1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
use crate::{Encoding, UInt};
use rlp::{DecoderError, Rlp, RlpStream};
#[cfg_attr(docsrs, doc(cfg(feature = "rlp")))]
impl<const LIMBS: usize> rlp::Encodable for UInt<LIMBS>
where
Self: Encoding,
{
fn rlp_append(&self, stream: &mut RlpStream) {
let bytes = self.to_be_bytes();
let mut bytes_stripped = bytes.as_ref();
while bytes_stripped.first().cloned() == Some(0) {
bytes_stripped = &bytes_stripped[1..];
}
stream.encoder().encode_value(bytes_stripped);
}
}
#[cfg_attr(docsrs, doc(cfg(feature = "rlp")))]
impl<const LIMBS: usize> rlp::Decodable for UInt<LIMBS>
where
Self: Encoding,
<Self as Encoding>::Repr: Default,
{
fn decode(rlp: &Rlp<'_>) -> Result<Self, DecoderError> {
rlp.decoder().decode_value(|bytes| {
if bytes.first().cloned() == Some(0) {
Err(rlp::DecoderError::RlpInvalidIndirection)
} else {
let mut repr = <Self as Encoding>::Repr::default();
let offset = repr
.as_ref()
.len()
.checked_sub(bytes.len())
.ok_or(DecoderError::RlpIsTooBig)?;
repr.as_mut()[offset..].copy_from_slice(bytes);
Ok(Self::from_be_bytes(repr))
}
})
}
}
#[cfg(test)]
mod tests {
use crate::U256;
use hex_literal::hex;
const U256_VECTORS: &[(U256, &[u8])] = &[
(U256::ZERO, &hex!("80")),
(
U256::from_be_hex("0000000000000000000000000000000000000000000000000000000001000000"),
&hex!("8401000000"),
),
(
U256::from_be_hex("00000000000000000000000000000000000000000000000000000000ffffffff"),
&hex!("84ffffffff"),
),
(
U256::from_be_hex("8090a0b0c0d0e0f00910203040506077000000000000000100000000000012f0"),
&hex!("a08090a0b0c0d0e0f00910203040506077000000000000000100000000000012f0"),
),
];
#[test]
fn round_trip() {
for &(uint, expected_bytes) in U256_VECTORS {
assert_eq!(rlp::encode(&uint), expected_bytes);
assert_eq!(rlp::decode::<U256>(expected_bytes).unwrap(), uint);
}
}
}