1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
use std::result;

use futures::io::{self, AsyncWrite, AsyncWriteExt};
use serde::Serialize;

use crate::AsyncWriterBuilder;
use crate::error::{IntoInnerError, Result};
use super::mwtr_serde::MemWriter;

impl AsyncWriterBuilder {
    /// Build a CSV `serde` serializer from this configuration that writes data to `ser`.
    ///
    /// Note that the CSV serializer is buffered automatically, so you should not
    /// wrap `ser` in a buffered writer.
    ///
    /// # Example
    ///
    /// ```
    /// use std::error::Error;
    /// use csv_async::AsyncWriterBuilder;
    /// use serde::Serialize;
    ///
    /// #[derive(Serialize)]
    /// struct Row<'a> {
    ///     name: &'a str,
    ///     x: u64,
    ///     y: u64,
    /// }
    ///
    /// # fn main() { async_std::task::block_on(async {example().await.unwrap()}); }
    /// async fn example() -> Result<(), Box<dyn Error>> {
    ///     let mut ser = AsyncWriterBuilder::new().has_headers(false).create_serializer(vec![]);
    ///     ser.serialize(Row {name: "p1", x: 1, y: 2}).await?;
    ///     ser.serialize(Row {name: "p2", x: 3, y: 4}).await?;
    ///
    ///     let data = String::from_utf8(ser.into_inner().await?)?;
    ///     assert_eq!(data, "p1,1,2\np2,3,4\n");
    ///     Ok(())
    /// }
    /// ```
    pub fn create_serializer<W: AsyncWrite + Unpin>(&self, wtr: W) -> AsyncSerializer<W> {
        AsyncSerializer::new(self, wtr)
    }
}

/// An already configured CSV `serde` serializer.
///
/// A CSV serializer takes as input Rust structures that implement `serde::Serialize` trait
/// and writes those data in a valid CSV output.
///
/// While CSV writing is considerably easier than parsing CSV, a proper writer
/// will do a number of things for you:
///
/// 1. Quote fields when necessary.
/// 2. Check that all records have the same number of fields.
/// 3. Write records with a single empty field correctly.
/// 4. Automatically serialize normal Rust types to CSV records. When that
///    type is a struct, a header row is automatically written corresponding
///    to the fields of that struct.
/// 5. Use buffering intelligently and otherwise avoid allocation. (This means
///    that callers should not do their own buffering.)
///
/// All of the above can be configured using a
/// [`AsyncWriterBuilder`](struct.AsyncWriterBuilder.html).
/// However, a `AsyncSerializer` has convenient constructor (`from_writer`) 
/// that use the default configuration.
///
/// Note that the default configuration of a `AsyncSerializer` uses `\n` for record
/// terminators instead of `\r\n` as specified by RFC 4180. Use the
/// `terminator` method on `AsyncWriterBuilder` to set the terminator to `\r\n` if
/// it's desired.
#[derive(Debug)]
pub struct AsyncSerializer<W: AsyncWrite + Unpin> {
    ser_wtr: MemWriter,
    asy_wtr: Option<W>,
}

impl<W: AsyncWrite + Unpin> Drop for AsyncSerializer<W> {
    fn drop(&mut self) {
        // We ignore result of flush() call while dropping
        // Well known problem.
        // If you care about flush result call it explicitly 
        // before AsyncSerializer goes out of scope,
        // second flush() call should be no op.
        let _ = futures::executor::block_on(self.flush());
    }
}

impl<W: AsyncWrite + Unpin> AsyncSerializer<W> {
    fn new(builder: &AsyncWriterBuilder, wtr: W) -> Self {
        AsyncSerializer {
            ser_wtr: MemWriter::new(builder),
            asy_wtr: Some(wtr),
        }
    }

    /// Build a CSV serializer with a default configuration that writes data to
    /// `ser`.
    ///
    /// Note that the CSV serializer is buffered automatically, so you should not
    /// wrap `ser` in a buffered writer.
    ///
    /// # Example
    ///
    /// ```
    /// use std::error::Error;
    /// use csv_async::AsyncSerializer;
    /// use serde::Serialize;
    ///
    /// #[derive(Serialize)]
    /// struct Row<'a> {
    ///     name: &'a str,
    ///     x: u64,
    ///     y: u64,
    /// }
    ///
    /// # fn main() { async_std::task::block_on(async {example().await.unwrap()}); }
    /// async fn example() -> Result<(), Box<dyn Error>> {
    ///     let mut ser = AsyncSerializer::from_writer(vec![]);
    ///     ser.serialize(Row {name: "p1", x: 1, y: 2}).await?;
    ///     ser.serialize(Row {name: "p2", x: 3, y: 4}).await?;
    ///
    ///     let data = String::from_utf8(ser.into_inner().await?)?;
    ///     assert_eq!(data, "name,x,y\np1,1,2\np2,3,4\n");
    ///     Ok(())
    /// }
    /// ```
    pub fn from_writer(wtr: W) -> AsyncSerializer<W> {
        AsyncWriterBuilder::new().create_serializer(wtr)
    }

