCC-1905_Web3Foundation_Sch
norrkel-006 on page 8.

• Signatures are not Resilient to Collisions on the
Hash Function. Due to the ordering of the elements
hashed to compute r, the signature scheme is not
robust to collision attacks against the hash function.
This is a trade-off between security against future
attacks on the hash function, and general usability
of the library, especially for streamed contents.
See finding NCC-1905_Web3Foundation_Schnorrkel-
003 on page 11.

Strategic Recommendations
• Consider fully specifying the cryptographic opera-
tions. In particular, all hashing is performed through
the Transcript abstraction, in which every element
is injected with a label; in order to allow third-
party interoperable implementations of the same
operations, the exact order of injection of elements,
and their exact labels, should be documented. A
full specification would also allow analysis of the
cryptographic protocol independently of the exact
implementation.

1https://github.com/w3f/schnorrkel/tree/849686ada82063a1e3e629c3128eda6d9564c4bc

2 | Web 3.0 Technologies Stiftung Schnorrkel Library Review Web 3.0 Technologies Stiftung / NCC Group Confidential

https://github.com/w3f/schnorrkel/tree/849686ada82063a1e3e629c3128eda6d9564c4bc


Dashboard
Target Metadata
Name Schnorrkel
Type Library
Platforms Rust

Engagement Data
Type Source Code Review
Method Code-assisted
Dates 2019-07-15 to 2019-07-23
Consultants 2
Level of effort 10 person-days

Finding Breakdown
Critical Risk issues 0
High Risk issues 0
Medium Risk issues 0
Low Risk issues 4
Informational issues 2
Total issues 6

Category Breakdown
Cryptography 6

Key
Critical High Medium Low Informational

3 | Web 3.0 Technologies Stiftung Schnorrkel Library Review Web 3.0 Technologies Stiftung / NCC Group Confidential



Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the severity of the risk, application’s
exposure and user population, technical difficulty of exploitation, and other factors. For an explanation of NCC Group’s
risk rating and finding categorization, see Appendix A on page 13.

Title ID Risk
API Callers May Pass Improperly Constructed CSPRNG to Key Generation 001 Low
Some Internal Functions Are Needlessly Public 004 Low
Incomplete Or Misleading Documentation 005 Low
Possibly Unreliable Clearing of Secrets in Memory 006 Low
Inconsistent Transcript Labels 002 Informational
Signatures are not Resilient to Collisions on the Hash Function 003 Informational

4 | Web 3.0 Technologies Stiftung Schnorrkel Library Review Web 3.0 Technologies Stiftung / NCC Group Confidential



Finding Details
Finding API Callers May Pass Improperly Constructed CSPRNG to Key Generation

Risk Low Impact: Low, Exploitability: None

Identifier NCC-1905_Web3Foundation_Schnorrkel-001

Category Cryptography

Location keys.rs

Impact Users may incorrectly configure and pass objects which implement the rand::Rng trait and
contain the CryptoRngmarker, but are not actually cryptographically secure pseudo random
number generators. This may undermine key generation by creating predictable keys.

Description The implementations for generating cryptographic key material, KeyPair.generate, Se-
cretKey.generate, MiniSecretKey.generate, take as an argument an object which im-
plements the rand::Rng trait and carries the CryptoRngmarker:

// ...snip... MiniSecretKey

pub fn generate<R>(mut csprng: R) -> MiniSecretKey

where R: CryptoRng + Rng,

{

let mut sk: MiniSecretKey = MiniSecretKey([0u8; 32]);

csprng.fill_bytes(&mut sk.0);

sk
}

// ...snip... SecretKey

pub fn generate<R>(mut csprng: R) -> SecretKey

where R: CryptoRng + Rng,

{

let mut key: [u8; 64] = [0u8; 64];

csprng.fill_bytes(&mut key);

let mut nonce: [u8; 32] = [0u8; 32];

csprng.fill_bytes(&mut nonce);

SecretKey { key: Scalar::from_bytes_mod_order_wide(&key), nonce }

}

This is flawed from a misuse resistance perspective: a caller may choose to implement the
rand::Rng trait with their own behavior, and there are a broad variety of ways to improperly
construct a CSPRNG.

