1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
use std::result;
use futures::io::{self, AsyncWrite, AsyncWriteExt};
use serde::Serialize;
use crate::AsyncWriterBuilder;
use crate::error::{IntoInnerError, Result};
use super::mwtr_serde::MemWriter;
impl AsyncWriterBuilder {
/// Build a CSV `serde` serializer from this configuration that writes data to `ser`.
///
/// Note that the CSV serializer is buffered automatically, so you should not
/// wrap `ser` in a buffered writer.
///
/// # Example
///
/// ```
/// use std::error::Error;
/// use csv_async::AsyncWriterBuilder;
/// use serde::Serialize;
///
/// #[derive(Serialize)]
/// struct Row<'a> {
/// name: &'a str,
/// x: u64,
/// y: u64,
/// }
///
/// # fn main() { async_std::task::block_on(async {example().await.unwrap()}); }
/// async fn example() -> Result<(), Box<dyn Error>> {
/// let mut ser = AsyncWriterBuilder::new().has_headers(false).create_serializer(vec![]);
/// ser.serialize(Row {name: "p1", x: 1, y: 2}).await?;
/// ser.serialize(Row {name: "p2", x: 3, y: 4}).await?;
///
/// let data = String::from_utf8(ser.into_inner().await?)?;
/// assert_eq!(data, "p1,1,2\np2,3,4\n");
/// Ok(())
/// }
/// ```
pub fn create_serializer<W: AsyncWrite + Unpin>(&self, wtr: W) -> AsyncSerializer<W> {
AsyncSerializer::new(self, wtr)
}
}
/// An already configured CSV `serde` serializer.
///
/// A CSV serializer takes as input Rust structures that implement `serde::Serialize` trait
/// and writes those data in a valid CSV output.
///
/// While CSV writing is considerably easier than parsing CSV, a proper writer
/// will do a number of things for you:
///
/// 1. Quote fields when necessary.
/// 2. Check that all records have the same number of fields.
/// 3. Write records with a single empty field correctly.
/// 4. Automatically serialize normal Rust types to CSV records. When that
/// type is a struct, a header row is automatically written corresponding
/// to the fields of that struct.
/// 5. Use buffering intelligently and otherwise avoid allocation. (This means
/// that callers should not do their own buffering.)
///
/// All of the above can be configured using a
/// [`AsyncWriterBuilder`](struct.AsyncWriterBuilder.html).
/// However, a `AsyncSerializer` has convenient constructor (`from_writer`)
/// that use the default configuration.
///
/// Note that the default configuration of a `AsyncSerializer` uses `\n` for record
/// terminators instead of `\r\n` as specified by RFC 4180. Use the
/// `terminator` method on `AsyncWriterBuilder` to set the terminator to `\r\n` if
/// it's desired.
#[derive(Debug)]
pub struct AsyncSerializer<W: AsyncWrite + Unpin> {
ser_wtr: MemWriter,
asy_wtr: Option<W>,
}
impl<W: AsyncWrite + Unpin> Drop for AsyncSerializer<W> {
fn drop(&mut self) {
// We ignore result of flush() call while dropping
// Well known problem.
// If you care about flush result call it explicitly
// before AsyncSerializer goes out of scope,
// second flush() call should be no op.
let _ = futures::executor::block_on(self.flush());
}
}
impl<W: AsyncWrite + Unpin> AsyncSerializer<W> {
fn new(builder: &AsyncWriterBuilder, wtr: W) -> Self {
AsyncSerializer {
ser_wtr: MemWriter::new(builder),
asy_wtr: Some(wtr),
}
}
/// Build a CSV serializer with a default configuration that writes data to
/// `ser`.
///
/// Note that the CSV serializer is buffered automatically, so you should not
/// wrap `ser` in a buffered writer.
///
/// # Example
///
/// ```
/// use std::error::Error;
/// use csv_async::AsyncSerializer;
/// use serde::Serialize;
///
/// #[derive(Serialize)]
/// struct Row<'a> {
/// name: &'a str,
/// x: u64,
/// y: u64,
/// }
///
/// # fn main() { async_std::task::block_on(async {example().await.unwrap()}); }
/// async fn example() -> Result<(), Box<dyn Error>> {
/// let mut ser = AsyncSerializer::from_writer(vec![]);
/// ser.serialize(Row {name: "p1", x: 1, y: 2}).await?;
/// ser.serialize(Row {name: "p2", x: 3, y: 4}).await?;
///
/// let data = String::from_utf8(ser.into_inner().await?)?;
/// assert_eq!(data, "name,x,y\np1,1,2\np2,3,4\n");
/// Ok(())
/// }
/// ```
pub fn from_writer(wtr: W) -> AsyncSerializer<W> {
AsyncWriterBuilder::new().create_serializer(wtr)
}
/// Serialize a single record using Serde.
