cryptographic_message_syntax/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.
/*! Cryptographic Message Syntax (RFC 5652) in Pure Rust
This crate attempts to implement parts of
[RFC 5652](https://tools.ietf.org/rfc/rfc5652.txt) in pure, safe Rust.
Functionality includes:
* Partial (de)serialization support for ASN.1 data structures. The
Rust structs are all defined. But not everything has (de)serialization
code implemented.
* High-level Rust API for extracting useful attributes from a parsed
`SignedData` structure and performing common operations, such as verifying
signature integrity.
RFC 5652 is quite old. If you are looking to digitally sign content, you may
want to look at something newer, such as RPKI (RFC 6488). (RPKI appears to
be the spiritual success to this specification.)
# IMPORTANT SECURITY LIMITATIONS
**The verification functionality in this crate is purposefully limited
and isn't sufficient for trusting signed data. You need to include additional
trust verification if you are using this crate for verifying signed data.**
This crate exposes functionality to verify signatures and content integrity
of *signed data*. Specifically it can verify that an embedded cryptographic
signature over some arbitrary/embedded content was issued by a known signing
certificate. This answers the question *did certificate X sign content Y*.
This is an important question to answer, but it fails to answer other important
questions such as:
* Is the signature cryptographically strong or weak? Do I trust the signature?
* Do I trust the signer?
Answering *do I trust the signer* is an extremely difficult and nuanced
problem. It entails things like:
* Ensuring the signing certificate is using secure cryptography.
* Validating that the signing certificate is one you think it was or was
issued by a trusted party.
* Validating the certificate isn't expired or hasn't been revoked.
* Validating that the certificate contains attributes/extensions desired
(e.g. a certificate can be earmarked as used for signing code).
If you are using this crate as part of verifying signed content, you need
to have answers to these hard questions. This will require writing code
beyond what is available in this crate. You ideally want to use existing
libraries for this, as getting this correct is difficult. Ideally you would
consult a security/cryptography domain expert for help.
# Technical Notes
RFC 5652 is based off PKCS #7 version 1.5 (RFC 2315). So common tools/libraries
for interacting with PKCS #7 may have success parsing this format. For example,
you can use OpenSSL to read the data structures:
$ openssl pkcs7 -inform DER -in <filename> -print
$ openssl pkcs7 -inform PEM -in <filename> -print
$ openssl asn1parse -inform DER -in <filename>
RFC 5652 uses BER (not DER) for serialization. There were attempts to use
other, more popular BER/DER/ASN.1 serialization crates. However, we could
only get `bcder` working. In a similar vein, there are other crates
implementing support for common ASN.1 functionality, such as serializing
X.509 certificates. Again, many of these depend on serializers that don't
seem to be compatible with BER. So we've recursively defined ASN.1 data
structures referenced by RFC5652 and taught them to serialize using `bcder`.
*/
pub mod asn1;
#[cfg(feature = "http")]
mod signing;
#[cfg(feature = "http")]
mod time_stamp_protocol;
#[cfg(feature = "http")]
pub use {
signing::{SignedDataBuilder, SignerBuilder},
time_stamp_protocol::{
time_stamp_message_http, time_stamp_request_http, TimeStampError, TimeStampResponse,
},
};
pub use {bcder::Oid, bytes::Bytes};
use {
crate::asn1::{
rfc3161::OID_TIME_STAMP_TOKEN,
rfc5652::{
CertificateChoices, SignerIdentifier, Time, OID_CONTENT_TYPE, OID_MESSAGE_DIGEST,
OID_SIGNING_TIME,
},
},
bcder::{Integer, OctetString},
pem::PemError,
ring::{digest::Digest, signature::UnparsedPublicKey},
std::{
collections::HashSet,
fmt::{Debug, Display, Formatter},
ops::Deref,
},
x509_certificate::{
certificate::certificate_is_subset_of, rfc3280::Name, CapturedX509Certificate,
DigestAlgorithm, SignatureAlgorithm, X509Certificate, X509CertificateError,
},
};
#[derive(Debug)]
pub enum CmsError {
/// An error occurred decoding ASN.1 data.
DecodeErr(bcder::decode::DecodeError<std::convert::Infallible>),
/// The content-type attribute is missing from the SignedAttributes structure.
MissingSignedAttributeContentType,
/// The content-type attribute in the SignedAttributes structure is malformed.
MalformedSignedAttributeContentType,
/// The message-digest attribute is missed from the SignedAttributes structure.
MissingSignedAttributeMessageDigest,
/// The message-digest attribute is malformed.
MalformedSignedAttributeMessageDigest,
/// The signing-time signed attribute is malformed.
MalformedSignedAttributeSigningTime,
/// The time-stamp token unsigned attribute is malformed.
MalformedUnsignedAttributeTimeStampToken,
/// Subject key identifiers in signer info is not supported.
