[−][src]Module curve25519_dalek_ng::scalar
Arithmetic on scalars (integers mod the group order).
Both the Ristretto group and the Ed25519 basepoint have prime order \( \ell = 2^{252} + 27742317777372353535851937790883648493 \).
This code is intended to be useful with both the Ristretto group (where everything is done modulo \( \ell \)), and the X/Ed25519 setting, which mandates specific bit-twiddles that are not well-defined modulo \( \ell \).
All arithmetic on Scalars
is done modulo \( \ell \).
Constructing a scalar
To create a Scalar
from a supposedly canonical encoding, use
Scalar::from_canonical_bytes
.
This function does input validation, ensuring that the input bytes
are the canonical encoding of a Scalar
.
If they are, we'll get
Some(Scalar)
in return:
use curve25519_dalek::scalar::Scalar; let one_as_bytes: [u8; 32] = Scalar::one().to_bytes(); let a: Option<Scalar> = Scalar::from_canonical_bytes(one_as_bytes); assert!(a.is_some());
However, if we give it bytes representing a scalar larger than \( \ell \)
(in this case, \( \ell + 2 \)), we'll get None
back:
use curve25519_dalek::scalar::Scalar; let l_plus_two_bytes: [u8; 32] = [ 0xef, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, ]; let a: Option<Scalar> = Scalar::from_canonical_bytes(l_plus_two_bytes); assert!(a.is_none());
Another way to create a Scalar
is by reducing a \(256\)-bit integer mod
\( \ell \), for which one may use the
Scalar::from_bytes_mod_order
method. In the case of the second example above, this would reduce the
resultant scalar \( \mod \ell \), producing \( 2 \):
use curve25519_dalek::scalar::Scalar; let l_plus_two_bytes: [u8; 32] = [ 0xef, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, ]; let a: Scalar = Scalar::from_bytes_mod_order(l_plus_two_bytes); let two: Scalar = Scalar::one() + Scalar::one(); assert!(a == two);
There is also a constructor that reduces a \(512\)-bit integer,
Scalar::from_bytes_mod_order_wide
.
To construct a Scalar
as the hash of some input data, use
Scalar::hash_from_bytes
,
which takes a buffer, or
Scalar::from_hash
,
which allows an IUF API.
use sha2::{Digest, Sha512}; use curve25519_dalek::scalar::Scalar; // Hashing a single byte slice let a = Scalar::hash_from_bytes::<Sha512>(b"Abolish ICE"); // Streaming data into a hash object let mut hasher = Sha512::default(); hasher.update(b"Abolish "); hasher.update(b"ICE"); let a2 = Scalar::from_hash(hasher); assert_eq!(a, a2);
Finally, to create a Scalar
with a specific bit-pattern
(e.g., for compatibility with X/Ed25519
"clamping"),
use Scalar::from_bits
. This
constructs a scalar with exactly the bit pattern given, without any
assurances as to reduction modulo the group order:
use curve25519_dalek::scalar::Scalar; let l_plus_two_bytes: [u8; 32] = [ 0xef, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, ]; let a: Scalar = Scalar::from_bits(l_plus_two_bytes); let two: Scalar = Scalar::one() + Scalar::one(); assert!(a != two); // the scalar is not reduced (mod l)… assert!(! a.is_canonical()); // …and therefore is not canonical. assert!(a.reduce() == two); // if we were to reduce it manually, it would be.
The resulting Scalar
has exactly the specified bit pattern,
except for the highest bit, which will be set to 0.
Structs
Scalar | The |