1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
//! `CyclesPerByte` measures clock cycles using the CPU read time-stamp counter instruction.
//!
//! ```rust
//! # fn fibonacci_slow(_: usize) {}
//! # fn fibonacci_fast(_: usize) {}
//! use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion};
//! use criterion_cycles_per_byte::CyclesPerByte;
//!
//! fn bench(c: &mut Criterion<CyclesPerByte>) {
//!     let mut group = c.benchmark_group("fibonacci");
//!
//!     for i in 0..20 {
//!         group.bench_function(BenchmarkId::new("slow", i), |b| b.iter(|| fibonacci_slow(i)));
//!         group.bench_function(BenchmarkId::new("fast", i), |b| b.iter(|| fibonacci_fast(i)));
//!     }
//!
//!     group.finish()
//! }
//!
//! criterion_group!(
//!     name = my_bench;
//!     config = Criterion::default().with_measurement(CyclesPerByte);
//!     targets = bench
//! );
//! criterion_main!(my_bench);
//! ```

use criterion::{
    measurement::{Measurement, ValueFormatter},
    Throughput,
};

/// `CyclesPerByte` measures clock cycles using the CPU read time-stamp counter instruction. `cpb` is
/// the preferred measurement for cryptographic algorithms.
pub struct CyclesPerByte;

// WARN: does not check for the cpu feature; but we'd panic anyway so...
#[inline(always)]
fn cycle_counter() -> u64 {
    #[cfg(target_arch = "x86")]
    use core::arch::x86::*;
    #[cfg(target_arch = "x86_64")]
    use core::arch::x86_64::*;

    unsafe {
        cfg_if::cfg_if! {
            if #[cfg(all(rdpru, any(target_arch = "x86_64", target_arch = "x86")))] {
                // `LFENCE`s stop RDPRU speculation
                let [hi, lo]: [u32; 2];
                _mm_lfence();
                core::arch::asm!(
                    "rdpru",
                    out("edx") hi,
                    out("eax") lo,
                    in("ecx") 1u32,
                    options(nostack, nomem, preserves_flags),
                );
                let ret = (u64::from(hi) << 32) | u64::from(lo);
                _mm_lfence();
                ret
            } else if #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] {
                // `LFENCE`s stop RDPRU speculation. Note that MFENCE is not needed here
                // for reasons stated in this Linux commit message:
                // https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=be261ffce6f1
                _mm_lfence();
                let ret = _rdtsc();
                _mm_lfence();
                ret
            } else if #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
                // If a aarch64 CPU, running GNU/Linux kernel, executes following instruction,
                // it'll *probably* panic with message "illegal instruction executed", because userspace
                // isn't allowed to execute that instruction without installing a Linux Kernel Module.
                //
                // I've tested the LKM @ https://github.com/jerinjacobk/armv8_pmu_cycle_counter_el0
                // on a Raspberry Pi 4b ( i.e. ARM Cortex-A72, running kernel version 6.5.0-1006-raspi )
                // and it works like charm. While extending support of this library for aarch64 targets,
                // I found https://github.com/pornin/crrl#benchmarks pretty helpful.
                let counter: u64;
                core::arch::asm!("dsb sy", "mrs {}, pmccntr_el0", out(reg) counter);
                counter
            } else if #[cfg(target_arch = "loongarch64")] {
                let counter: u64;
                core::arch::asm!("rdtime.d {0}, $zero", out(reg) counter);
                counter
            } else {
                compile_error!(
                    "criterion-cycles-per-byte currently works only on x86 or x86_64 or aarch64 or loongarch64."
                );
            }
        }
    }
}

impl Measurement for CyclesPerByte {
    type Intermediate = u64;
    type Value = u64;

    #[inline]
    fn start(&self) -> Self::Intermediate {
        cycle_counter()
    }

    #[inline]
    fn end(&self, i: Self::Intermediate) -> Self::Value {
        cycle_counter().saturating_sub(i)
    }

    #[inline]
    fn add(&self, v1: &Self::Value, v2: &Self::Value) -> Self::Value {
        v1 + v2
    }

    #[inline]
    fn zero(&self) -> Self::Value {
        0
    }

    #[inline]
    fn to_f64(&self, value: &Self::Value) -> f64 {
        *value as f64
    }

    fn formatter(&self) -> &dyn ValueFormatter {
        &CyclesPerByteFormatter
    }
}

struct CyclesPerByteFormatter;

impl ValueFormatter for CyclesPerByteFormatter {
    fn format_value(&self, value: f64) -> String {
        format!("{:.4} cycles", value)
    }

    fn format_throughput(&self, throughput: &Throughput, value: f64) -> String {
        match throughput {
            Throughput::Bytes(b) => format!("{:.4} cpb", value / *b as f64),
            Throughput::Elements(b) => format!("{:.4} cycles/{}", value, b),
            Throughput::BytesDecimal(b) => format!("{:.4} cpb (decimal)", value / *b as f64),
        }
    }

    fn scale_values(&self, _typical_value: f64, _values: &mut [f64]) -> &'static str {
        "cycles"
    }

    fn scale_throughputs(
        &self,
        _typical_value: f64,
        throughput: &Throughput,
        values: &mut [f64],
    ) -> &'static str {
        match throughput {
            Throughput::Bytes(n) => {
                for val in values {
                    *val /= *n as f64;
                }
                "cpb"
            }
            Throughput::Elements(n) => {
                for val in values {
                    *val /= *n as f64;
                }
                "c/e"
            }
            Throughput::BytesDecimal(n) => {
                for val in values {
                    *val /= *n as f64;
                }
                "cpb (decimal)"
            }
        }
    }

    fn scale_for_machines(&self, _values: &mut [f64]) -> &'static str {
        "cycles"
    }
}