SubjectKeyIdentifierUnsupported,
/// A general I/O error occurred.
Io(std::io::Error),
/// An unknown signing key algorithm was encountered.
UnknownKeyAlgorithm(Oid),
/// An unknown message digest algorithm was encountered.
UnknownDigestAlgorithm(Oid),
/// An unknown signature algorithm was encountered.
UnknownSignatureAlgorithm(Oid),
/// An unknown certificate format was encountered.
UnknownCertificateFormat,
/// A certificate was not found.
CertificateNotFound,
/// Signature verification fail.
SignatureVerificationError,
/// No `SignedAttributes` were present when they should have been.
NoSignedAttributes,
/// Two content digests were not equivalent.
DigestNotEqual,
/// Error encoding/decoding PEM data.
Pem(PemError),
/// Error occurred when creating a signature.
SignatureCreation(signature::Error),
/// Attempted to use a `Certificate` but we couldn't find the backing data for it.
CertificateMissingData,
/// Error occurred parsing a distinguished name field in a certificate.
DistinguishedNameParseError,
#[cfg(feature = "http")]
/// Error occurred in Time-Stamp Protocol.
TimeStampProtocol(TimeStampError),
/// Error occurred in the x509-certificate crate.
X509Certificate(X509CertificateError),
}
impl std::error::Error for CmsError {}
impl Display for CmsError {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
match self {
Self::DecodeErr(e) => std::fmt::Display::fmt(e, f),
Self::MissingSignedAttributeContentType => {
f.write_str("content-type attribute missing from SignedAttributes")
}
Self::MalformedSignedAttributeContentType => {
f.write_str("content-type attribute in SignedAttributes is malformed")
}
Self::MissingSignedAttributeMessageDigest => {
f.write_str("message-digest attribute missing from SignedAttributes")
}
Self::MalformedSignedAttributeMessageDigest => {
f.write_str("message-digest attribute in SignedAttributes is malformed")
}
Self::MalformedSignedAttributeSigningTime => {
f.write_str("signing-time attribute in SignedAttributes is malformed")
}
Self::MalformedUnsignedAttributeTimeStampToken => {
f.write_str("time-stamp token attribute in UnsignedAttributes is malformed")
}
Self::SubjectKeyIdentifierUnsupported => {
f.write_str("signer info using subject key identifier is not supported")
}
Self::Io(e) => std::fmt::Display::fmt(e, f),
Self::UnknownKeyAlgorithm(oid) => {
f.write_fmt(format_args!("unknown signing key algorithm: {}", oid))
}
Self::UnknownDigestAlgorithm(oid) => {
f.write_fmt(format_args!("unknown digest algorithm: {}", oid))
}
Self::UnknownSignatureAlgorithm(oid) => {
f.write_fmt(format_args!("unknown signature algorithm: {}", oid))
}
Self::UnknownCertificateFormat => f.write_str("unknown certificate format"),
Self::CertificateNotFound => f.write_str("certificate not found"),
Self::SignatureVerificationError => f.write_str("signature verification failed"),
Self::NoSignedAttributes => f.write_str("SignedAttributes structure is missing"),
Self::DigestNotEqual => f.write_str("digests not equivalent"),
Self::Pem(e) => f.write_fmt(format_args!("PEM error: {}", e)),
Self::SignatureCreation(e) => {
f.write_fmt(format_args!("error during signature creation: {}", e))
}
Self::CertificateMissingData => f.write_str("certificate data not available"),
Self::DistinguishedNameParseError => {
f.write_str("could not parse distinguished name data")
}
#[cfg(feature = "http")]
Self::TimeStampProtocol(e) => {
f.write_fmt(format_args!("Time-Stamp Protocol error: {}", e))
}
Self::X509Certificate(e) => {
f.write_fmt(format_args!("X.509 certificate error: {:?}", e))
}
}
}
}
impl From<bcder::decode::DecodeError<std::convert::Infallible>> for CmsError {
fn from(e: bcder::decode::DecodeError<std::convert::Infallible>) -> Self {
Self::DecodeErr(e)
}
}
impl From<std::io::Error> for CmsError {
fn from(e: std::io::Error) -> Self {
Self::Io(e)
}
}
impl From<PemError> for CmsError {
fn from(e: PemError) -> Self {
Self::Pem(e)
}
}
#[cfg(feature = "http")]
impl From<TimeStampError> for CmsError {
fn from(e: TimeStampError) -> Self {
Self::TimeStampProtocol(e)
}
}
impl From<signature::Error> for CmsError {
fn from(e: signature::Error) -> Self {
Self::SignatureCreation(e)
}
}
impl From<X509CertificateError> for CmsError {
fn from(e: X509CertificateError) -> Self {
Self::X509Certificate(e)
}
}
/// Represents a CMS SignedData structure.
