1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
use std::fmt; use std::marker::PhantomData; use std::sync::atomic::AtomicUsize; use std::sync::atomic::Ordering::SeqCst; use std::sync::{Arc, Condvar, Mutex}; use std::time::Duration; /// A thread parking primitive. /// /// Conceptually, each `Parker` has an associated token which is initially not present: /// /// * The [`park`] method blocks the current thread unless or until the token is available, at /// which point it automatically consumes the token. It may also return *spuriously*, without /// consuming the token. /// /// * The [`park_timeout`] method works the same as [`park`], but blocks for a specified maximum /// time. /// /// * The [`unpark`] method atomically makes the token available if it wasn't already. Because the /// token is initially absent, [`unpark`] followed by [`park`] will result in the second call /// returning immediately. /// /// In other words, each `Parker` acts a bit like a spinlock that can be locked and unlocked using /// [`park`] and [`unpark`]. /// /// # Examples /// /// ``` /// use std::thread; /// use std::time::Duration; /// use crossbeam_utils::sync::Parker; /// /// let mut p = Parker::new(); /// let u = p.unparker().clone(); /// /// // Make the token available. /// u.unpark(); /// // Wakes up immediately and consumes the token. /// p.park(); /// /// thread::spawn(move || { /// thread::sleep(Duration::from_millis(500)); /// u.unpark(); /// }); /// /// // Wakes up when `u.unpark()` provides the token, but may also wake up /// // spuriously before that without consuming the token. /// p.park(); /// ``` /// /// [`park`]: struct.Parker.html#method.park /// [`park_timeout`]: struct.Parker.html#method.park_timeout /// [`unpark`]: struct.Unparker.html#method.unpark pub struct Parker { unparker: Unparker, _marker: PhantomData<*const ()>, } unsafe impl Send for Parker {} impl Parker { /// Creates a new `Parker`. /// /// # Examples /// /// ``` /// use crossbeam_utils::sync::Parker; /// /// let p = Parker::new(); /// ``` /// pub fn new() -> Parker { Parker { unparker: Unparker { inner: Arc::new(Inner { state: AtomicUsize::new(EMPTY), lock: Mutex::new(()), cvar: Condvar::new(), }), }, _marker: PhantomData, } } /// Blocks the current thread until the token is made available. /// /// A call to `park` may wake up spuriously without consuming the token, and callers should be /// prepared for this possibility. /// /// # Examples /// /// ``` /// use crossbeam_utils::sync::Parker; /// /// let mut p = Parker::new(); /// let u = p.unparker().clone(); /// /// // Make the token available. /// u.unpark(); /// /// // Wakes up immediately and consumes the token. /// p.park(); /// ``` pub fn park(&self) { self.unparker.inner.park(None); } /// Blocks the current thread until the token is made available, but only for a limited time. /// /// A call to `park_timeout` may wake up spuriously without consuming the token, and callers /// should be prepared for this possibility. /// /// # Examples /// /// ``` /// use std::time::Duration; /// use crossbeam_utils::sync::Parker; /// /// let mut p = Parker::new(); /// /// // Waits for the token to become available, but will not wait longer than 500 ms. /// p.park_timeout(Duration::from_millis(500)); /// ``` pub fn park_timeout(&self, timeout: Duration) { self.unparker.inner.park(Some(timeout)); } /// Returns a reference to an associated [`Unparker`]. /// /// The returned [`Unparker`] doesn't have to be used by reference - it can also be cloned. /// /// # Examples /// /// ``` /// use crossbeam_utils::sync::Parker; /// /// let mut p = Parker::new(); /// let u = p.unparker().clone(); /// /// // Make the token available. /// u.unpark(); /// // Wakes up immediately and consumes the token. /// p.park(); /// ``` /// /// [`park`]: struct.Parker.html#method.park /// [`park_timeout`]: struct.Parker.html#method.park_timeout /// /// [`Unparker`]: struct.Unparker.html pub fn unparker(&self) -> &Unparker { &self.unparker } } impl fmt::Debug for Parker { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.pad("Parker { .. }") } } /// Unparks a thread parked by the associated [`Parker`]. /// /// [`Parker`]: struct.Parker.html pub struct Unparker { inner: Arc<Inner>, } unsafe impl Send for Unparker {} unsafe impl Sync for Unparker {} impl Unparker { /// Atomically makes the token