1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
use std::result;
use futures::io::{self, AsyncWrite};
use crate::AsyncWriterBuilder;
use crate::byte_record::ByteRecord;
use crate::error::Result;
use super::AsyncWriterImpl;
impl AsyncWriterBuilder {
/// Build a CSV writer from this configuration that writes data to `wtr`.
///
/// Note that the CSV writer is buffered automatically, so you should not
/// wrap `wtr` in a buffered writer like.
///
/// # Example
///
/// ```
/// use std::error::Error;
/// use csv_async::AsyncWriterBuilder;
///
/// # fn main() { async_std::task::block_on(async {example().await.unwrap()}); }
/// async fn example() -> Result<(), Box<dyn Error>> {
/// let mut wtr = AsyncWriterBuilder::new().create_writer(vec![]);
/// wtr.write_record(&["a", "b", "c"]).await?;
/// wtr.write_record(&["x", "y", "z"]).await?;
///
/// let data = String::from_utf8(wtr.into_inner().await?)?;
/// assert_eq!(data, "a,b,c\nx,y,z\n");
/// Ok(())
/// }
/// ```
pub fn create_writer<W: AsyncWrite + Unpin>(&self, wtr: W) -> AsyncWriter<W> {
AsyncWriter::new(self, wtr)
}
}
/// An already configured CSV writer.
///
/// A CSV writer takes as input Rust values and writes those values in a valid
/// CSV format as output.
///
/// While CSV writing is considerably easier than parsing CSV, a proper writer
/// will do a number of things for you:
///
/// 1. Quote fields when necessary.
/// 2. Check that all records have the same number of fields.
/// 3. Write records with a single empty field correctly.
/// 4. Use buffering intelligently and otherwise avoid allocation. (This means
/// that callers should not do their own buffering.)
///
/// All of the above can be configured using a
/// [`AsyncWriterBuilder`](struct.AsyncWriterBuilder.html).
/// However, a `AsyncWriter` has convenient constructor (from_writer`)
/// that use the default configuration.
///
/// Note that the default configuration of a `AsyncWriter` uses `\n` for record
/// terminators instead of `\r\n` as specified by RFC 4180. Use the
/// `terminator` method on `AsyncWriterBuilder` to set the terminator to `\r\n` if
/// it's desired.
#[derive(Debug)]
pub struct AsyncWriter<W: AsyncWrite + Unpin>(AsyncWriterImpl<W>);
impl<W: AsyncWrite + Unpin> AsyncWriter<W> {
fn new(builder: &AsyncWriterBuilder, wtr: W) -> AsyncWriter<W> {
AsyncWriter(AsyncWriterImpl::new(builder, wtr))
}
/// Build a CSV writer with a default configuration that writes data to
/// `wtr`.
///
/// Note that the CSV writer is buffered automatically, so you should not
/// wrap `wtr` in a buffered writer.
///
/// # Example
///
/// ```
/// use std::error::Error;
/// use csv_async::AsyncWriter;
///
/// # fn main() { async_std::task::block_on(async {example().await.unwrap()}); }
/// async fn example() -> Result<(), Box<dyn Error>> {
/// let mut wtr = AsyncWriter::from_writer(vec![]);
/// wtr.write_record(&["a", "b", "c"]).await?;
/// wtr.write_record(&["x", "y", "z"]).await?;
///
/// let data = String::from_utf8(wtr.into_inner().await?)?;
/// assert_eq!(data, "a,b,c\nx,y,z\n");
/// Ok(())
/// }
/// ```
pub fn from_writer(wtr: W) -> AsyncWriter<W> {
AsyncWriterBuilder::new().create_writer(wtr)
}
/// Write a single record.
///
/// This method accepts something that can be turned into an iterator that
/// yields elements that can be represented by a `&[u8]`.
///
/// This may be called with an empty iterator, which will cause a record
/// terminator to be written. If no fields had been written, then a single
/// empty field is written before the terminator.
///
/// # Example
///
/// ```
/// use std::error::Error;
/// use csv_async::AsyncWriter;
///
/// # fn main() { async_std::task::block_on(async {example().await.unwrap()}); }
/// async fn example() -> Result<(), Box<dyn Error>> {
/// let mut wtr = AsyncWriter::from_writer(vec![]);
/// wtr.write_record(&["a", "b", "c"]).await?;
/// wtr.write_record(&["x", "y", "z"]).await?;
///
/// let data = String::from_utf8(wtr.into_inner().await?)?;
/// assert_eq!(data, "a,b,c\nx,y,z\n");
/// Ok(())
/// }
/// ```
#[inline]
pub async fn write_record<I, T>(&mut self, record: I) -> Result<()>
where
I: IntoIterator<Item = T>,
T: AsRef<[u8]>,
{
self.0.write_record(record).await
}
/// Write a single `ByteRecord`.
///
/// This method accepts a borrowed `ByteRecord` and writes its contents
/// to the underlying writer.