///
/// This is the high-level type representing a CMS signature of some data.
/// It contains a description of what was signed, the cryptographic signature
/// of what was signed, and likely the X.509 certificate chain for the
/// signing key.
///
/// This is a high-level data structure that ultimately gets (de)serialized
/// from/to ASN.1. It exists to facilitate common interactions with the
/// low-level ASN.1 without exposing the complexity of ASN.1.
#[derive(Clone)]
pub struct SignedData {
/// Content digest algorithms used.
digest_algorithms: HashSet<DigestAlgorithm>,
/// Content that was signed.
///
/// This is optional because signed content can also be articulated
/// via signed attributes inside the `SignerInfo` structure.
signed_content: Option<Vec<u8>>,
/// Certificates embedded within the data structure.
///
/// While not required, it is common for the SignedData data structure
/// to embed the X.509 certificates used to sign the data within. This
/// field holds those certificates.
///
/// Typically the root CA is first and the actual signing certificate is
/// last.
certificates: Option<Vec<CapturedX509Certificate>>,
/// Describes content signatures.
signers: Vec<SignerInfo>,
}
impl Debug for SignedData {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
let mut s = f.debug_struct("SignedData");
s.field("digest_algorithms", &self.digest_algorithms);
s.field(
"signed_content",
&format_args!("{:?}", self.signed_content.as_ref().map(hex::encode)),
);
s.field("certificates", &self.certificates);
s.field("signers", &self.signers);
s.finish()
}
}
impl SignedData {
/// Construct an instance by parsing BER data.
pub fn parse_ber(data: &[u8]) -> Result<Self, CmsError> {
Self::try_from(&crate::asn1::rfc5652::SignedData::decode_ber(data)?)
}
/// Compute the digest of the encapsulated content using a specified algorithm.
///
/// The returned value is likely used as the `message-digest` attribute type
/// for use within signed attributes.
///
/// You can get the raw bytes of the digest by calling its `.as_ref()`.
pub fn message_digest_with_algorithm(&self, alg: DigestAlgorithm) -> Digest {
let mut hasher = alg.digester();
if let Some(content) = &self.signed_content {
hasher.update(content);
}
hasher.finish()
}
/// Obtain encapsulated content that was signed.
///
/// This is the defined `encapContentInfo cContent` value.
pub fn signed_content(&self) -> Option<&[u8]> {
if let Some(content) = &self.signed_content {
Some(content)
} else {
None
}
}
pub fn certificates(&self) -> Box<dyn Iterator<Item = &CapturedX509Certificate> + '_> {
match self.certificates.as_ref() {
Some(certs) => Box::new(certs.iter()),
None => Box::new(std::iter::empty()),
}
}
/// Obtain signing information attached to this instance.
///
/// Each iterated value represents an entity that cryptographically signed
/// the content. Use these objects to validate the signed data.
pub fn signers(&self) -> impl Iterator<Item = &SignerInfo> {
self.signers.iter()
}
}
impl TryFrom<&crate::asn1::rfc5652::SignedData> for SignedData {
type Error = CmsError;
fn try_from(raw: &crate::asn1::rfc5652::SignedData) -> Result<Self, Self::Error> {
let digest_algorithms = raw
.digest_algorithms
.iter()
.map(DigestAlgorithm::try_from)
.collect::<Result<HashSet<_>, _>>()?;
let signed_content = raw
.content_info
.content
.as_ref()
.map(|content| content.to_bytes().to_vec());
let certificates = if let Some(certs) = &raw.certificates {
Some(
certs
.iter()
.map(|choice| match choice {
CertificateChoices::Certificate(cert) => {
// Doing the ASN.1 round-tripping here isn't ideal and may
// lead to correctness bugs.
let cert = X509Certificate::from(cert.deref().clone());
let cert_ber = cert.encode_ber()?;
Ok(CapturedX509Certificate::from_ber(cert_ber)?)
}
_ => Err(CmsError::UnknownCertificateFormat),
})
.collect::<Result<Vec<_>, CmsError>>()?,
)
} else {
None
};
let signers = raw
.signer_infos
.iter()
.map(SignerInfo::try_from)
.collect::<Result<Vec<_>, CmsError>>()?;
Ok(Self {
digest_algorithms,
signed_content,
certificates,
signers,
})
}
}
/// Represents a CMS SignerInfo structure.
///
/// This is a high-level interface to the SignerInfo ASN.1 type. It supports
/// performing common operations against that type.
///
/// Instances of this type are logically equivalent to a single
/// signed assertion within a `SignedData` payload. There can be multiple
/// signers per `SignedData`, which is why this type exists on its own.
