1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
use std::cell::UnsafeCell; use std::collections::HashMap; use std::fmt; use std::marker::PhantomData; use std::mem; use std::ops::{Deref, DerefMut}; use std::panic::{RefUnwindSafe, UnwindSafe}; use std::sync::{LockResult, PoisonError, TryLockError, TryLockResult}; use std::sync::{Mutex, RwLock, RwLockReadGuard, RwLockWriteGuard}; use std::thread::{self, ThreadId}; use CachePadded; /// The number of shards per sharded lock. Must be a power of two. const NUM_SHARDS: usize = 8; /// A shard containing a single reader-writer lock. struct Shard { /// The inner reader-writer lock. lock: RwLock<()>, /// The write-guard keeping this shard locked. /// /// Write operations will lock each shard and store the guard here. These guards get dropped at /// the same time the big guard is dropped. write_guard: UnsafeCell<Option<RwLockWriteGuard<'static, ()>>>, } /// A sharded reader-writer lock. /// /// This lock is equivalent to [`RwLock`], except read operations are faster and write operations /// are slower. /// /// A `ShardedLock` is internally made of a list of *shards*, each being a [`RwLock`] occupying a /// single cache line. Read operations will pick one of the shards depending on the current thread /// and lock it. Write operations need to lock all shards in succession. /// /// By splitting the lock into shards, concurrent read operations will in most cases choose /// different shards and thus update different cache lines, which is good for scalability. However, /// write operations need to do more work and are therefore slower than usual. /// /// The priority policy of the lock is dependent on the underlying operating system's /// implementation, and this type does not guarantee that any particular policy will be used. /// /// # Poisoning /// /// A `ShardedLock`, like [`RwLock`], will become poisoned on a panic. Note that it may only be /// poisoned if a panic occurs while a write operation is in progress. If a panic occurs in any /// read operation, the lock will not be poisoned. /// /// # Examples /// /// ``` /// use crossbeam_utils::sync::ShardedLock; /// /// let lock = ShardedLock::new(5); /// /// // Any number of read locks can be held at once. /// { /// let r1 = lock.read().unwrap(); /// let r2 = lock.read().unwrap(); /// assert_eq!(*r1, 5); /// assert_eq!(*r2, 5); /// } // Read locks are dropped at this point. /// /// // However, only one write lock may be held. /// { /// let mut w = lock.write().unwrap(); /// *w += 1; /// assert_eq!(*w, 6); /// } // Write lock is dropped here. /// ``` /// /// [`RwLock`]: https://doc.rust-lang.org/std/sync/struct.RwLock.html pub struct ShardedLock<T: ?Sized> { /// A list of locks protecting the internal data. shards: Box<[CachePadded<Shard>]>, /// The internal data. value: UnsafeCell<T>, } unsafe impl<T: ?Sized + Send> Send for ShardedLock<T> {} unsafe impl<T: ?Sized + Send + Sync> Sync for ShardedLock<T> {} impl<T: ?Sized> UnwindSafe for ShardedLock<T> {} impl<T: ?Sized> RefUnwindSafe for ShardedLock<T> {} impl<T> ShardedLock<T> { /// Creates a new sharded reader-writer lock. /// /// # Examples /// /// ``` /// use crossbeam_utils::sync::ShardedLock; /// /// let lock = ShardedLock::new(5); /// ``` pub fn new(value: T) -> ShardedLock<T> { ShardedLock { shards: (0..NUM_SHARDS) .map(|_| { CachePadded::new(Shard { lock: RwLock::new(()), write_guard: UnsafeCell::new(None), }) }) .collect::<Vec<_>>() .into_boxed_slice(), value: UnsafeCell::new(value), } } /// Consumes this lock, returning the underlying data. /// /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write /// operation panics. /// /// # Examples /// /// ``` /// use crossbeam_utils::sync::ShardedLock; /// /// let lock = ShardedLock::new(String::new()); /// { /// let mut s = lock.write().unwrap(); /// *s = "modified".to_owned(); /// } /// assert_eq!