Recommendation Consider changing the API for key generation such that it makes the decision of which RNG
to use for the caller, and defaults to the OS PRNG. A useful design might be to pass a seed
parameter to the function. If seed is empty, use the default CSPRNG (rand::thread_rng).
If a seed is provided, initialize a rand_chacha::ChaChaRng using the provided seed. If no
seed is provided and no default CSPRNG is available, raise an error.

5 | Web 3.0 Technologies Stiftung Schnorrkel Library Review Web 3.0 Technologies Stiftung / NCC Group Confidential



Finding Some Internal Functions Are Needlessly Public

Risk Low Impact: Low, Exploitability: None

Identifier NCC-1905_Web3Foundation_Schnorrkel-004

Category Cryptography

Location scalars.rs

Impact Two internal functions are public, not documented, and behave in a confusing way for po-
tential callers.

Description scalars.rs defines two public functions:

pub fn divide_scalar_bytes_by_cofactor(scalar: &mut [u8; 32]) {

/* ... */

}

pub fn multiply_scalar_bytes_by_cofactor(scalar: &mut [u8; 32]) {

/* ... */

}

Since they are public, they are potentially callable by library users. They do not have explicit
documentation. They, respectively, divide or multiply the provided scalar value (encoded in
little-endian over 32 bytes) by the cofactor, which is the integer 8. The cofactor is the quotient
of the complete curve order by the order of the sub-group in which cryptographic operations
are conventionally made (the Ristretto group has the same order as that sub-group). Due
to the use of the term “cofactor”, library users might infer that the functions multiply and
divide by 8 modulo the curve order, but this is not the case; in fact, the function performs the
multiplication or division over plain integers. In practice, division and multiplication by the
cofactor are left and right shifts by 3 bits, respectively. Extra bits are silently dropped:

• divide_scalar_bytes_by_cofactor() really computes ⌊x/8⌋ for an input scalar value
x.

• multiply_scalar_bytes_by_cofactor() really computes 8x mod 2256 for an input scalar
value x.

These exact behaviors cannot be reliably inferred from the function names only, making the
functions hardly usable by external users.

Recommendation To avoid usage confusion, these internal functions should not be made public. Declaring
them pub(crate) would prevent usage from outside of the crate.

6 | Web 3.0 Technologies Stiftung Schnorrkel Library Review Web 3.0 Technologies Stiftung / NCC Group Confidential



Finding Incomplete Or Misleading Documentation

Risk Low Impact: Low, Exploitability: None

Identifier NCC-1905_Web3Foundation_Schnorrkel-005

Category Cryptography

Location keys.rs:613
points.rs:96
context.rs:214
cert.rs:83
cert.rs:126

Impact The documentation of some public functions is incomplete or misleading, possibly inducing
misuse by library users.

Description In keys.rs:613 and points.rs:96, the documentations of PublicKey.from_bytes() and
RistrettoBoth.from_bytes(), respectively, contain an explicit warning:

/// # Warning

///
/// The caller is responsible for ensuring that the bytes passed into this

/// method actually represent a `curve25519_dalek::ristretto::CompressedRist
retto`
/// and that said compressed point is actually a point on the curve.

This is not actually true: the implementation calls RistrettoBoth.from_compressed(),
which performs decompression by calling the CompressedRistretto.decompress() func-
tion from curve25519-dalek, which dutifully validates that the incoming point is the canon-
ical encoding of a Ristretto element.2 The documentation above may induce library users to
perform extra checks that are not needed, and possibly do so in insecure ways.

In context.rs:214, the SigningContext.xof() function is documented as follows:

/// Initalize an owned signing transcript on a message provided as a hash fu
nction with extensible output

#[inline(always)]

pub fn xof<D: ExtendableOutput>(&self, h: D) -> Transcript {

The documentation does not state how the cryptographic binding is done between the pro-
vided XOF (h) and the returned transcript. The implementation uses exactly 32 bytes from h;
knowing this length is important to assess the cryptographic robustness of that binding.