#[derive(Clone)]
pub struct SignerInfo {
/// The X.509 certificate issuer.
issuer: Name,
/// The X.509 certificate serial number.
serial_number: Integer,
/// The algorithm used for digesting signed content.
digest_algorithm: DigestAlgorithm,
/// Algorithm used for signing the digest.
signature_algorithm: SignatureAlgorithm,
/// The cryptographic signature.
signature: Vec<u8>,
/// Parsed signed attributes.
signed_attributes: Option<SignedAttributes>,
/// Raw data constituting SignedAttributes that needs to be digested.
digested_signed_attributes_data: Option<Vec<u8>>,
/// Parsed unsigned attributes.
unsigned_attributes: Option<UnsignedAttributes>,
}
impl Debug for SignerInfo {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
let mut s = f.debug_struct("SignerInfo");
s.field("issuer", &self.issuer);
s.field("serial_number", &self.serial_number);
s.field("digest_algorithm", &self.digest_algorithm);
s.field("signature_algorithm", &self.signature_algorithm);
s.field(
"signature",
&format_args!("{}", hex::encode(&self.signature)),
);
s.field("signed_attributes", &self.signed_attributes);
s.field(
"digested_signed_attributes_data",
&format_args!(
"{:?}",
self.digested_signed_attributes_data
.as_ref()
.map(hex::encode)
),
);
s.field("unsigned_attributes", &self.unsigned_attributes);
s.finish()
}
}
impl SignerInfo {
/// Obtain the signing X.509 certificate's issuer name and its serial number.
///
/// The returned value can be used to locate the certificate so
/// verification can be performed.
pub fn certificate_issuer_and_serial(&self) -> Option<(&Name, &Integer)> {
Some((&self.issuer, &self.serial_number))
}
/// Obtain the message digest algorithm used by this signer.
pub fn digest_algorithm(&self) -> DigestAlgorithm {
self.digest_algorithm
}
/// Obtain the cryptographic signing algorithm used by this signer.
pub fn signature_algorithm(&self) -> SignatureAlgorithm {
self.signature_algorithm
}
/// Obtain the raw bytes constituting the cryptographic signature.
///
/// This is the signature that should be verified.
pub fn signature(&self) -> &[u8] {
&self.signature
}
/// Obtain the `SignedAttributes` attached to this instance.
pub fn signed_attributes(&self) -> Option<&SignedAttributes> {
self.signed_attributes.as_ref()
}
/// Obtain the `UnsignedAttributes` attached to this instance.
pub fn unsigned_attributes(&self) -> Option<&UnsignedAttributes> {
self.unsigned_attributes.as_ref()
}
/// Verifies the signature defined by this signer given a [SignedData] instance.
///
/// This function will perform cryptographic verification that the signature
/// contained within this `SignerInfo` instance is valid for the content that
/// was signed. The content that was signed is the encapsulated content from
/// the `SignedData` instance (its `.signed_data()` value) combined with
/// the `SignedAttributes` attached to this instance.
///
/// # IMPORTANT SECURITY LIMITATIONS
///
/// This method only performs signature verification. It:
///
/// * DOES NOT verify the digest hash embedded within `SignedAttributes` (if present).
/// * DOES NOT validate the signing certificate in any way.
/// * DOES NOT validate that the cryptography used is appropriate.
/// * DOES NOT verify the time stamp token, if present.
///
/// See the crate's documentation for more on the security implications.
pub fn verify_signature_with_signed_data(
&self,
signed_data: &SignedData,
) -> Result<(), CmsError> {
let signed_content = self.signed_content_with_signed_data(signed_data);
self.verify_signature_with_signed_data_and_content(signed_data, &signed_content)
}
/// Verifies the signature defined by this signer given a [SignedData] and signed content.
///
/// This function will perform cryptographic verification that the signature contained within
/// this [SignerInfo] is valid for `signed_content`. Unlike
/// [Self::verify_signature_with_signed_data()], the content that was signed is passed in
/// explicitly instead of derived from [SignedData].
///
/// This is a low-level API that bypasses the normal rules for deriving the raw content a
/// cryptographic signature was made over. You probably want to use
/// [Self::verify_signature_with_signed_data()] instead. Also note that `signed_content` here
/// may or may not be the _encapsulated content_ which is ultimately signed.
///
/// This method only performs cryptographic signature verification. It is therefore subject
/// to the same limitations as [Self::verify_signature_with_signed_data()].
pub fn verify_signature_with_signed_data_and_content(
&self,
signed_data: &SignedData,
signed_content: &[u8],
) -> Result<(), CmsError> {
let verifier = self.signature_verifier(signed_data.certificates())?;
let signature = self.signature();
verifier
.verify(signed_content, signature)
.map_err(|_| CmsError::SignatureVerificationError)
}
/// Verifies the digest stored in signed attributes matches that of content in a `SignedData`.
///
/// If signed attributes are present on this instance, they must contain
/// a `message-digest` attribute defining the digest of data that was
/// signed. The specification says this digested data should come from
/// the encapsulated content within `SignedData` (`SignedData.signed_content()`).