///
/// # Example
///
/// This shows how to serialize normal Rust structs as CSV records. The
/// fields of the struct are used to write a header row automatically.
/// (Writing the header row automatically can be disabled by building the
/// CSV writer with a [`WriterBuilder`](struct.WriterBuilder.html) and
/// calling the `has_headers` method.)
///
/// ```
/// use std::error::Error;
/// use csv_async::AsyncSerializer;
/// use serde::Serialize;
///
/// #[derive(Serialize)]
/// struct Row<'a> {
/// city: &'a str,
/// country: &'a str,
/// // Serde allows us to name our headers exactly,
/// // even if they don't match our struct field names.
/// #[serde(rename = "popcount")]
/// population: u64,
/// }
///
/// # fn main() { async_std::task::block_on(async {example().await.unwrap()}); }
/// async fn example() -> Result<(), Box<dyn Error>> {
/// let mut ser = AsyncSerializer::from_writer(vec![]);
/// ser.serialize(Row {
/// city: "Boston",
/// country: "United States",
/// population: 4628910,
/// }).await?;
/// ser.serialize(Row {
/// city: "Concord",
/// country: "United States",
/// population: 42695,
/// }).await?;
///
/// let data = String::from_utf8(ser.into_inner().await?)?;
/// assert_eq!(data, indoc::indoc! {"
/// city,country,popcount
/// Boston,United States,4628910
/// Concord,United States,42695
/// "});
/// Ok(())
/// }
/// ```
///
/// # Rules
///
/// The behavior of `serialize` is fairly simple:
///
/// 1. Nested containers (tuples, `Vec`s, structs, etc.) are always
/// flattened (depth-first order).
///
/// 2. If `has_headers` is `true` and the type contains field names, then
/// a header row is automatically generated.
///
/// However, some container types cannot be serialized, and if
/// `has_headers` is `true`, there are some additional restrictions on the
/// types that can be serialized. See below for details.
///
/// For the purpose of this section, Rust types can be divided into three
/// categories: scalars, non-struct containers, and structs.
///
/// ## Scalars
///
/// Single values with no field names are written like the following. Note
/// that some of the outputs may be quoted, according to the selected
/// quoting style.
///
/// | Name | Example Type | Example Value | Output |
/// | ---- | ---- | ---- | ---- |
/// | boolean | `bool` | `true` | `true` |
/// | integers | `i8`, `i16`, `i32`, `i64`, `i128`, `u8`, `u16`, `u32`, `u64`, `u128` | `5` | `5` |
/// | floats | `f32`, `f64` | `3.14` | `3.14` |
/// | character | `char` | `'☃'` | `☃` |
/// | string | `&str` | `"hi"` | `hi` |
/// | bytes | `&[u8]` | `b"hi"[..]` | `hi` |
/// | option | `Option` | `None` | *empty* |
/// | option | | `Some(5)` | `5` |
/// | unit | `()` | `()` | *empty* |
/// | unit struct | `struct Foo;` | `Foo` | `Foo` |
/// | unit enum variant | `enum E { A, B }` | `E::A` | `A` |
/// | newtype struct | `struct Foo(u8);` | `Foo(5)` | `5` |
/// | newtype enum variant | `enum E { A(u8) }` | `E::A(5)` | `5` |
///
/// Note that this table includes simple structs and enums. For example, to
/// serialize a field from either an integer or a float type, one can do
/// this:
///
/// ```
/// use std::error::Error;
///
/// use csv_async::AsyncSerializer;
/// use serde::Serialize;
///
/// #[derive(Serialize)]
/// struct Row {
/// label: String,
/// value: Value,
/// }
///
/// #[derive(Serialize)]
/// enum Value {
/// Integer(i64),
/// Float(f64),
/// }
///
/// # fn main() { async_std::task::block_on(async {example().await.unwrap()}); }
/// async fn example() -> Result<(), Box<dyn Error>> {
/// let mut ser = AsyncSerializer::from_writer(vec![]);
/// ser.serialize(Row {
/// label: "foo".to_string(),
/// value: Value::Integer(3),
/// }).await?;