In cert.rs:83 and cert.rs:126, it is stated that the Keypair.issue_ecqv_cert() and
PublicKey.accept_ecqv_cert() functions work over a digest called h:

/// Aside from the issuer `PublicKey` supplied as `self`, you provide

/// (1) a digest `h` that incorporates both the context and the

/// certificate requester's identity,

However, the actual parameter is called t and is a an object that implements the Signing-
Transcript trait, not a digest value or a classic hash function.
2https://github.com/dalek-cryptography/curve25519-dalek/blob/1.0.3/src/ristretto.rs#L235

7 | Web 3.0 Technologies Stiftung Schnorrkel Library Review Web 3.0 Technologies Stiftung / NCC Group Confidential

https://github.com/dalek-cryptography/curve25519-dalek/blob/1.0.3/src/ristretto.rs#L235


Finding Possibly Unreliable Clearing of Secrets in Memory

Risk Low Impact: Low, Exploitability: None

Identifier NCC-1905_Web3Foundation_Schnorrkel-006

Category Cryptography

Location clear_on_drop crate

Impact If used in a future Rust compiler version, the clearing of secret values from memory might
silently fail, leading to secret values lingering in RAM for longer than expected.

Description When Schnorrkel is done with performing computations with secret values held in temporary
arrays, these arrays are explicitly cleared so that the corresponding bytes no longer contain
any trace of these values. This is considered a best cryptographic practice, since nominally un-
allocated areamay still contain copies of sensitive data which could be gathered by successful
software or hardware exploits in other parts of the application that uses the Schnorrkel
library. Automatic clearing of secrets is a defense-in-depth mechanism that reduces the
temporal window for action of such exploits.

Automatic clearing is difficult to implement: from the point of view of the compiler, temporary
arrays that are about to be released are no longer useful, and any operation that only impacts
the contents of such arrays is prone to be omitted from the compiled output, since it has
no observable consequence in the abstract machine model that the compiler is supposed to
implement. Rust does not provide a guaranteed way to achieve clearing of temporary values,
but it includes std::ptr::write_volatile(),3 which is close:

Rust does not currently have a rigorously and formally defined memory model,
so the precise semantics of what “volatile” means here is subject to change over
time. That being said, the semantics will almost always end up pretty similar to
C11’s definition of volatile.

Since write_volatile() is part of the Rust standard library, chances are that any change of
the compiler that would make write_volatile() semantics substantially diverge from that
of C’s volatile specifier, would be noticed, and a special case added for write_volatile().
Despite the explicit warning about a lack of a formally definedmemorymodel, this is themost
future-robust way to enforce clearing of soon-to-be-released temporary arrays.

Schnorrkel, however, does not use write_volatile(). Instead, it relies on the external
crate clear_on_drop.4 clear_on_drop does not use write_volatile(), mostly because
of perceived performance issues.5 We may note that no actual benchmark was performed;
in the case of Schnorrkel, the cost of writing 32 bytes as 32 individual write operations will
likely be negligible with regards to the cost of any operation on elliptic curve points.

clear_on_dropwill use three distinct mechanisms for automatic clearing, depending on the
abilities of the compilation target:

• If the Rust compiler has the “nightly” features, then a basic clearing is done, followed by
an empty inline assembly block with the target array as explicit dependency. This relies on
the compiler not parsing the assembly code itself, and thus using the stated dependencies;
since the compiler cannot knowwhat the array is used for, it cannot assume that the cleared

3https://doc.rust-lang.org/std/ptr/fn.write_volatile.html
4https://docs.rs/clear_on_drop/0.2.3/clear_on_drop/
5https://github.com/cesarb/clear_on_drop/issues/2#issuecomment-272690027

8 | Web 3.0 Technologies Stiftung Schnorrkel Library Review Web 3.0 Technologies Stiftung / NCC Group Confidential

https://doc.rust-lang.org/std/ptr/fn.write_volatile.html
https://docs.rs/clear_on_drop/0.2.3/clear_on_drop/
https://github.com/cesarb/clear_on_drop/issues/2#issuecomment-272690027


contents are not accessed, and thus cannot optimize the clearing away.
• Otherwise, on the “stable” Rust, if a C compiler is available, an explicit call to a dummy
function implemented in C is applied, for an effect similar to the inline assembly block.