///
/// Note that some utilities of CMS will not store a computed digest
/// in `message-digest` that came from `SignedData` or is using
/// the digest algorithm indicated by this `SignerInfo`. This is strictly
/// in violation of the specification but it does occur.
///
/// # IMPORTANT SECURITY LIMITATIONS
///
/// This method only performs message digest verification. It:
///
/// * DOES NOT verify the signature over the signed data or anything about
/// the signer.
/// * DOES NOT validate that the digest algorithm is strong/appropriate.
/// * DOES NOT compare the digests in a manner that is immune to timing
/// side-channels.
///
/// See the crate's documentation for more on the security implications.
pub fn verify_message_digest_with_signed_data(
&self,
signed_data: &SignedData,
) -> Result<(), CmsError> {
let signed_attributes = self
.signed_attributes()
.ok_or(CmsError::NoSignedAttributes)?;
let wanted_digest: &[u8] = signed_attributes.message_digest.as_ref();
let got_digest = self.compute_digest_with_signed_data(signed_data);
// Susceptible to timing side-channel but we don't care per function
// documentation.
if wanted_digest == got_digest.as_ref() {
Ok(())
} else {
Err(CmsError::DigestNotEqual)
}
}
/// Verifies the message digest stored in signed attributes using explicit encapsulated content.
///
/// Typically, the digest is computed over content stored in the [SignedData] instance.
/// However, it is possible for the signed content to be external. This function
/// allows you to define the source of that external content.
///
/// Behavior is very similar to [SignerInfo::verify_message_digest_with_signed_data]
/// except the original content that was digested is explicitly passed in. This
/// content is appended with the signed attributes data on this [SignerInfo].
///
/// The security limitations from [SignerInfo::verify_message_digest_with_signed_data]
/// apply to this function as well.
pub fn verify_message_digest_with_content(&self, data: &[u8]) -> Result<(), CmsError> {
let signed_attributes = self
.signed_attributes()
.ok_or(CmsError::NoSignedAttributes)?;
let wanted_digest: &[u8] = signed_attributes.message_digest.as_ref();
let got_digest = self.compute_digest(Some(data));
// Susceptible to timing side-channel but we don't care per function
// documentation.
if wanted_digest == got_digest.as_ref() {
Ok(())
} else {
Err(CmsError::DigestNotEqual)
}
}
/// Obtain an entity for validating the signature described by this instance.
///
/// This will attempt to locate the certificate used by this signing info
/// structure in the passed iterable of certificates and then construct
/// a signature verifier that can be used to verify content integrity.
///
/// If the certificate referenced by this signing info could not be found,
/// an error occurs.
///
/// If the signing key's algorithm or signature algorithm aren't supported,
/// an error occurs.
pub fn signature_verifier<'a, C>(
&self,
mut certs: C,
) -> Result<UnparsedPublicKey<Vec<u8>>, CmsError>
where
C: Iterator<Item = &'a CapturedX509Certificate>,
{
// The issuer of this signature is matched against the list of certificates.
let signing_cert = certs
.find(|cert| {
// We're only verifying signatures here, not validating the certificate.
// So even if the certificate comparison functionality is incorrect
// (the called function does non-exact matching of the RdnSequence in
// case the candidate certs have extra fields), that shouldn't have
// security implications.
certificate_is_subset_of(
&self.serial_number,
&self.issuer,
cert.serial_number_asn1(),
cert.issuer_name(),
)
})
.ok_or(CmsError::CertificateNotFound)?;
let key_algorithm = signing_cert.key_algorithm().ok_or_else(|| {
CmsError::UnknownKeyAlgorithm(signing_cert.key_algorithm_oid().clone())
})?;
let verification_algorithm = self
.signature_algorithm
.resolve_verification_algorithm(key_algorithm)?;
let public_key = UnparsedPublicKey::new(
verification_algorithm,
signing_cert.public_key_data().to_vec(),
);
Ok(public_key)
}
/// Resolve the time-stamp token [SignedData] for this signer.
///
/// The time-stamp token is a SignedData ASN.1 structure embedded as an unsigned
/// attribute. This is a convenience method to extract it and turn it into
/// a [SignedData].
///
/// Returns `Ok(Some)` on success, `Ok(None)` if there is no time-stamp token,
/// and `Err` if there is a parsing error.
pub fn time_stamp_token_signed_data(&self) -> Result<Option<SignedData>, CmsError> {
if let Some(attrs) = self.unsigned_attributes() {
if let Some(signed_data) = &attrs.time_stamp_token {
Ok(Some(SignedData::try_from(signed_data)?))
} else {
Ok(None)
}
} else {
Ok(None)
}
}
/// Verify the time-stamp token in this instance.