available if it is not already. /// /// This method will wake up the thread blocked on [`park`] or [`park_timeout`], if there is /// any. /// /// # Examples /// /// ``` /// use std::thread; /// use std::time::Duration; /// use crossbeam_utils::sync::Parker; /// /// let mut p = Parker::new(); /// let u = p.unparker().clone(); /// /// thread::spawn(move || { /// thread::sleep(Duration::from_millis(500)); /// u.unpark(); /// }); /// /// // Wakes up when `u.unpark()` provides the token, but may also wake up /// // spuriously before that without consuming the token. /// p.park(); /// ``` /// /// [`park`]: struct.Parker.html#method.park /// [`park_timeout`]: struct.Parker.html#method.park_timeout pub fn unpark(&self) { self.inner.unpark() } } impl fmt::Debug for Unparker { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.pad("Unparker { .. }") } } impl Clone for Unparker { fn clone(&self) -> Unparker { Unparker { inner: self.inner.clone(), } } } const EMPTY: usize = 0; const PARKED: usize = 1; const NOTIFIED: usize = 2; struct Inner { state: AtomicUsize, lock: Mutex<()>, cvar: Condvar, } impl Inner { fn park(&self, timeout: Option<Duration>) { // If we were previously notified then we consume this notification and return quickly. if self .state .compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst) .is_ok() { return; } // If the timeout is zero, then there is no need to actually block. if let Some(ref dur) = timeout { if *dur == Duration::from_millis(0) { return; } } // Otherwise we need to coordinate going to sleep. let mut m = self.lock.lock().unwrap(); match self.state.compare_exchange(EMPTY, PARKED, SeqCst, SeqCst) { Ok(_) => {} // Consume this notification to avoid spurious wakeups in the next park. Err(NOTIFIED) => { // We must read `state` here, even though we know it will be `NOTIFIED`. This is // because `unpark` may have been called again since we read `NOTIFIED` in the // `compare_exchange` above. We must perform an acquire operation that synchronizes // with that `unpark` to observe any writes it made before the call to `unpark`. To // do that we must read from the write it made to `state`. let old = self.state.swap(EMPTY, SeqCst); assert_eq!(old, NOTIFIED, "park state changed unexpectedly"); return; } Err(n) => panic!("inconsistent park_timeout state: {}", n), } match timeout { None => { loop { // Block the current thread on the conditional variable. m = self.cvar.wait(m).unwrap(); match self.state.compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst) { Ok(_) => return, // got a notification Err(_) => {} // spurious wakeup, go back to sleep } } } Some(timeout) => { // Wait with a timeout, and if we spuriously wake up or otherwise wake up from a // notification we just want to unconditionally set `state` back to `EMPTY`, either // consuming a notification or un-flagging ourselves as parked. let (_m, _result) = self.cvar.wait_timeout(m, timeout).unwrap(); match self.state.swap(EMPTY, SeqCst) { NOTIFIED => {} // got a notification PARKED => {} // no notification n => panic!("inconsistent park_timeout state: {}", n), } } } } pub fn unpark(&self) { // To ensure the unparked thread will observe any writes we made before this call, we must // perform a release operation that `park` can synchronize with. To do that we must write // `NOTIFIED` even if `state` is already `NOTIFIED`. That is why this must be a swap rather // than a compare-and-swap that returns if it reads `NOTIFIED` on failure. match self.state.swap(NOTIFIED, SeqCst) { EMPTY => return, // no one was waiting NOTIFIED => return, // already unparked PARKED => {} // gotta go wake someone up _ => panic!("inconsistent state in unpark"), } // There is a period between when the parked thread sets `state` to `PARKED` (or last // checked `state` in the case of a spurious wakeup) and when it actually waits on `cvar`. // If we were to notify during this period it would be ignored and then when the parked // thread went to sleep it would never wake up. Fortunately, it has `lock` locked at this // stage so we can acquire `lock` to wait until it is ready to receive the notification. // // Releasing `lock` before the call to `notify_one` means that when the parked thread wakes // it doesn't get woken only to have to wait for us to release `lock`. drop(self.lock.lock().unwrap()); self.cvar.notify_one(); } }