• Otherwise, if using the “stable” Rust and no C compiler is available, then clear_on_dropwill
“attempts to confuse the optimizer through the use of atomic instructions”: the pointer to
the array is converted to a usize valuewhich is thenwrittenwith an AtomicUsize.store()
call on a statically allocated slot.

All three mechanisms may plausibly fail in future compiler versions:

• Using inline assembly relies on the compiler not understanding the contents of that assem-
bly code, in this case not noticing that the inline assembly block is actually empty. While this
is the current state of the LLVM backend used by Rust, this is not a guaranteed feature for
all future times; in C compilers, compilers that parse inline assembly have been known (e.g.
Microsoft’s Visual C, for 32-bit x86 targets). Moreover, the assembler itself might include
an optimization pass; this was the case, for instance, of the SPARC assembler shipping with
SunOS 5.x: the assembler included a peephole optimizer that was applied by default (but
it could be explicitly disabled for some code chunks6).

• A similar case can be made about using a dummy C function, since the C compiler is likely
to use the same backend as the Rust compiler, and, in particular, the same assembler.
Interprocedural optimizations, e.g. as implemented by Intel’s C compiler,7 may also notice
that the dummyC function does nothing, and a posteriori remove the call and the automatic
clearing.

• The confusion induced by the use of an atomic instruction relies on the current state
of the optimizer and is very fragile with regards to future developments. Moreover, on
small embedded systems that are inherently uniprocessor, atomic stores are likely to be
optimized into simple stores (since the hardware would guarantee atomicity for all such
writes) and thus not so confusing for the optimizer.

The main risk here is that clear_on_drop relies on assumptions that may become wrong in
some contexts and/or with future compiler versions, and since this is an external crate, there
is no organizational mechanism that may ensure that clear_on_drop is promptly updated
to account for such new situations. That crate is a one-developer project with low activity and
questionable maintenance reactivity, e.g. the last commit was in 2017, and there are issues
that have been opened more than a year ago and did not meet any action, comment or even
acknowledgement.

Recommendation Replace the invocations of clear_on_dropwith explicit std::ptr::write_volatile() calls,
for better robustness to future compiler versions and library usage contexts.
6https://docs.oracle.com/cd/E19963-01/pdf/821-1607.pdf
7https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-interprocedural-optimization-i
po-options

9 | Web 3.0 Technologies Stiftung Schnorrkel Library Review Web 3.0 Technologies Stiftung / NCC Group Confidential

https://docs.oracle.com/cd/E19963-01/pdf/821-1607.pdf
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-interprocedural-optimization-ipo-options
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-interprocedural-optimization-ipo-options


Finding Inconsistent Transcript Labels

Risk Informational Impact: None, Exploitability: None

Identifier NCC-1905_Web3Foundation_Schnorrkel-002

Category Cryptography

Location musig.rs:182
musig.rs:497

Impact There is no practical impact on the security of the Schnorrkel crate.

Description Throughout the Schnorrkel crate, labels are used to associate metadata with commitments
and challenges. The MuSig protocol specification calls for three domain separated crypto-
graphic hashing functions,Hagg for computing aggregate keysHcom for commitments, and
Hsig for computing Schnorr signatures (that is, computing c = H(X,R,m)).

When computing commitments (Hcom(gr)), where r is a random scalar in Zp, Schnorrkel
uses the following implementation:

fn for_R(R: &CompressedRistretto) -> Commitment {

let mut t = Transcript::new(b"MuSig-commitment");

t.commit_point(b"no\x00",R);

let mut commit = [0u8; COMMITMENT_SIZE];

t.challenge_bytes(b"sign\x00",&mut commit[..]);

Commitment(commit)

}

The label usedhere is sign, which is the same label as usedwhen computing c = Hsig(X,R,m)

in the cosignature stage:

pub fn cosign_stage(mut self) -> MuSig<T,CosignStage> {

// ... snip ...

let a_me = compute_weighting(t0, &self.stage.keypair.borrow().public);

let c = self.t.challenge_scalar(b"sign\x00"); // context, message, A/pu
blic_key, R=rG // NOTE

let s_me = &(&c * &a_me * &self.stage.keypair.borrow().secret.key) + &se
lf.stage.r_me;

// ... snip ...

}

This does not violate the protocol since each transcript will be properly domain separated by
their overall label. However, it represents an inconsistency in the choice of labels used for the
challenges.

