1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
//! Traits provided by this crate
use crate::{Limb, NonZero};
use core::fmt::Debug;
use core::ops::{BitAnd, BitOr, BitXor, Div, Not, Rem, Shl, Shr};
use subtle::{
Choice, ConditionallySelectable, ConstantTimeEq, ConstantTimeGreater, ConstantTimeLess,
CtOption,
};
#[cfg(feature = "rand_core")]
use rand_core::CryptoRngCore;
/// Integer type.
pub trait Integer:
'static
+ AsRef<[Limb]>
+ BitAnd<Output = Self>
+ BitOr<Output = Self>
+ BitXor<Output = Self>
+ for<'a> CheckedAdd<&'a Self, Output = Self>
+ for<'a> CheckedSub<&'a Self, Output = Self>
+ for<'a> CheckedMul<&'a Self, Output = Self>
+ Copy
+ ConditionallySelectable
+ ConstantTimeEq
+ ConstantTimeGreater
+ ConstantTimeLess
+ Debug
+ Default
+ Div<NonZero<Self>, Output = Self>
+ Eq
+ From<u64>
+ Not
+ Ord
+ Rem<NonZero<Self>, Output = Self>
+ Send
+ Sized
+ Shl<usize, Output = Self>
+ Shr<usize, Output = Self>
+ Sync
+ Zero
{
/// The value `1`.
const ONE: Self;
/// Maximum value this integer can express.
const MAX: Self;
/// Total size of the represented integer in bits.
const BITS: usize;
/// Total size of the represented integer in bytes.
const BYTES: usize;
/// The number of limbs used on this platform.
const LIMBS: usize;
/// Is this integer value an odd number?
///
/// # Returns
///
/// If odd, returns `Choice(1)`. Otherwise, returns `Choice(0)`.
fn is_odd(&self) -> Choice;
/// Is this integer value an even number?
///
/// # Returns
///
/// If even, returns `Choice(1)`. Otherwise, returns `Choice(0)`.
fn is_even(&self) -> Choice {
!self.is_odd()
}
}
/// Zero values.
pub trait Zero: ConstantTimeEq + Sized {
/// The value `0`.
const ZERO: Self;
/// Determine if this value is equal to zero.
///
/// # Returns
///
/// If zero, returns `Choice(1)`. Otherwise, returns `Choice(0)`.
fn is_zero(&self) -> Choice {
self.ct_eq(&Self::ZERO)
}
}
/// Random number generation support.
#[cfg(feature = "rand_core")]
pub trait Random: Sized {
/// Generate a cryptographically secure random value.
fn random(rng: &mut impl CryptoRngCore) -> Self;
}
/// Modular random number generation support.
#[cfg(feature = "rand_core")]
pub trait RandomMod: Sized + Zero {
/// Generate a cryptographically secure random number which is less than
/// a given `modulus`.
///
/// This function uses rejection sampling, a method which produces an
/// unbiased distribution of in-range values provided the underlying
/// CSRNG is unbiased, but runs in variable-time.
///
/// The variable-time nature of the algorithm should not pose a security
/// issue so long as the underlying random number generator is truly a
/// CSRNG, where previous outputs are unrelated to subsequent
/// outputs and do not reveal information about the RNG's internal state.
fn random_mod(rng: &mut impl CryptoRngCore, modulus: &NonZero<Self>) -> Self;
}
/// Compute `self + rhs mod p`.
pub trait AddMod<Rhs = Self> {
/// Output type.
type Output;
/// Compute `self + rhs mod p`.
///
/// Assumes `self` and `rhs` are `< p`.
fn add_mod(&self, rhs: &Rhs, p: &Self) -> Self::Output;
}
/// Compute `self - rhs mod p`.
pub trait SubMod<Rhs = Self> {
/// Output type.
type Output;
/// Compute `self - rhs mod p`.
///
/// Assumes `self` and `rhs` are `< p`.
fn sub_mod(&self, rhs: &Rhs, p: &Self) -> Self::Output;
}
/// Compute `-self mod p`.
pub trait NegMod {
/// Output type.
type Output;
/// Compute `-self mod p`.
#[must_use]
fn neg_mod(&self, p: &Self) -> Self::Output;
}
/// Compute `self * rhs mod p`.
///
/// Requires `p_inv = -(p^{-1} mod 2^{BITS}) mod 2^{BITS}` to be provided for efficiency.
pub trait MulMod<Rhs = Self> {
/// Output type.
type Output;
/// Compute `self * rhs mod p`.
///
/// Requires `p_inv = -(p^{-1} mod 2^{BITS}) mod 2^{BITS}` to be provided for efficiency.
fn mul_mod(&self, rhs: &Rhs, p: &Self, p_inv: Limb) -> Self::Output;
}
/// Checked addition.
pub trait CheckedAdd<Rhs = Self>: Sized {
/// Output type.
type Output;
/// Perform checked subtraction, returning a [`CtOption`] which `is_some`
/// only if the operation did not overflow.
fn checked_add(&self, rhs: Rhs) -> CtOption<Self>;
}
/// Checked multiplication.
pub trait CheckedMul<Rhs = Self>: Sized {
/// Output type.
type Output;
/// Perform checked multiplication, returning a [`CtOption`] which `is_some`
/// only if the operation did not overflow.
fn checked_mul(&self, rhs: Rhs) -> CtOption<Self>;
}
/// Checked subtraction.
pub trait CheckedSub<Rhs = Self>: Sized {
/// Output type.
type Output;
/// Perform checked subtraction, returning a [`CtOption`] which `is_some`
/// only if the operation did not underflow.