///
/// This is similar to `write_record` except that it specifically requires
/// a `ByteRecord`. This permits the writer to possibly write the record
/// more quickly than the more generic `write_record`.
///
/// This may be called with an empty record, which will cause a record
/// terminator to be written. If no fields had been written, then a single
/// empty field is written before the terminator.
///
/// # Example
///
/// ```
/// use std::error::Error;
/// use csv_async::{ByteRecord, AsyncWriter};
///
/// # fn main() { async_std::task::block_on(async {example().await.unwrap()}); }
/// async fn example() -> Result<(), Box<dyn Error>> {
/// let mut wtr = AsyncWriter::from_writer(vec![]);
/// wtr.write_byte_record(&ByteRecord::from(&["a", "b", "c"][..])).await?;
/// wtr.write_byte_record(&ByteRecord::from(&["x", "y", "z"][..])).await?;
///
/// let data = String::from_utf8(wtr.into_inner().await?)?;
/// assert_eq!(data, "a,b,c\nx,y,z\n");
/// Ok(())
/// }
/// ```
#[inline]
pub async fn write_byte_record(&mut self, record: &ByteRecord) -> Result<()> {
self.0.write_byte_record(record).await
}
/// Write a single field.
///
/// One should prefer using `write_record` over this method. It is provided
/// for cases where writing a field at a time is more convenient than
/// writing a record at a time.
///
/// Note that if this API is used, `write_record` should be called with an
/// empty iterator to write a record terminator.
///
/// # Example
///
/// ```
/// use std::error::Error;
/// use csv_async::AsyncWriter;
///
/// # fn main() { async_std::task::block_on(async {example().await.unwrap()}); }
/// async fn example() -> Result<(), Box<dyn Error>> {
/// let mut wtr = AsyncWriter::from_writer(vec![]);
/// wtr.write_field("a").await?;
/// wtr.write_field("b").await?;
/// wtr.write_field("c").await?;
/// wtr.write_record(None::<&[u8]>).await?;
/// wtr.write_field("x").await?;
/// wtr.write_field("y").await?;
/// wtr.write_field("z").await?;
/// wtr.write_record(None::<&[u8]>).await?;
///
/// let data = String::from_utf8(wtr.into_inner().await?)?;
/// assert_eq!(data, "a,b,c\nx,y,z\n");
/// Ok(())
/// }
/// ```
#[inline]
pub async fn write_field<T: AsRef<[u8]>>(&mut self, field: T) -> Result<()> {
self.0.write_field(field).await
}
/// Flush the contents of the internal buffer to the underlying writer.
///
/// If there was a problem writing to the underlying writer, then an error
/// is returned.
///
/// This finction is also called by writer destructor.
#[inline]
pub async fn flush(&mut self) -> io::Result<()> {
self.0.flush().await
}
/// Flush the contents of the internal buffer and return the underlying writer.
///
pub async fn into_inner(
self,
) -> result::Result<W, io::Error> {
match self.0.into_inner().await {
Ok(w) => Ok(w),
Err(err) => Err(err.into_error()),
}
}
}
#[cfg(test)]
mod tests {
use std::pin::Pin;
use std::task::{Context, Poll};
use futures::io;
use crate::byte_record::ByteRecord;
use crate::error::ErrorKind;
use crate::string_record::StringRecord;
use super::{AsyncWriter, AsyncWriterBuilder};
async fn wtr_as_string<'w>(wtr: AsyncWriter<Vec<u8>>) -> String {
String::from_utf8(wtr.into_inner().await.unwrap()).unwrap()
}
#[async_std::test]
async fn one_record() {
let mut wtr = AsyncWriter::from_writer(vec![]);
wtr.write_record(&["a", "b", "c"]).await.unwrap();
assert_eq!(wtr_as_string(wtr).await, "a,b,c\n");
}
#[async_std::test]
async fn one_string_record() {
let mut wtr = AsyncWriter::from_writer(vec![]);
wtr.write_record(&StringRecord::from(vec!["a", "b", "c"])).await.unwrap();
assert_eq!(wtr_as_string(wtr).await, "a,b,c\n");
}
#[async_std::test]
async fn one_byte_record() {
let mut wtr = AsyncWriter::from_writer(vec![]);
wtr.write_record(&ByteRecord::from(vec!["a", "b", "c"])).await.unwrap();
assert_eq!(wtr_as_string(wtr).await, "a,b,c\n");
}
#[async_std::test]
async fn raw_one_byte_record() {
let mut wtr = AsyncWriter::from_writer(vec![]);
wtr.write_byte_record(&ByteRecord::from(vec!["a", "b", "c"])).await.unwrap();
assert_eq!(wtr_as_string(wtr).await, "a,b,c\n");
}
#[async_std::test]