(lock.into_inner().unwrap(), "modified"); /// ``` pub fn into_inner(self) -> LockResult<T> { let is_poisoned = self.is_poisoned(); let inner = self.value.into_inner(); if is_poisoned { Err(PoisonError::new(inner)) } else { Ok(inner) } } } impl<T: ?Sized> ShardedLock<T> { /// Returns `true` if the lock is poisoned. /// /// If another thread can still access the lock, it may become poisoned at any time. A `false` /// result should not be trusted without additional synchronization. /// /// # Examples /// /// ``` /// use crossbeam_utils::sync::ShardedLock; /// use std::sync::Arc; /// use std::thread; /// /// let lock = Arc::new(ShardedLock::new(0)); /// let c_lock = lock.clone(); /// /// let _ = thread::spawn(move || { /// let _lock = c_lock.write().unwrap(); /// panic!(); // the lock gets poisoned /// }).join(); /// assert_eq!(lock.is_poisoned(), true); /// ``` pub fn is_poisoned(&self) -> bool { self.shards[0].lock.is_poisoned() } /// Returns a mutable reference to the underlying data. /// /// Since this call borrows the lock mutably, no actual locking needs to take place. /// /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write /// operation panics. /// /// # Examples /// /// ``` /// use crossbeam_utils::sync::ShardedLock; /// /// let mut lock = ShardedLock::new(0); /// *lock.get_mut().unwrap() = 10; /// assert_eq!(*lock.read().unwrap(), 10); /// ``` pub fn get_mut(&mut self) -> LockResult<&mut T> { let is_poisoned = self.is_poisoned(); let inner = unsafe { &mut *self.value.get() }; if is_poisoned { Err(PoisonError::new(inner)) } else { Ok(inner) } } /// Attempts to acquire this lock with shared read access. /// /// If the access could not be granted at this time, an error is returned. Otherwise, a guard /// is returned which will release the shared access when it is dropped. This method does not /// provide any guarantees with respect to the ordering of whether contentious readers or /// writers will acquire the lock first. /// /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write /// operation panics. /// /// # Examples /// /// ``` /// use crossbeam_utils::sync::ShardedLock; /// /// let lock = ShardedLock::new(1); /// /// match lock.try_read() { /// Ok(n) => assert_eq!(*n, 1), /// Err(_) => unreachable!(), /// }; /// ``` pub fn try_read(&self) -> TryLockResult<ShardedLockReadGuard<T>> { // Take the current thread index and map it to a shard index. Thread indices will tend to // distribute shards among threads equally, thus reducing contention due to read-locking. let current_index = current_index().unwrap_or(0); let shard_index = current_index & (self.shards.len() - 1); match self.shards[shard_index].lock.try_read() { Ok(guard) => Ok(ShardedLockReadGuard { lock: self, _guard: guard, _marker: PhantomData, }), Err(TryLockError::Poisoned(err)) => { let guard = ShardedLockReadGuard { lock: self, _guard: err.into_inner(), _marker: PhantomData, }; Err(TryLockError::Poisoned(PoisonError::new(guard))) } Err(TryLockError::WouldBlock) => Err(TryLockError::WouldBlock), } } /// Locks with shared read access, blocking the current thread until it can be acquired. /// /// The calling thread will be blocked until there are no more writers which hold the lock. /// There may be other readers currently inside the lock when this method returns. This method /// does not provide any guarantees with respect to the ordering of whether contentious readers /// or writers will acquire the lock first. /// /// Returns a guard which will release the shared access when dropped. /// /// # Examples /// /// ``` /// use crossbeam_utils::sync::ShardedLock; /// use std::sync::Arc; /// use std::thread; /// /// let lock = Arc::new(ShardedLock::new(1)); /// let c_lock = lock.clone(); /// /// let n = lock.read().unwrap(); /// assert_eq!(*n, 1); /// /// thread::spawn(move || { /// let r = c_lock.read(); /// assert!