1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
//! [`UInt`] bitwise left shift operations.

use crate::{Limb, LimbUInt, UInt};
use core::ops::{Shl, ShlAssign};

impl<const LIMBS: usize> UInt<LIMBS> {
    /// Computes `self << shift`.
    ///
    /// NOTE: this operation is variable time with respect to `n` *ONLY*.
    ///
    /// When used with a fixed `n`, this function is constant-time with respect
    /// to `self`.
    #[inline(always)]
    pub const fn shl_vartime(&self, n: usize) -> Self {
        let mut limbs = [Limb::ZERO; LIMBS];

        if n >= Limb::BIT_SIZE * LIMBS {
            return Self { limbs };
        }

        let shift_num = n / Limb::BIT_SIZE;
        let rem = n % Limb::BIT_SIZE;
        let nz = Limb(rem as LimbUInt).is_nonzero();
        let lshift_rem = rem as LimbUInt;
        let rshift_rem =
            Limb::ct_select(Limb::ZERO, Limb((Limb::BIT_SIZE - rem) as LimbUInt), nz).0;

        let mut i = LIMBS - 1;
        while i > shift_num {
            let mut limb = self.limbs[i - shift_num].0 << lshift_rem;
            let hi = self.limbs[i - shift_num - 1].0 >> rshift_rem;
            limb |= hi & nz;
            limbs[i] = Limb(limb);
            i -= 1
        }
        limbs[shift_num] = Limb(self.limbs[0].0 << lshift_rem);

        Self { limbs }
    }
}

impl<const LIMBS: usize> Shl<usize> for UInt<LIMBS> {
    type Output = UInt<LIMBS>;

    /// NOTE: this operation is variable time with respect to `rhs` *ONLY*.
    ///
    /// When used with a fixed `rhs`, this function is constant-time with respect
    /// to `self`.
    fn shl(self, rhs: usize) -> UInt<LIMBS> {
        self.shl_vartime(rhs)
    }
}

impl<const LIMBS: usize> Shl<usize> for &UInt<LIMBS> {
    type Output = UInt<LIMBS>;

    /// NOTE: this operation is variable time with respect to `rhs` *ONLY*.
    ///
    /// When used with a fixed `rhs`, this function is constant-time with respect
    /// to `self`.
    fn shl(self, rhs: usize) -> UInt<LIMBS> {
        self.shl_vartime(rhs)
    }
}

impl<const LIMBS: usize> ShlAssign<usize> for UInt<LIMBS> {
    /// NOTE: this operation is variable time with respect to `rhs` *ONLY*.
    ///
    /// When used with a fixed `rhs`, this function is constant-time with respect
    /// to `self`.
    fn shl_assign(&mut self, rhs: usize) {
        *self = self.shl_vartime(rhs)
    }
}

#[cfg(test)]
mod tests {
    use crate::U256;

    const N: U256 =
        U256::from_be_hex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141");

    const TWO_N: U256 =
        U256::from_be_hex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD755DB9CD5E9140777FA4BD19A06C8282");

    const FOUR_N: U256 =
        U256::from_be_hex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAEABB739ABD2280EEFF497A3340D90504");

    const SIXTY_FIVE: U256 =
        U256::from_be_hex("FFFFFFFFFFFFFFFD755DB9CD5E9140777FA4BD19A06C82820000000000000000");

    const EIGHTY_EIGHT: U256 =
        U256::from_be_hex("FFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD03641410000000000000000000000");

    const SIXTY_FOUR: U256 =
        U256::from_be_hex("FFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD03641410000000000000000");

    #[test]
    fn shl_simple() {
        let mut t = U256::from(1u8);
        assert_eq!(t << 1, U256::from(2u8));
        t = U256::from(3u8);
        assert_eq!(t << 8, U256::from(0x300u16));
    }

    #[test]
    fn shl1() {
        assert_eq!(N << 1, TWO_N);
    }

    #[test]
    fn shl2() {
        assert_eq!(N << 2, FOUR_N);
    }

    #[test]
    fn shl65() {
        assert_eq!(N << 65, SIXTY_FIVE);
    }

    #[test]
    fn shl88() {
        assert_eq!(N << 88, EIGHTY_EIGHT);
    }

    #[test]
    fn shl256() {
        assert_eq!(N << 256, U256::default());
    }

    #[test]
    fn shl64() {
        assert_eq!(N << 64, SIXTY_FOUR);
    }
}