async fn one_empty_record() {
let mut wtr = AsyncWriter::from_writer(vec![]);
wtr.write_record(&[""]).await.unwrap();
assert_eq!(wtr_as_string(wtr).await, "\"\"\n");
}
#[async_std::test]
async fn raw_one_empty_record() {
let mut wtr = AsyncWriter::from_writer(vec![]);
wtr.write_byte_record(&ByteRecord::from(vec![""])).await.unwrap();
assert_eq!(wtr_as_string(wtr).await, "\"\"\n");
}
#[async_std::test]
async fn two_empty_records() {
let mut wtr = AsyncWriter::from_writer(vec![]);
wtr.write_record(&[""]).await.unwrap();
wtr.write_record(&[""]).await.unwrap();
assert_eq!(wtr_as_string(wtr).await, "\"\"\n\"\"\n");
}
#[async_std::test]
async fn raw_two_empty_records() {
let mut wtr = AsyncWriter::from_writer(vec![]);
wtr.write_byte_record(&ByteRecord::from(vec![""])).await.unwrap();
wtr.write_byte_record(&ByteRecord::from(vec![""])).await.unwrap();
assert_eq!(wtr_as_string(wtr).await, "\"\"\n\"\"\n");
}
#[async_std::test]
async fn unequal_records_bad() {
let mut wtr = AsyncWriter::from_writer(vec![]);
wtr.write_record(&ByteRecord::from(vec!["a", "b", "c"])).await.unwrap();
let err = wtr.write_record(&ByteRecord::from(vec!["a"])).await.unwrap_err();
match *err.kind() {
ErrorKind::UnequalLengths { ref pos, expected_len, len } => {
assert!(pos.is_none());
assert_eq!(expected_len, 3);
assert_eq!(len, 1);
}
ref x => {
panic!("expected UnequalLengths error, but got '{:?}'", x);
}
}
}
#[async_std::test]
async fn raw_unequal_records_bad() {
let mut wtr = AsyncWriter::from_writer(vec![]);
wtr.write_byte_record(&ByteRecord::from(vec!["a", "b", "c"])).await.unwrap();
let err =
wtr.write_byte_record(&ByteRecord::from(vec!["a"])).await.unwrap_err();
match *err.kind() {
ErrorKind::UnequalLengths { ref pos, expected_len, len } => {
assert!(pos.is_none());
assert_eq!(expected_len, 3);
assert_eq!(len, 1);
}
ref x => {
panic!("expected UnequalLengths error, but got '{:?}'", x);
}
}
}
#[async_std::test]
async fn unequal_records_ok() {
let mut wtr = AsyncWriterBuilder::new().flexible(true).create_writer(vec![]);
wtr.write_record(&ByteRecord::from(vec!["a", "b", "c"])).await.unwrap();
wtr.write_record(&ByteRecord::from(vec!["a"])).await.unwrap();
assert_eq!(wtr_as_string(wtr).await, "a,b,c\na\n");
}
#[async_std::test]
async fn raw_unequal_records_ok() {
let mut wtr = AsyncWriterBuilder::new().flexible(true).create_writer(vec![]);
wtr.write_byte_record(&ByteRecord::from(vec!["a", "b", "c"])).await.unwrap();
wtr.write_byte_record(&ByteRecord::from(vec!["a"])).await.unwrap();
assert_eq!(wtr_as_string(wtr).await, "a,b,c\na\n");
}
#[async_std::test]
async fn full_buffer_should_not_flush_underlying() {
#[derive(Debug)]
struct MarkWriteAndFlush(Vec<u8>);
impl MarkWriteAndFlush {
fn to_str(self) -> String {
String::from_utf8(self.0).unwrap()
}
}
impl io::AsyncWrite for MarkWriteAndFlush {
fn poll_write(
mut self: Pin<&mut Self>,
_: &mut Context,
buf: &[u8]
) -> Poll<Result<usize, io::Error>> {
use std::io::Write;
self.0.write(b">").unwrap();
let written = self.0.write(buf).unwrap();
assert_eq!(written, buf.len());
self.0.write(b"<").unwrap();
// AsyncWriteExt::write_all panics if write returns more than buf.len()
// Poll::Ready(Ok(written + 2))
Poll::Ready(Ok(written))
}
fn poll_flush(mut self: Pin<&mut Self>, _: &mut Context) -> Poll<Result<(), io::Error>> {
use std::io::Write;
self.0.write(b"!").unwrap();
Poll::Ready(Ok(()))
}
fn poll_close(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Result<(), io::Error>> {
self.poll_flush(cx)
}
}
let underlying = MarkWriteAndFlush(vec![]);
let mut wtr =
AsyncWriterBuilder::new().buffer_capacity(4).create_writer(underlying);
wtr.write_byte_record(&ByteRecord::from(vec!["a", "b"])).await.unwrap();
wtr.write_byte_record(&ByteRecord::from(vec!["c", "d"])).await.unwrap();
wtr.flush().await.unwrap();
wtr.write_byte_record(&ByteRecord::from(vec!["e", "f"])).await.unwrap();
let got = wtr.into_inner().await.unwrap().to_str();
// As the buffer size is 4 we should write each record separately, and
// flush when explicitly called and implictly in into_inner.
assert_eq!(got, ">a,b\n<>c,d\n<!>e,f\n<!");
}
}