One other inconsistency noted was the use of the null terminator \x00 in some labels. Since
merlin prepends proper separators (the label, followed by the data length), this null termina-
tor is not strictly necessary to ensure proper framing.

Recommendation To ensure thatHcom andHsig always remain domain separated and to provide correct tran-
script metadata, each should have distinct labels. Consider updating all labels to remove the
unnecessary null terminator.

10 | Web 3.0 Technologies Stiftung Schnorrkel Library Review Web 3.0 Technologies Stiftung / NCC Group Confidential



Finding Signatures are not Resilient to Collisions on the Hash Function

Risk Informational Impact: Low, Exploitability: None

Identifier NCC-1905_Web3Foundation_Schnorrkel-003

Category Cryptography

Location sign.rs, function SecretKey.sign()

Impact The current Schnorrkel signature implementation allows for easier processing of streamed
data, but is not robust against potential collision attacks on the underlying hash function.

Description The EdDSA signature generation algorithm8 can be described as follows:

• The curve subgroup has prime order q, and a conventional generator is point B.
• The private key is (x, h) where x is a scalar (integer modulo q) and h is a secret seed value.
Public key is A = xB.

• From the messagem, compute: r = H(h ∥ m) mod q

• Compute: R = rB

• Compute: k = H(R ∥ A ∥ m) mod q

• Compute: s = kx+ r mod q

• The signature is (R, s)

The Schnorr signature implemented by Schnorrkel follows the same design, with three main
changes:

• The curve subgroup is replaced with the Ristretto group.
• All hashing is done through the SigningTranscript abstraction, which adds explicit frames
and labels, to avoid any ambiguousness when processing variable-length elements, and to
tie the process to the signature generation.

• The ordering of elements injected into the hash function is different; in Schnorrkel, the
following is performed:
– Per-signature secret is computed as: r = H(m ∥ A ∥ h) mod q (the value h is called

“nonce” in Schnorrkel)
– The hashed message itself is: k = H(m ∥ A ∥ R) mod q

This last change is the subject of this finding. In EdDSA the seed or curve points are injected
in the hash function before the message as part of an explicit defense-in-depth against pos-
sible collision attacks on the hash function such as that presented in following hypothetical
situation:

• The hash function works over its input with a single pass, maintaining an internal finite
state. This is the case of all Merkle-Damgård functions such as MD5, SHA-1, and the SHA-2
family; this also applies to sponge constructions like Keccak/SHA-3.

• An efficient attack is found, that creates collisions on the internal state.
• The attacker can find colliding pairs, in which one value is an innocuous-looking message
for which the attacker can obtain a signature from the signer; the signature value could
then be transported onto the other message of the colliding pair.

That kind of attack has been demonstrated9 in the context of an X.509 certification authority
using the RSA signature algorithm with MD5 as underlying hash function. EdDSA defends
against such attacks by hashing the secret seed, or the per-signature point R, before the
8https://tools.ietf.org/html/rfc8032
9https://www.win.tue.nl/hashclash/rogue-ca/

11 | Web 3.0 Technologies Stiftung Schnorrkel Library Review Web 3.0 Technologies Stiftung / NCC Group Confidential

https://tools.ietf.org/html/rfc8032
https://www.win.tue.nl/hashclash/rogue-ca/


message: these values are not predictable by the attacker, preventing use of precomputed
collisions. This is called collision resilience in the EdDSA specification10; EdDSA provides this
property as long as the “PureEdDSA” variant is used. In essence, if PureEdDSA were to be
used with MD5, it would still be cryptographically unbroken, despite the extreme weakness
of MD5 with regards to collisions.

By injecting themessage first in the hash function calls, Schnorrkel forfeits collision resilience.
The following points should be noted:

• Collision resilience is a defense-in-depth mechanism, meant to ensure survival of existing
signatures in some cases of catastrophic breaks on the underlying hash function. The SHA-
3 competition was enacted because of the known attacks onMD5 and SHA-1, and themain
result of the decade of accumulated research is that the kind of differential paths that lead
to these attacks are unlikely to apply to Keccak, the competition winner (and, arguably, the
SHA-2 functions appear to be also adequately robust in that respect). Moreover, Keccak,
being a sponge function, has a larger internal state than Merkle-Damgård functions (200
bytes for Keccak, vs 32 bytes for SHA-256 or 64 bytes for SHA-512); this should heuristi-
cally make internal state collisions comparatively harder to achieve. Keccak (which powers
STROBE) is at the core of the default Transcript implementation provided by the merlin
crate.