(r.is_ok()); /// }).join().unwrap(); /// ``` pub fn read(&self) -> LockResult<ShardedLockReadGuard<T>> { // Take the current thread index and map it to a shard index. Thread indices will tend to // distribute shards among threads equally, thus reducing contention due to read-locking. let current_index = current_index().unwrap_or(0); let shard_index = current_index & (self.shards.len() - 1); match self.shards[shard_index].lock.read() { Ok(guard) => Ok(ShardedLockReadGuard { lock: self, _guard: guard, _marker: PhantomData, }), Err(err) => Err(PoisonError::new(ShardedLockReadGuard { lock: self, _guard: err.into_inner(), _marker: PhantomData, })), } } /// Attempts to acquire this lock with exclusive write access. /// /// If the access could not be granted at this time, an error is returned. Otherwise, a guard /// is returned which will release the exclusive access when it is dropped. This method does /// not provide any guarantees with respect to the ordering of whether contentious readers or /// writers will acquire the lock first. /// /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write /// operation panics. /// /// # Examples /// /// ``` /// use crossbeam_utils::sync::ShardedLock; /// /// let lock = ShardedLock::new(1); /// /// let n = lock.read().unwrap(); /// assert_eq!(*n, 1); /// /// assert!(lock.try_write().is_err()); /// ``` pub fn try_write(&self) -> TryLockResult<ShardedLockWriteGuard<T>> { let mut poisoned = false; let mut blocked = None; // Write-lock each shard in succession. for (i, shard) in self.shards.iter().enumerate() { let guard = match shard.lock.try_write() { Ok(guard) => guard, Err(TryLockError::Poisoned(err)) => { poisoned = true; err.into_inner() } Err(TryLockError::WouldBlock) => { blocked = Some(i); break; } }; // Store the guard into the shard. unsafe { let guard: RwLockWriteGuard<'static, ()> = mem::transmute(guard); let dest: *mut _ = shard.write_guard.get(); *dest = Some(guard); } } if let Some(i) = blocked { // Unlock the shards in reverse order of locking. for shard in self.shards[0..i].iter().rev() { unsafe { let dest: *mut _ = shard.write_guard.get(); let guard = mem::replace(&mut *dest, None); drop(guard); } } Err(TryLockError::WouldBlock) } else if poisoned { let guard = ShardedLockWriteGuard { lock: self, _marker: PhantomData, }; Err(TryLockError::Poisoned(PoisonError::new(guard))) } else { Ok(ShardedLockWriteGuard { lock: self, _marker: PhantomData, }) } } /// Locks with exclusive write access, blocking the current thread until it can be acquired. /// /// The calling thread will be blocked until there are no more writers which hold the lock. /// There may be other readers currently inside the lock when this method returns. This method /// does not provide any guarantees with respect to the ordering of whether contentious readers /// or writers will acquire the lock first. /// /// Returns a guard which will release the exclusive access when dropped. /// /// # Examples /// /// ``` /// use crossbeam_utils::sync::ShardedLock; /// /// let lock = ShardedLock::new(1); /// /// let mut n = lock.write().unwrap(); /// *n = 2; /// /// assert!(lock.try_read().is_err()); /// ``` pub fn write(&self) -> LockResult<ShardedLockWriteGuard<T>> { let mut poisoned = false; // Write-lock each shard in succession. for shard in self.shards.iter() { let guard = match shard.lock.write() { Ok(guard) => guard, Err(err) => { poisoned = true; err.into_inner() } }; // Store the guard into the shard. unsafe { let guard: RwLockWriteGuard<'_, ()> = guard; let guard: RwLockWriteGuard<'static, ()> = mem::transmute(guard); let dest: *mut _ = shard.write_guard.get(); *dest = Some(guard); } } if poisoned { Err(PoisonError::new(ShardedLockWriteGuard { lock: self, _marker: PhantomData, })) } else { Ok(ShardedLockWriteGuard { lock: self, _marker: PhantomData, }) } } } impl<T: ?Sized + fmt::Debug> fmt::Debug for ShardedLock<T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self.try_read() { Ok(guard) => f .debug_struct("ShardedLock") .field("data", &&*guard) .finish(), Err(TryLockError::Poisoned(err)) => f .debug_struct("ShardedLock") .field("data", &&**err.get_ref()) .finish(), Err(TryLockError::WouldBlock) => { struct LockedPlaceholder; impl fmt::Debug for LockedPlaceholder { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.write_str("<locked>") } } f.debug_struct("ShardedLock") .field("data", &LockedPlaceholder) .finish() } } } } impl<T: