1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
//! Random number generator support
use super::Uint;
use crate::{Encoding, Limb, NonZero, Random, RandomMod};
use rand_core::CryptoRngCore;
use subtle::ConstantTimeLess;
impl<const LIMBS: usize> Random for Uint<LIMBS> {
/// Generate a cryptographically secure random [`Uint`].
fn random(mut rng: &mut impl CryptoRngCore) -> Self {
let mut limbs = [Limb::ZERO; LIMBS];
for limb in &mut limbs {
*limb = Limb::random(&mut rng)
}
limbs.into()
}
}
impl<const LIMBS: usize> RandomMod for Uint<LIMBS> {
/// Generate a cryptographically secure random [`Uint`] which is less than
/// a given `modulus`.
///
/// This function uses rejection sampling, a method which produces an
/// unbiased distribution of in-range values provided the underlying
/// CSRNG is unbiased, but runs in variable-time.
///
/// The variable-time nature of the algorithm should not pose a security
/// issue so long as the underlying random number generator is truly a
/// CSRNG, where previous outputs are unrelated to subsequent
/// outputs and do not reveal information about the RNG's internal state.
fn random_mod(rng: &mut impl CryptoRngCore, modulus: &NonZero<Self>) -> Self {
let mut n = Self::ZERO;
let n_bits = modulus.as_ref().bits_vartime();
let n_bytes = (n_bits + 7) / 8;
let n_limbs = (n_bits + Limb::BITS - 1) / Limb::BITS;
let hi_bytes = n_bytes - (n_limbs - 1) * Limb::BYTES;
let mut bytes = Limb::ZERO.to_le_bytes();
loop {
for i in 0..n_limbs - 1 {
rng.fill_bytes(bytes.as_mut());
// Need to deserialize from little-endian to make sure that two 32-bit limbs
// deserialized sequentially are equal to one 64-bit limb produced from the same
// byte stream.
n.limbs[i] = Limb::from_le_bytes(bytes);
}
// Generate the high limb which may need to only be filled partially.
bytes.as_mut().fill(0);
rng.fill_bytes(&mut (bytes.as_mut()[0..hi_bytes]));
n.limbs[n_limbs - 1] = Limb::from_le_bytes(bytes);
if n.ct_lt(modulus).into() {
return n;
}
}
}
}
#[cfg(test)]
mod tests {
use crate::{NonZero, RandomMod, U256};
use rand_core::SeedableRng;
#[test]
fn random_mod() {
let mut rng = rand_chacha::ChaCha8Rng::seed_from_u64(1);
// Ensure `random_mod` runs in a reasonable amount of time
let modulus = NonZero::new(U256::from(42u8)).unwrap();
let res = U256::random_mod(&mut rng, &modulus);
// Check that the value is in range
assert!(res >= U256::ZERO);
assert!(res < U256::from(42u8));
// Ensure `random_mod` runs in a reasonable amount of time
// when the modulus is larger than 1 limb
let modulus = NonZero::new(U256::from(0x10000000000000001u128)).unwrap();
let res = U256::random_mod(&mut rng, &modulus);
// Check that the value is in range
assert!(res >= U256::ZERO);
assert!(res < U256::from(0x10000000000000001u128));
}
}