1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
//! Traits provided by this crate

use crate::{Limb, NonZero};
use core::fmt::Debug;
use core::ops::{BitAnd, BitOr, BitXor, Div, Not, Rem, Shl, Shr};
use subtle::{
    Choice, ConditionallySelectable, ConstantTimeEq, ConstantTimeGreater, ConstantTimeLess,
    CtOption,
};

#[cfg(feature = "rand_core")]
use rand_core::CryptoRngCore;

/// Integer type.
pub trait Integer:
    'static
    + AsRef<[Limb]>
    + BitAnd<Output = Self>
    + BitOr<Output = Self>
    + BitXor<Output = Self>
    + for<'a> CheckedAdd<&'a Self, Output = Self>
    + for<'a> CheckedSub<&'a Self, Output = Self>
    + for<'a> CheckedMul<&'a Self, Output = Self>
    + Copy
    + ConditionallySelectable
    + ConstantTimeEq
    + ConstantTimeGreater
    + ConstantTimeLess
    + Debug
    + Default
    + Div<NonZero<Self>, Output = Self>
    + Eq
    + From<u64>
    + Not
    + Ord
    + Rem<NonZero<Self>, Output = Self>
    + Send
    + Sized
    + Shl<usize, Output = Self>
    + Shr<usize, Output = Self>
    + Sync
    + Zero
{
    /// The value `1`.
    const ONE: Self;

    /// Maximum value this integer can express.
    const MAX: Self;

    /// Total size of the represented integer in bits.
    const BITS: usize;

    /// Total size of the represented integer in bytes.
    const BYTES: usize;

    /// The number of limbs used on this platform.
    const LIMBS: usize;

    /// Is this integer value an odd number?
    ///
    /// # Returns
    ///
    /// If odd, returns `Choice(1)`. Otherwise, returns `Choice(0)`.
    fn is_odd(&self) -> Choice;

    /// Is this integer value an even number?
    ///
    /// # Returns
    ///
    /// If even, returns `Choice(1)`. Otherwise, returns `Choice(0)`.
    fn is_even(&self) -> Choice {
        !self.is_odd()
    }
}

/// Zero values.
pub trait Zero: ConstantTimeEq + Sized {
    /// The value `0`.
    const ZERO: Self;

    /// Determine if this value is equal to zero.
    ///
    /// # Returns
    ///
    /// If zero, returns `Choice(1)`. Otherwise, returns `Choice(0)`.
    fn is_zero(&self) -> Choice {
        self.ct_eq(&Self::ZERO)
    }
}

/// Random number generation support.
#[cfg(feature = "rand_core")]
pub trait Random: Sized {
    /// Generate a cryptographically secure random value.
    fn random(rng: &mut impl CryptoRngCore) -> Self;
}

/// Modular random number generation support.
#[cfg(feature = "rand_core")]
pub trait RandomMod: Sized + Zero {
    /// Generate a cryptographically secure random number which is less than
    /// a given `modulus`.
    ///
    /// This function uses rejection sampling, a method which produces an
    /// unbiased distribution of in-range values provided the underlying
    /// CSRNG is unbiased, but runs in variable-time.
    ///
    /// The variable-time nature of the algorithm should not pose a security
    /// issue so long as the underlying random number generator is truly a
    /// CSRNG, where previous outputs are unrelated to subsequent
    /// outputs and do not reveal information about the RNG's internal state.
    fn random_mod(rng: &mut impl CryptoRngCore, modulus: &NonZero<Self>) -> Self;
}

/// Compute `self + rhs mod p`.
pub trait AddMod<Rhs = Self> {
    /// Output type.
    type Output;

    /// Compute `self + rhs mod p`.
    ///
    /// Assumes `self` and `rhs` are `< p`.
    fn add_mod(&self, rhs: &Rhs, p: &Self) -> Self::Output;
}

/// Compute `self - rhs mod p`.
pub trait SubMod<Rhs = Self> {
    /// Output type.
    type Output;

    /// Compute `self - rhs mod p`.
    ///
    /// Assumes `self` and `rhs` are `< p`.
    fn sub_mod(&self, rhs: &Rhs, p: &Self) -> Self::Output;
}

/// Compute `-self mod p`.
pub trait NegMod {
    /// Output type.
    type Output;

    /// Compute `-self mod p`.
    #[must_use]
    fn neg_mod(&self, p: &Self) -> Self::Output;
}

/// Compute `self * rhs mod p`.
///
/// Requires `p_inv = -(p^{-1} mod 2^{BITS}) mod 2^{BITS}` to be provided for efficiency.
pub trait MulMod<Rhs = Self> {
    /// Output type.
    type Output;

    /// Compute `self * rhs mod p`.
    ///
    /// Requires `p_inv = -(p^{-1} mod 2^{BITS}) mod 2^{BITS}` to be provided for efficiency.
    fn mul_mod(&self, rhs: &Rhs, p: &Self, p_inv: Limb) -> Self::Output;
}

/// Checked addition.
pub trait CheckedAdd<Rhs = Self>: Sized {
    /// Output type.
    type Output;

    /// Perform checked subtraction, returning a [`CtOption`] which `is_some`
    /// only if the operation did not overflow.
    fn checked_add(&self, rhs: Rhs) -> CtOption<Self>;
}

/// Checked multiplication.
pub trait CheckedMul<Rhs = Self>: Sized {
    /// Output type.
    type Output;

    /// Perform checked multiplication, returning a [`CtOption`] which `is_some`
    /// only if the operation did not overflow.
    fn checked_mul(&self, rhs: Rhs) -> CtOption<Self>;
}

/// Checked subtraction.
pub trait CheckedSub<Rhs = Self>: Sized {
    /// Output type.
    type Output;