Default> Default for ShardedLock<T> { fn default() -> ShardedLock<T> { ShardedLock::new(Default::default()) } } impl<T> From<T> for ShardedLock<T> { fn from(t: T) -> Self { ShardedLock::new(t) } } /// A guard used to release the shared read access of a [`ShardedLock`] when dropped. /// /// [`ShardedLock`]: struct.ShardedLock.html pub struct ShardedLockReadGuard<'a, T: ?Sized + 'a> { lock: &'a ShardedLock<T>, _guard: RwLockReadGuard<'a, ()>, _marker: PhantomData<RwLockReadGuard<'a, T>>, } unsafe impl<'a, T: ?Sized + Sync> Sync for ShardedLockReadGuard<'a, T> {} impl<'a, T: ?Sized> Deref for ShardedLockReadGuard<'a, T> { type Target = T; fn deref(&self) -> &T { unsafe { &*self.lock.value.get() } } } impl<'a, T: fmt::Debug> fmt::Debug for ShardedLockReadGuard<'a, T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("ShardedLockReadGuard") .field("lock", &self.lock) .finish() } } impl<'a, T: ?Sized + fmt::Display> fmt::Display for ShardedLockReadGuard<'a, T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { (**self).fmt(f) } } /// A guard used to release the exclusive write access of a [`ShardedLock`] when dropped. /// /// [`ShardedLock`]: struct.ShardedLock.html pub struct ShardedLockWriteGuard<'a, T: ?Sized + 'a> { lock: &'a ShardedLock<T>, _marker: PhantomData<RwLockWriteGuard<'a, T>>, } unsafe impl<'a, T: ?Sized + Sync> Sync for ShardedLockWriteGuard<'a, T> {} impl<'a, T: ?Sized> Drop for ShardedLockWriteGuard<'a, T> { fn drop(&mut self) { // Unlock the shards in reverse order of locking. for shard in self.lock.shards.iter().rev() { unsafe { let dest: *mut _ = shard.write_guard.get(); let guard = mem::replace(&mut *dest, None); drop(guard); } } } } impl<'a, T: fmt::Debug> fmt::Debug for ShardedLockWriteGuard<'a, T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("ShardedLockWriteGuard") .field("lock", &self.lock) .finish() } } impl<'a, T: ?Sized + fmt::Display> fmt::Display for ShardedLockWriteGuard<'a, T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { (**self).fmt(f) } } impl<'a, T: ?Sized> Deref for ShardedLockWriteGuard<'a, T> { type Target = T; fn deref(&self) -> &T { unsafe { &*self.lock.value.get() } } } impl<'a, T: ?Sized> DerefMut for ShardedLockWriteGuard<'a, T> { fn deref_mut(&mut self) -> &mut T { unsafe { &mut *self.lock.value.get() } } } /// Returns a `usize` that identifies the current thread. /// /// Each thread is associated with an 'index'. While there are no particular guarantees, indices /// usually tend to be consecutive numbers between 0 and the number of running threads. /// /// Since this function accesses TLS, `None` might be returned if the current thread's TLS is /// tearing down. #[inline] fn current_index() -> Option<usize> { REGISTRATION.try_with(|reg| reg.index).ok() } /// The global registry keeping track of registered threads and indices. struct ThreadIndices { /// Mapping from `ThreadId` to thread index. mapping: HashMap<ThreadId, usize>, /// A list of free indices. free_list: Vec<usize>, /// The next index to allocate if the free list is empty. next_index: usize, } lazy_static! { static ref THREAD_INDICES: Mutex<ThreadIndices> = Mutex::new(ThreadIndices { mapping: HashMap::new(), free_list: Vec::new(), next_index: 0, }); } /// A registration of a thread with an index. /// /// When dropped, unregisters the thread and frees the reserved index. struct Registration { index: usize, thread_id: ThreadId, } impl Drop for Registration { fn drop(&mut self) { let mut indices = THREAD_INDICES.lock().unwrap(); indices.mapping.remove(&self.thread_id); indices.free_list.push(self.index); } } thread_local! { static REGISTRATION: Registration = { let thread_id = thread::current().id(); let mut indices = THREAD_INDICES.lock().unwrap(); let index = match indices.free_list.pop() { Some(i) => i, None => { let i = indices.next_index; indices.next_index += 1; i } }; indices.mapping.insert(thread_id, index); Registration { index, thread_id, } }; }