///
/// The time-stamp token is a SignedData ASN.1 structure embedded as an unsigned
/// attribute. So this method reconstructs that data structure and effectively
/// calls [SignerInfo::verify_signature_with_signed_data] and
/// [SignerInfo::verify_message_digest_with_signed_data].
///
/// Returns `Ok(None)` if there is no time-stamp token and `Ok(Some(()))` if
/// there is and the token validates. `Err` occurs on any parse or verification
/// error.
pub fn verify_time_stamp_token(&self) -> Result<Option<()>, CmsError> {
let signed_data = if let Some(v) = self.time_stamp_token_signed_data()? {
v
} else {
return Ok(None);
};
if signed_data.signers.is_empty() {
return Ok(None);
}
for signer in signed_data.signers() {
signer.verify_signature_with_signed_data(&signed_data)?;
signer.verify_message_digest_with_signed_data(&signed_data)?;
}
Ok(Some(()))
}
/// Obtain the raw bytes of content that was signed given a `SignedData`.
///
/// This joins the encapsulated content from `SignedData` with `SignedAttributes`
/// on this instance to produce a new blob. This new blob is the message
/// that is signed and whose signature is embedded in `SignerInfo` instances.
pub fn signed_content_with_signed_data(&self, signed_data: &SignedData) -> Vec<u8> {
self.signed_content(signed_data.signed_content())
}
/// Obtain the raw bytes of content that were digested and signed.
///
/// The returned value is the message that was signed and whose signature
/// of which needs to be verified.
///
/// The optional content argument is the `encapContentInfo eContent`
/// field, typically the value of `SignedData.signed_content()`.
pub fn signed_content(&self, content: Option<&[u8]>) -> Vec<u8> {
// Per RFC 5652 Section 5.4:
//
// The result of the message digest calculation process depends on
// whether the signedAttrs field is present. When the field is absent,
// the result is just the message digest of the content as described
// above. When the field is present, however, the result is the message
// digest of the complete DER encoding of the SignedAttrs value
// contained in the signedAttrs field. Since the SignedAttrs value,
// when present, must contain the content-type and the message-digest
// attributes, those values are indirectly included in the result. The
// content-type attribute MUST NOT be included in a countersignature
// unsigned attribute as defined in Section 11.4. A separate encoding
// of the signedAttrs field is performed for message digest calculation.
// The IMPLICIT [0] tag in the signedAttrs is not used for the DER
// encoding, rather an EXPLICIT SET OF tag is used. That is, the DER
// encoding of the EXPLICIT SET OF tag, rather than of the IMPLICIT [0]
// tag, MUST be included in the message digest calculation along with
// the length and content octets of the SignedAttributes value.
if let Some(signed_attributes_data) = &self.digested_signed_attributes_data {
signed_attributes_data.clone()
} else if let Some(content) = content {
content.to_vec()
} else {
vec![]
}
}
/// Obtain the raw bytes constituting `SignerInfo.signedAttrs` as encoded for signatures.
///
/// Cryptographic signatures in the `SignerInfo` ASN.1 type are made from the digest
/// of the `EXPLICIT SET OF` DER encoding of `SignerInfo.signedAttrs`, if signed
/// attributes are present. This function resolves the raw bytes that are used
/// for digest computation and later signing.
///
/// This should always be `Some` if the instance was constructed from an ASN.1
/// value that had signed attributes.
pub fn signed_attributes_data(&self) -> Option<&[u8]> {
self.digested_signed_attributes_data
.as_ref()
.map(|x| x.as_ref())
}
/// Compute a message digest using a `SignedData` instance.
///
/// This will obtain the encapsulated content blob from a `SignedData`
/// and digest it using the algorithm configured on this instance.
///
/// The resulting digest is typically stored in the `message-digest`
/// attribute of `SignedData`.
pub fn compute_digest_with_signed_data(&self, signed_data: &SignedData) -> Digest {
self.compute_digest(signed_data.signed_content())
}
/// Compute a message digest using the configured algorithm.
///
/// This method calls into `compute_digest_with_algorithm()` using the
/// digest algorithm stored in this instance.
pub fn compute_digest(&self, content: Option<&[u8]>) -> Digest {
self.compute_digest_with_algorithm(content, self.digest_algorithm)
}
/// Compute a message digest using an explicit digest algorithm.