    /// Perform checked subtraction, returning a [`CtOption`] which `is_some`
    /// only if the operation did not underflow.
    fn checked_sub(&self, rhs: Rhs) -> CtOption<Self>;
}

/// Concatenate two numbers into a "wide" double-width value, using the `lo`
/// value as the least significant value.
pub trait Concat: ConcatMixed<Self, MixedOutput = Self::Output> {
    /// Concatenated output: twice the width of `Self`.
    type Output;

    /// Concatenate the two halves, with `self` as most significant and `lo`
    /// as the least significant.
    fn concat(&self, lo: &Self) -> Self::Output {
        self.concat_mixed(lo)
    }
}

/// Concatenate two numbers into a "wide" combined-width value, using the `lo`
/// value as the least significant value.
pub trait ConcatMixed<Lo: ?Sized = Self> {
    /// Concatenated output: combination of `Lo` and `Self`.
    type MixedOutput;

    /// Concatenate the two values, with `self` as most significant and `lo`
    /// as the least significant.
    fn concat_mixed(&self, lo: &Lo) -> Self::MixedOutput;
}

/// Split a number in half, returning the most significant half followed by
/// the least significant.
pub trait Split: SplitMixed<Self::Output, Self::Output> {
    /// Split output: high/low components of the value.
    type Output;

    /// Split this number in half, returning its high and low components
    /// respectively.
    fn split(&self) -> (Self::Output, Self::Output) {
        self.split_mixed()
    }
}

/// Split a number into parts, returning the most significant part followed by
/// the least significant.
pub trait SplitMixed<Hi, Lo> {
    /// Split this number into parts, returning its high and low components
    /// respectively.
    fn split_mixed(&self) -> (Hi, Lo);
}

/// Integers whose representation takes a bounded amount of space.
pub trait Bounded {
    /// Size of this integer in bits.
    const BITS: usize;

    /// Size of this integer in bytes.
    const BYTES: usize;
}

/// Encoding support.
pub trait Encoding: Sized {
    /// Byte array representation.
    type Repr: AsRef<[u8]> + AsMut<[u8]> + Copy + Clone + Sized;

    /// Decode from big endian bytes.
    fn from_be_bytes(bytes: Self::Repr) -> Self;

    /// Decode from little endian bytes.
    fn from_le_bytes(bytes: Self::Repr) -> Self;

    /// Encode to big endian bytes.
    fn to_be_bytes(&self) -> Self::Repr;

    /// Encode to little endian bytes.
    fn to_le_bytes(&self) -> Self::Repr;
}

/// Support for optimized squaring
pub trait Square: Sized
where
    for<'a> &'a Self: core::ops::Mul<&'a Self, Output = Self>,
{
    /// Computes the same as `self.mul(self)`, but may be more efficient.
    fn square(&self) -> Self {
        self * self
    }
}

/// Constant-time exponentiation.
pub trait Pow<Exponent> {
    /// Raises to the `exponent` power.
    fn pow(&self, exponent: &Exponent) -> Self;
}

impl<T: PowBoundedExp<Exponent>, Exponent: Bounded> Pow<Exponent> for T {
    fn pow(&self, exponent: &Exponent) -> Self {
        self.pow_bounded_exp(exponent, Exponent::BITS)
    }
}

/// Constant-time exponentiation with exponent of a bounded bit size.
pub trait PowBoundedExp<Exponent> {
    /// Raises to the `exponent` power,
    /// with `exponent_bits` representing the number of (least significant) bits
    /// to take into account for the exponent.
    ///
    /// NOTE: `exponent_bits` may be leaked in the time pattern.
    fn pow_bounded_exp(&self, exponent: &Exponent, exponent_bits: usize) -> Self;
}

/// Performs modular multi-exponentiation using Montgomery's ladder.
///
/// See: Straus, E. G. Problems and solutions: Addition chains of vectors. American Mathematical Monthly 71 (1964), 806–808.
pub trait MultiExponentiate<Exponent, BasesAndExponents>: Pow<Exponent> + Sized
where
    BasesAndExponents: AsRef<[(Self, Exponent)]> + ?Sized,
{
    /// Calculates `x1 ^ k1 * ... * xn ^ kn`.
    fn multi_exponentiate(bases_and_exponents: &BasesAndExponents) -> Self;
}

impl<T, Exponent, BasesAndExponents> MultiExponentiate<Exponent, BasesAndExponents> for T
where
    T: MultiExponentiateBoundedExp<Exponent, BasesAndExponents>,
    Exponent: Bounded,
    BasesAndExponents: AsRef<[(Self, Exponent)]> + ?Sized,
{
    fn multi_exponentiate(bases_and_exponents: &BasesAndExponents) -> Self {
        Self::multi_exponentiate_bounded_exp(bases_and_exponents, Exponent::BITS)
    }
}

/// Performs modular multi-exponentiation using Montgomery's ladder.
/// `exponent_bits` represents the number of bits to take into account for the exponent.
///
/// See: Straus, E. G. Problems and solutions: Addition chains of vectors. American Mathematical Monthly 71 (1964), 806–808.
///
/// NOTE: this value is leaked in the time pattern.
pub trait MultiExponentiateBoundedExp<Exponent, BasesAndExponents>: Pow<Exponent> + Sized
where
    BasesAndExponents: AsRef<[(Self, Exponent)]> + ?Sized,
{
    /// Calculates `x1 ^ k1 * ... * xn ^ kn`.
    fn multi_exponentiate_bounded_exp(
        bases_and_exponents: &BasesAndExponents,
        exponent_bits: usize,
    ) -> Self;
}

/// Constant-time inversion.
pub trait Invert: Sized {
    /// Output of the inversion.
    type Output;

    /// Computes the inverse.
    fn invert(&self) -> Self::Output;
}