/// ser.serialize(Row {
/// label: "bar".to_string(),
/// value: Value::Float(3.14),
/// }).await?;
///
/// let data = String::from_utf8(ser.into_inner().await?)?;
/// assert_eq!(data, indoc::indoc! {"
/// label,value
/// foo,3
/// bar,3.14
/// "});
/// Ok(())
/// }
/// ```
///
/// ## Non-Struct Containers
///
/// Nested containers are flattened to their scalar components, with the
/// exception of a few types that are not allowed:
///
/// | Name | Example Type | Example Value | Output |
/// | ---- | ---- | ---- | ---- |
/// | sequence | `Vec<u8>` | `vec![1, 2, 3]` | `1,2,3` |
/// | tuple | `(u8, bool)` | `(5, true)` | `5,true` |
/// | tuple struct | `Foo(u8, bool)` | `Foo(5, true)` | `5,true` |
/// | tuple enum variant | `enum E { A(u8, bool) }` | `E::A(5, true)` | *error* |
/// | struct enum variant | `enum E { V { a: u8, b: bool } }` | `E::V { a: 5, b: true }` | *error* |
/// | map | `BTreeMap<K, V>` | `BTreeMap::new()` | *error* |
///
/// ## Structs
///
/// Like the other containers, structs are flattened to their scalar
/// components:
///
/// | Name | Example Type | Example Value | Output |
/// | ---- | ---- | ---- | ---- |
/// | struct | `struct Foo { a: u8, b: bool }` | `Foo { a: 5, b: true }` | `5,true` |
///
/// If `has_headers` is `false`, then there are no additional restrictions;
/// types can be nested arbitrarily. For example:
///
/// ```
/// use std::error::Error;
/// use csv_async::AsyncWriterBuilder;
/// use serde::Serialize;
///
/// #[derive(Serialize)]
/// struct Row {
/// label: String,
/// values: Vec<f64>,
/// }
///
/// # fn main() { async_std::task::block_on(async {example().await.unwrap()}); }
/// async fn example() -> Result<(), Box<dyn Error>> {
/// let mut ser = AsyncWriterBuilder::new()
/// .has_headers(false)
/// .create_serializer(vec![]);
/// ser.serialize(Row {
/// label: "foo".to_string(),
/// values: vec![1.1234, 2.5678, 3.14],
/// }).await?;
///
/// let data = String::from_utf8(ser.into_inner().await?)?;
/// assert_eq!(data, indoc::indoc! {"
/// foo,1.1234,2.5678,3.14
/// "});
/// Ok(())
/// }
/// ```
///
/// However, if `has_headers` were enabled in the above example, then
/// serialization would return an error. Specifically, when `has_headers` is
/// `true`, there are two restrictions:
///
/// 1. Named field values in structs must be scalars.
///
/// 2. All scalars must be named field values in structs.
///
/// Other than these two restrictions, types can be nested arbitrarily.
/// Here are a few examples:
///
/// | Value | Header | Record |
/// | ---- | ---- | ---- |
/// | `(Foo { x: 5, y: 6 }, Bar { z: true })` | `x,y,z` | `5,6,true` |
/// | `vec![Foo { x: 5, y: 6 }, Foo { x: 7, y: 8 }]` | `x,y,x,y` | `5,6,7,8` |
/// | `(Foo { x: 5, y: 6 }, vec![Bar { z: Baz(true) }])` | `x,y,z` | `5,6,true` |
/// | `Foo { x: 5, y: (6, 7) }` | *error: restriction 1* | `5,6,7` |
/// | `(5, Foo { x: 6, y: 7 }` | *error: restriction 2* | `5,6,7` |
/// | `(Foo { x: 5, y: 6 }, true)` | *error: restriction 2* | `5,6,true` |
pub async fn serialize<S: Serialize>(&mut self, record: S) -> Result<()> {
self.ser_wtr.serialize(record)?;
self.ser_wtr.flush()?;
self.asy_wtr.as_mut().unwrap().write_all(self.ser_wtr.data()).await?;
self.ser_wtr.clear();
Ok(())
}
/// Flushes the underlying asynchronous writer.
pub async fn flush(&mut self) -> io::Result<()> {
if let Some(ref mut asy_wtr) = self.asy_wtr {
asy_wtr.flush().await?;
}
Ok(())
}
/// Flush the contents of the internal buffer and return the underlying
/// writer.
pub async fn into_inner(
mut self,
) -> result::Result<W, IntoInnerError<AsyncSerializer<W>>> {
match self.flush().await {
Ok(()) => Ok(self.asy_wtr.take().unwrap()),
Err(err) => Err(IntoInnerError::new(self, err)),
}
}
}