///
/// This will compute the hash/digest of the passed in content.
pub fn compute_digest_with_algorithm(
&self,
content: Option<&[u8]>,
alg: DigestAlgorithm,
) -> Digest {
let mut hasher = alg.digester();
if let Some(content) = content {
hasher.update(content);
}
hasher.finish()
}
}
impl TryFrom<&crate::asn1::rfc5652::SignerInfo> for SignerInfo {
type Error = CmsError;
fn try_from(signer_info: &crate::asn1::rfc5652::SignerInfo) -> Result<Self, Self::Error> {
let (issuer, serial_number) = match &signer_info.sid {
SignerIdentifier::IssuerAndSerialNumber(issuer) => {
(issuer.issuer.clone(), issuer.serial_number.clone())
}
SignerIdentifier::SubjectKeyIdentifier(_) => {
return Err(CmsError::SubjectKeyIdentifierUnsupported);
}
};
let digest_algorithm = DigestAlgorithm::try_from(&signer_info.digest_algorithm)?;
// The "signature" algorithm can also be a key algorithm identifier. So we
// attempt to resolve using the more robust mechanism.
let signature_algorithm = SignatureAlgorithm::from_oid_and_digest_algorithm(
&signer_info.signature_algorithm.algorithm,
digest_algorithm,
)?;
let signature = signer_info.signature.to_bytes().to_vec();
let signed_attributes = if let Some(attributes) = &signer_info.signed_attributes {
// Content type attribute MUST be present.
let content_type = attributes
.iter()
.find(|attr| attr.typ == OID_CONTENT_TYPE)
.ok_or(CmsError::MissingSignedAttributeContentType)?;
// Content type attribute MUST have exactly 1 value.
if content_type.values.len() != 1 {
return Err(CmsError::MalformedSignedAttributeContentType);
}
let content_type = content_type
.values
.first()
.unwrap()
.deref()
.clone()
.decode(Oid::take_from)
.map_err(|_| CmsError::MalformedSignedAttributeContentType)?;
// Message digest attribute MUST be present.
let message_digest = attributes
.iter()
.find(|attr| attr.typ == OID_MESSAGE_DIGEST)
.ok_or(CmsError::MissingSignedAttributeMessageDigest)?;
// Message digest attribute MUST have exactly 1 value.
if message_digest.values.len() != 1 {
return Err(CmsError::MalformedSignedAttributeMessageDigest);
}
let message_digest = message_digest
.values
.first()
.unwrap()
.deref()
.clone()
.decode(OctetString::take_from)
.map_err(|_| CmsError::MalformedSignedAttributeMessageDigest)?
.to_bytes()
.to_vec();
// Signing time is optional, but common. So we pull it out for convenience.
let signing_time = attributes
.iter()
.find(|attr| attr.typ == OID_SIGNING_TIME)
.map(|attr| {
if attr.values.len() != 1 {
Err(CmsError::MalformedSignedAttributeSigningTime)
} else {
let time = attr
.values
.first()
.unwrap()
.deref()
.clone()
.decode(Time::take_from)?;
let time = chrono::DateTime::from(time);
Ok(time)
}
})
.transpose()?;
Some(SignedAttributes {
content_type,
message_digest,
signing_time,
raw: attributes.clone(),
})
} else {
None
};
let digested_signed_attributes_data = signer_info.signed_attributes_digested_content()?;
let unsigned_attributes = if let Some(attributes) = &signer_info.unsigned_attributes {
let time_stamp_token = attributes
.iter()
.find(|attr| attr.typ == OID_TIME_STAMP_TOKEN)
.map(|attr| {
if attr.values.len() != 1 {
Err(CmsError::MalformedUnsignedAttributeTimeStampToken)
} else {
Ok(attr
.values
.first()
.unwrap()
.deref()
.clone()
.decode(crate::asn1::rfc5652::SignedData::decode)?)
}
})
.transpose()?;
Some(UnsignedAttributes { time_stamp_token })
} else {
None
};
Ok(SignerInfo {
issuer,
serial_number,
digest_algorithm,
signature_algorithm,
signature,
signed_attributes,
digested_signed_attributes_data,
unsigned_attributes,
})
}
}
/// Represents the contents of a CMS SignedAttributes structure.
///
/// This is a high-level interface to the SignedAttributes ASN.1 type.
#[derive(Clone)]
pub struct SignedAttributes {
/// The content type of the value being signed.
///
/// This is often `OID_ID_DATA`.
content_type: Oid,
/// Holds the digest of the content that was signed.
message_digest: Vec<u8>,
/// The time the signature was created.
signing_time: Option<chrono::DateTime<chrono::Utc>>,
/// The raw ASN.1 signed attributes.
raw: crate::asn1::rfc5652::SignedAttributes,
}
impl SignedAttributes {
pub fn content_type(&self) -> &Oid {
&self.content_type
}
pub fn message_digest(&self) -> &[u8] {
&self.message_digest
}
pub fn signing_time(&self) -> Option<&chrono::DateTime<chrono::Utc>> {
self.signing_time.as_ref()
}
pub fn attributes(&self) -> &crate::asn1::rfc5652::SignedAttributes {
&self.raw
}
}
impl Debug for SignedAttributes {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
let mut s = f.debug_struct("SignedAttributes");
s.field("content_type", &format_args!("{}", self.content_type));
s.field(
"message_digest",
&format_args!("{}", hex::encode(&self.message_digest)),
);
s.field("signing_time", &self.signing_time);
s.finish()
}
}
#[derive(Clone, Debug)]
pub struct UnsignedAttributes {
/// Time-Stamp Token from a Time-Stamp Protocol server.