fn checked_sub(&self, rhs: Rhs) -> CtOption<Self>;
}
/// Concatenate two numbers into a "wide" double-width value, using the `lo`
/// value as the least significant value.
pub trait Concat: ConcatMixed<Self, MixedOutput = Self::Output> {
/// Concatenated output: twice the width of `Self`.
type Output;
/// Concatenate the two halves, with `self` as most significant and `lo`
/// as the least significant.
fn concat(&self, lo: &Self) -> Self::Output {
self.concat_mixed(lo)
}
}
/// Concatenate two numbers into a "wide" combined-width value, using the `lo`
/// value as the least significant value.
pub trait ConcatMixed<Lo: ?Sized = Self> {
/// Concatenated output: combination of `Lo` and `Self`.
type MixedOutput;
/// Concatenate the two values, with `self` as most significant and `lo`
/// as the least significant.
fn concat_mixed(&self, lo: &Lo) -> Self::MixedOutput;
}
/// Split a number in half, returning the most significant half followed by
/// the least significant.
pub trait Split: SplitMixed<Self::Output, Self::Output> {
/// Split output: high/low components of the value.
type Output;
/// Split this number in half, returning its high and low components
/// respectively.
fn split(&self) -> (Self::Output, Self::Output) {
self.split_mixed()
}
}
/// Split a number into parts, returning the most significant part followed by
/// the least significant.
pub trait SplitMixed<Hi, Lo> {
/// Split this number into parts, returning its high and low components
/// respectively.
fn split_mixed(&self) -> (Hi, Lo);
}
/// Integers whose representation takes a bounded amount of space.
pub trait Bounded {
/// Size of this integer in bits.
const BITS: usize;
/// Size of this integer in bytes.
const BYTES: usize;
}
/// Encoding support.
pub trait Encoding: Sized {
/// Byte array representation.
type Repr: AsRef<[u8]> + AsMut<[u8]> + Copy + Clone + Sized;
/// Decode from big endian bytes.
fn from_be_bytes(bytes: Self::Repr) -> Self;
/// Decode from little endian bytes.
fn from_le_bytes(bytes: Self::Repr) -> Self;
/// Encode to big endian bytes.
fn to_be_bytes(&self) -> Self::Repr;
/// Encode to little endian bytes.
fn to_le_bytes(&self) -> Self::Repr;
}
/// Support for optimized squaring
pub trait Square: Sized
where
for<'a> &'a Self: core::ops::Mul<&'a Self, Output = Self>,
{
/// Computes the same as `self.mul(self)`, but may be more efficient.
fn square(&self) -> Self {
self * self
}
}
/// Constant-time exponentiation.
pub trait Pow<Exponent> {
/// Raises to the `exponent` power.
fn pow(&self, exponent: &Exponent) -> Self;
}
impl<T: PowBoundedExp<Exponent>, Exponent: Bounded> Pow<Exponent> for T {
fn pow(&self, exponent: &Exponent) -> Self {
self.pow_bounded_exp(exponent, Exponent::BITS)
}
}
/// Constant-time exponentiation with exponent of a bounded bit size.
pub trait PowBoundedExp<Exponent> {
/// Raises to the `exponent` power,
/// with `exponent_bits` representing the number of (least significant) bits
/// to take into account for the exponent.
///
/// NOTE: `exponent_bits` may be leaked in the time pattern.
fn pow_bounded_exp(&self, exponent: &Exponent, exponent_bits: usize) -> Self;
}
/// Performs modular multi-exponentiation using Montgomery's ladder.
///
/// See: Straus, E. G. Problems and solutions: Addition chains of vectors. American Mathematical Monthly 71 (1964), 806–808.
pub trait MultiExponentiate<Exponent, BasesAndExponents>: Pow<Exponent> + Sized
where
BasesAndExponents: AsRef<[(Self, Exponent)]> + ?Sized,
{
/// Calculates `x1 ^ k1 * ... * xn ^ kn`.
fn multi_exponentiate(bases_and_exponents: &BasesAndExponents) -> Self;
}
impl<T, Exponent, BasesAndExponents> MultiExponentiate<Exponent, BasesAndExponents> for T
where
T: MultiExponentiateBoundedExp<Exponent, BasesAndExponents>,
Exponent: Bounded,
BasesAndExponents: AsRef<[(Self, Exponent)]> + ?Sized,
{
fn multi_exponentiate(bases_and_exponents: &BasesAndExponents) -> Self {
Self::multi_exponentiate_bounded_exp(bases_and_exponents, Exponent::BITS)
}
}
/// Performs modular multi-exponentiation using Montgomery's ladder.
/// `exponent_bits` represents the number of bits to take into account for the exponent.
///
/// See: Straus, E. G. Problems and solutions: Addition chains of vectors. American Mathematical Monthly 71 (1964), 806–808.
///
/// NOTE: this value is leaked in the time pattern.
pub trait MultiExponentiateBoundedExp<Exponent, BasesAndExponents>: Pow<Exponent> + Sized
where
BasesAndExponents: AsRef<[(Self, Exponent)]> + ?Sized,
{
/// Calculates `x1 ^ k1 * ... * xn ^ kn`.
fn multi_exponentiate_bounded_exp(
bases_and_exponents: &BasesAndExponents,
exponent_bits: usize,
) -> Self;
}
/// Constant-time inversion.
pub trait Invert: Sized {
/// Output of the inversion.
type Output;
/// Computes the inverse.
fn invert(&self) -> Self::Output;
}