    /// Serialize a single record using Serde.
    ///
    /// # Example
    ///
    /// This shows how to serialize normal Rust structs as CSV records. The
    /// fields of the struct are used to write a header row automatically.
    /// (Writing the header row automatically can be disabled by building the
    /// CSV writer with a [`WriterBuilder`](struct.WriterBuilder.html) and
    /// calling the `has_headers` method.)
    ///
    /// ```
    /// use std::error::Error;
    /// use csv_async::AsyncSerializer;
    /// use serde::Serialize;
    ///
    /// #[derive(Serialize)]
    /// struct Row<'a> {
    ///     city: &'a str,
    ///     country: &'a str,
    ///     // Serde allows us to name our headers exactly,
    ///     // even if they don't match our struct field names.
    ///     #[serde(rename = "popcount")]
    ///     population: u64,
    /// }
    ///
    /// # fn main() { async_std::task::block_on(async {example().await.unwrap()}); }
    /// async fn example() -> Result<(), Box<dyn Error>> {
    ///     let mut ser = AsyncSerializer::from_writer(vec![]);
    ///     ser.serialize(Row {
    ///         city: "Boston",
    ///         country: "United States",
    ///         population: 4628910,
    ///     }).await?;
    ///     ser.serialize(Row {
    ///         city: "Concord",
    ///         country: "United States",
    ///         population: 42695,
    ///     }).await?;
    ///
    ///     let data = String::from_utf8(ser.into_inner().await?)?;
    ///     assert_eq!(data, indoc::indoc! {"
    ///         city,country,popcount
    ///         Boston,United States,4628910
    ///         Concord,United States,42695
    ///     "});
    ///     Ok(())
    /// }
    /// ```
    ///
    /// # Rules
    ///
    /// The behavior of `serialize` is fairly simple:
    ///
    /// 1. Nested containers (tuples, `Vec`s, structs, etc.) are always
    ///    flattened (depth-first order).
    ///
    /// 2. If `has_headers` is `true` and the type contains field names, then
    ///    a header row is automatically generated.
    ///
    /// However, some container types cannot be serialized, and if
    /// `has_headers` is `true`, there are some additional restrictions on the
    /// types that can be serialized. See below for details.
    ///
    /// For the purpose of this section, Rust types can be divided into three
    /// categories: scalars, non-struct containers, and structs.
    ///
    /// ## Scalars
    ///
    /// Single values with no field names are written like the following. Note
    /// that some of the outputs may be quoted, according to the selected
    /// quoting style.
    ///
    /// | Name | Example Type | Example Value | Output |
    /// | ---- | ---- | ---- | ---- |
    /// | boolean | `bool` | `true` | `true` |
    /// | integers | `i8`, `i16`, `i32`, `i64`, `i128`, `u8`, `u16`, `u32`, `u64`, `u128` | `5` | `5` |
    /// | floats | `f32`, `f64` | `3.14` | `3.14` |
    /// | character | `char` | `'☃'` | `☃` |
    /// | string | `&str` | `"hi"` | `hi` |
    /// | bytes | `&[u8]` | `b"hi"[..]` | `hi` |
    /// | option | `Option` | `None` | *empty* |
    /// | option |          | `Some(5)` | `5` |
    /// | unit | `()` | `()` | *empty* |
    /// | unit struct | `struct Foo;` | `Foo` | `Foo` |
    /// | unit enum variant | `enum E { A, B }` | `E::A` | `A` |
    /// | newtype struct | `struct Foo(u8);` | `Foo(5)` | `5` |
    /// | newtype enum variant | `enum E { A(u8) }` | `E::A(5)` | `5` |
    ///
    /// Note that this table includes simple structs and enums. For example, to
    /// serialize a field from either an integer or a float type, one can do
    /// this:
    ///
    /// ```
    /// use std::error::Error;
    ///
    /// use csv_async::AsyncSerializer;
    /// use serde::Serialize;
    ///
    /// #[derive(Serialize)]
    /// struct Row {
    ///     label: String,
    ///     value: Value,
    /// }
    ///
    /// #[derive(Serialize)]
    /// enum Value {
    ///     Integer(i64),
    ///     Float(f64),
    /// }
    ///
    /// # fn main() { async_std::task::block_on(async {example().await.unwrap()}); }
    /// async fn example() -> Result<(), Box<dyn Error>> {
    ///     let mut ser = AsyncSerializer::from_writer(vec![]);
    ///     ser.serialize(Row {
    ///         label: "foo".to_string(),
    ///         value: Value::Integer(3),
    ///     }).await?;