time_stamp_token: Option<crate::asn1::rfc5652::SignedData>,
}
#[cfg(test)]
mod tests {
use {
super::*,
bcder::{encode::Values, Mode},
};
// This signature was extracted from the Firefox.app/Contents/MacOS/firefox
// Mach-O executable on a aarch64 machine.
const FIREFOX_SIGNATURE: &[u8] = include_bytes!("testdata/firefox.ber");
const FIREFOX_CODE_DIRECTORY: &[u8] = include_bytes!("testdata/firefox-code-directory");
#[test]
fn parse_firefox() {
let raw = crate::asn1::rfc5652::SignedData::decode_ber(FIREFOX_SIGNATURE).unwrap();
// Try to round trip it.
let mut buffer = Vec::new();
raw.encode_ref()
.write_encoded(Mode::Ber, &mut buffer)
.unwrap();
// The bytes aren't identical because we use definite length encoding, so we can't
// compare that. But we can compare the parsed objects for equivalence.
let raw2 = crate::asn1::rfc5652::SignedData::decode_ber(&buffer).unwrap();
assert_eq!(raw, raw2, "BER round tripping is identical");
}
#[test]
fn verify_firefox() {
let signed_data = SignedData::parse_ber(FIREFOX_SIGNATURE).unwrap();
for signer in signed_data.signers.iter() {
signer
.verify_signature_with_signed_data(&signed_data)
.unwrap();
// The message-digest does NOT match the encapsulated data in Apple code
// signature's use of CMS. So digest verification will fail.
signer
.verify_message_digest_with_signed_data(&signed_data)
.unwrap_err();
// But we know what that value is. So plug it in to verify.
signer
.verify_message_digest_with_content(FIREFOX_CODE_DIRECTORY)
.unwrap();
// Now verify the time-stamp token embedded as an unsigned attribute.
let tst_signed_data = signer.time_stamp_token_signed_data().unwrap().unwrap();
for signer in tst_signed_data.signers() {
signer
.verify_message_digest_with_signed_data(&tst_signed_data)
.unwrap();
signer
.verify_signature_with_signed_data(&tst_signed_data)
.unwrap();
}
}
}
#[test]
fn parse_no_certificate_version() {
let signed = SignedData::parse_ber(include_bytes!("testdata/no-cert-version.ber")).unwrap();
let cert_orig = signed.certificates().collect::<Vec<_>>()[0].clone();
let cert = CapturedX509Certificate::from_der(cert_orig.encode_ber().unwrap()).unwrap();
assert_eq!(
hex::encode(cert.sha256_fingerprint().unwrap()),
"b7c2eefd8dac7806af67dfcd92eb18126bc08312a7f2d6f3862e46013c7a6135"
);
}
const IZZYSOFT_SIGNED_DATA: &[u8] = include_bytes!("testdata/izzysoft-signeddata");
const IZZYSOFT_DATA: &[u8] = include_bytes!("testdata/izzysoft-data");
#[test]
fn verify_izzysoft() {
let signed = SignedData::parse_ber(IZZYSOFT_SIGNED_DATA).unwrap();
let cert = signed.certificates().next().unwrap();
for signer in signed.signers() {
// The signed data is external. So this method will fail since it isn't looking at
// the correct source data.
assert!(matches!(
signer.verify_signature_with_signed_data(&signed),
Err(CmsError::SignatureVerificationError)
));
// There are no signed attributes. So this should error for that reason.
assert!(matches!(
signer.verify_message_digest_with_signed_data(&signed),
Err(CmsError::NoSignedAttributes)
));
assert!(matches!(
signer.verify_message_digest_with_signed_data(&signed),
Err(CmsError::NoSignedAttributes)
));
// The certificate advertises SHA-256 for digests but the signature was made with
// SHA-1. So the default algorithm choice will fail.
assert!(matches!(
cert.verify_signed_data(IZZYSOFT_DATA, signer.signature()),
Err(X509CertificateError::CertificateSignatureVerificationFailed)
));
// But it verifies when SHA-1 digests are forced!
cert.verify_signed_data_with_algorithm(
IZZYSOFT_DATA,
signer.signature(),
&ring::signature::RSA_PKCS1_2048_8192_SHA1_FOR_LEGACY_USE_ONLY,
)
.unwrap();
signer
.verify_signature_with_signed_data_and_content(&signed, IZZYSOFT_DATA)
.unwrap();
let verifier = signer.signature_verifier(signed.certificates()).unwrap();
verifier.verify(IZZYSOFT_DATA, signer.signature()).unwrap();
}
}
}