• Injecting the message first makes support of streamed processing easier. If a large mes-
sage must be signed or verified, and the data is obtained by chunks, then the current
Schnorrkel design allows for starting to process the data chunks before having obtained the
private key (for signature generation) or the public key and signature value (for signature
verification). Compatibility with streamed processing is an important feature when using
RAM-constrained embedded systems. In that sense, there is a trade-off between collision
resilience and ease of streamed processing.

Recommendation Given the internal use of Keccak for hashing, potential collisions are only a very remote
threat, and allowing easier streamed data processing can be argued to be a more important
property than collision resilience. However, since Schnorrkel departs from the EdDSA design,
this choice should be explicitly documented.

Alternatively, if collision resilience must be recaptured, then the current API will have to
change: the injection of the seed, or public key and signature point, will need to occur before
injecting the message data itself.
10https://tools.ietf.org/html/rfc8032#section-4

12 | Web 3.0 Technologies Stiftung Schnorrkel Library Review Web 3.0 Technologies Stiftung / NCC Group Confidential

https://tools.ietf.org/html/rfc8032#section-4


Appendix A: Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk, application’s exposure and
user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group’s recommended
prioritization for addressing findings. Every organization has a different risk sensitivity, so to some extent these
recommendations are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target system or systems. It takes
into account the impact of the finding, the difficulty of exploitation, and any other relevant factors.

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily accessible threat of large-scale
breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a small portion of the
application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for application improvement,
functional issues with the application, or conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or systems. It takes into account
potential losses of confidentiality, integrity and availability, as well as potential reputational losses.

High Attackers can read or modify all data in a system, execute arbitrary code on the system, or escalate
their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny access to that system, or
gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly degrade system
performance. May have a negative public perception of security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into account the level of access
required, availability of exploitation information, requirements relating to social engineering, race conditions, brute
forcing, etc, and other impediments to exploitation.

High Attackers can unilaterally exploit the finding without special permissions or significant roadblocks.

Medium Attackers would need to leverage a third party, gain non-public information, exploit a race condition,
already have privileged access, or otherwise overcome moderate hurdles in order to exploit the
finding.

Low Exploitation requires implausible social engineering, a difficult race condition, guessing difficult-to-
guess data, or is otherwise unlikely.

13 | Web 3.0 Technologies Stiftung Schnorrkel Library Review Web 3.0 Technologies Stiftung / NCC Group Confidential



Category
NCCGroup categorizes findings based on the security area to which those findings belong. This can help organizations
identify gaps in secure development, deployment, patching, etc.

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

14 | Web 3.0 Technologies Stiftung Schnorrkel Library Review Web 3.0 Technologies Stiftung / NCC Group Confidential



Appendix B: Project Contacts
The team from NCC Group has the following primary members:

• Ava Howell — Consultant
ava.howell@nccgroup.com

• Thomas Pornin — Consultant
thomas.pornin@nccgroup.com

• Javed Samuel — Account manager
javed.samuel@nccgroup.com

The team from Web 3.0 Technologies Stiftung has the following primary members:

• Jeff Burdges — Web 3.0 Technologies Stiftung
jeff@web3.foundation

• Peter Czaban — Web 3.0 Technologies Stiftung
peter@web3.foundation

15 | Web 3.0 Technologies Stiftung Schnorrkel Library Review Web 3.0 Technologies Stiftung / NCC Group Confidential

mailto:ava.howell@nccgroup.com
mailto:thomas.pornin@nccgroup.com
mailto:javed.samuel@nccgroup.com
mailto:jeff@web3.foundation
mailto:peter@web3.foundation

	Executive Summary
	Synopsis
	Scope
	Key Findings
	Strategic Recommendations

	Dashboard
	Table of Findings
	Finding Details
	Finding Field Definitions
	Project Contacts