    ///     ser.serialize(Row {
    ///         label: "bar".to_string(),
    ///         value: Value::Float(3.14),
    ///     }).await?;
    ///
    ///     let data = String::from_utf8(ser.into_inner().await?)?;
    ///     assert_eq!(data, indoc::indoc! {"
    ///         label,value
    ///         foo,3
    ///         bar,3.14
    ///     "});
    ///     Ok(())
    /// }
    /// ```
    ///
    /// ## Non-Struct Containers
    ///
    /// Nested containers are flattened to their scalar components, with the
    /// exception of a few types that are not allowed:
    ///
    /// | Name | Example Type | Example Value | Output |
    /// | ---- | ---- | ---- | ---- |
    /// | sequence | `Vec<u8>` | `vec![1, 2, 3]` | `1,2,3` |
    /// | tuple | `(u8, bool)` | `(5, true)` | `5,true` |
    /// | tuple struct | `Foo(u8, bool)` | `Foo(5, true)` | `5,true` |
    /// | tuple enum variant | `enum E { A(u8, bool) }` | `E::A(5, true)` | *error* |
    /// | struct enum variant | `enum E { V { a: u8, b: bool } }` | `E::V { a: 5, b: true }` | *error* |
    /// | map | `BTreeMap<K, V>` | `BTreeMap::new()` | *error* |
    ///
    /// ## Structs
    ///
    /// Like the other containers, structs are flattened to their scalar
    /// components:
    ///
    /// | Name | Example Type | Example Value | Output |
    /// | ---- | ---- | ---- | ---- |
    /// | struct | `struct Foo { a: u8, b: bool }` | `Foo { a: 5, b: true }` | `5,true` |
    ///
    /// If `has_headers` is `false`, then there are no additional restrictions;
    /// types can be nested arbitrarily. For example:
    ///
    /// ```
    /// use std::error::Error;
    /// use csv_async::AsyncWriterBuilder;
    /// use serde::Serialize;
    ///
    /// #[derive(Serialize)]
    /// struct Row {
    ///     label: String,
    ///     values: Vec<f64>,
    /// }
    ///
    /// # fn main() { async_std::task::block_on(async {example().await.unwrap()}); }
    /// async fn example() -> Result<(), Box<dyn Error>> {
    ///     let mut ser = AsyncWriterBuilder::new()
    ///         .has_headers(false)
    ///         .create_serializer(vec![]);
    ///     ser.serialize(Row {
    ///         label: "foo".to_string(),
    ///         values: vec![1.1234, 2.5678, 3.14],
    ///     }).await?;
    ///
    ///     let data = String::from_utf8(ser.into_inner().await?)?;
    ///     assert_eq!(data, indoc::indoc! {"
    ///         foo,1.1234,2.5678,3.14
    ///     "});
    ///     Ok(())
    /// }
    /// ```
    ///
    /// However, if `has_headers` were enabled in the above example, then
    /// serialization would return an error. Specifically, when `has_headers` is
    /// `true`, there are two restrictions:
    ///
    /// 1. Named field values in structs must be scalars.
    ///
    /// 2. All scalars must be named field values in structs.
    ///
    /// Other than these two restrictions, types can be nested arbitrarily.
    /// Here are a few examples:
    ///
    /// | Value | Header | Record |
    /// | ---- | ---- | ---- |
    /// | `(Foo { x: 5, y: 6 }, Bar { z: true })` | `x,y,z` | `5,6,true` |
    /// | `vec![Foo { x: 5, y: 6 }, Foo { x: 7, y: 8 }]` | `x,y,x,y` | `5,6,7,8` |
    /// | `(Foo { x: 5, y: 6 }, vec![Bar { z: Baz(true) }])` | `x,y,z` | `5,6,true` |
    /// | `Foo { x: 5, y: (6, 7) }` | *error: restriction 1* | `5,6,7` |
    /// | `(5, Foo { x: 6, y: 7 }` | *error: restriction 2* | `5,6,7` |
    /// | `(Foo { x: 5, y: 6 }, true)` | *error: restriction 2* | `5,6,true` |
    pub async fn serialize<S: Serialize>(&mut self, record: S) -> Result<()> {
        self.ser_wtr.serialize(record)?;
        self.ser_wtr.flush()?;
        self.asy_wtr.as_mut().unwrap().write_all(self.ser_wtr.data()).await?;
        self.ser_wtr.clear();
        Ok(())
    }

    /// Flushes the underlying asynchronous writer.
    pub async fn flush(&mut self) -> io::Result<()> {
        if let Some(ref mut asy_wtr) = self.asy_wtr {
            asy_wtr.flush().await?;
        }
        Ok(())
    }

    /// Flush the contents of the internal buffer and return the underlying
    /// writer.
    pub async fn into_inner(
        mut self,
    ) -> result::Result<W, IntoInnerError<AsyncSerializer<W>>> {
        match self.flush().await {
            Ok(()) => Ok(self.asy_wtr.take().unwrap()),
            Err(err) => Err(IntoInnerError::new(self, err)),
        }
    }
}