1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
// -*- mode: rust; coding: utf-8; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2016-2017 Isis Lovecruft, Henry de Valence
// See LICENSE for licensing information.
//
// Authors:
// - Isis Agora Lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>

//! Field arithmetic for ℤ/(2²⁵⁵-19), using 32-bit arithmetic with
//! 64-bit products.
//!
//! Based on Adam Langley's curve25519-donna and (Golang) ed25519
//! implementations.
//!
//! This implementation is intended for platforms that can multiply
//! 32-bit inputs to produce 64-bit outputs.
//!
//! This implementation is not preferred for use on x86_64, since the
//! 64-bit implementation is both much simpler and much faster.
//! However, that implementation requires Rust's `u128`, which is not
//! yet stable.

use core::fmt::Debug;
use core::ops::{Add, AddAssign};
use core::ops::{Sub, SubAssign};
use core::ops::{Mul, MulAssign};
use core::ops::Neg;

use subtle::ConditionallyAssignable;

use utils::{load3, load4};

/// A `FieldElement32` represents an element of the field GF(2^255 - 19).
///
/// In the 32-bit implementation, a `FieldElement32` is represented in
/// radix 2^25.5 as ten `i32`s, so that an element t, entries
/// t[0],...,t[9], represents the integer t[0]+2^26 t[1]+2^51
/// t[2]+2^77 t[3]+2^102 t[4]+...+2^230 t[9].
///
/// The coefficients t[i] are allowed to grow between multiplications.
///
/// XXX document by how much
///
/// # Warning
///
/// You almost certainly do not want to use `FieldElement32` directly.  Consider
/// using `curve25519_dalek::field::FieldElement`, which will automatically
/// select between `FieldElement32` and `FieldElement64` depending on whether
/// curve25519-dalek was compiled with `--features="nightly"`.
///
/// This implementation, `FieldElement32`, is intended for platforms that can
/// multiply 32-bit inputs to produce 64-bit outputs, and is not preferred for
/// use on x86_64, since the 64-bit implementation is both much simpler and much
/// faster.  However, the `FieldElement64` implementation requires Rust's
/// `u128`, which is not yet stable.
#[derive(Copy, Clone)]
pub struct FieldElement32(pub (crate) [i32; 10]);

impl Debug for FieldElement32 {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "FieldElement32: {:?}", &self.0[..])
    }
}

impl<'b> AddAssign<&'b FieldElement32> for FieldElement32 {
    fn add_assign(&mut self, _rhs: &'b FieldElement32) {
        for i in 0..10 {
            self.0[i] += _rhs.0[i];
        }
    }
}

impl<'a, 'b> Add<&'b FieldElement32> for &'a FieldElement32 {
    type Output = FieldElement32;
    fn add(self, _rhs: &'b FieldElement32) -> FieldElement32 {
        let mut output = *self;
        output += _rhs;
        output
    }
}

impl<'b> SubAssign<&'b FieldElement32> for FieldElement32 {
    fn sub_assign(&mut self, _rhs: &'b FieldElement32) {
        for i in 0..10 {
            self.0[i] -= _rhs.0[i];
        }
    }
}

impl<'a, 'b> Sub<&'b FieldElement32> for &'a FieldElement32 {
    type Output = FieldElement32;
    fn sub(self, _rhs: &'b FieldElement32) -> FieldElement32 {
        let mut output = *self;
        output -= _rhs;
        output
    }
}

impl<'b> MulAssign<&'b FieldElement32> for FieldElement32 {
    fn mul_assign(&mut self, _rhs: &'b FieldElement32) {
        let result = (self as &FieldElement32) * _rhs;
        self.0 = result.0;
    }
}

impl<'a, 'b> Mul<&'b FieldElement32> for &'a FieldElement32 {
    type Output = FieldElement32;
    fn mul(self, _rhs: &'b FieldElement32) -> FieldElement32 {
        // Notes preserved from ed25519.go (presumably originally from ref10):
        //
        // Calculates h = f * g. Can overlap h with f or g.
        //
        // # Preconditions
        //
        // * |f[i]| bounded by 1.1*2^26, 1.1*2^25, 1.1*2^26, 1.1*2^25, etc.
        // * |g[i]| bounded by 1.1*2^26, 1.1*2^25, 1.1*2^26, 1.1*2^25, etc.
        //
        // # Postconditions
        //
        // * |h| bounded by 1.1*2^25, 1.1*2^24, 1.1*2^25, 1.1*2^24, etc.
        //
        // ## Notes on implementation strategy
        //
        // * Using schoolbook multiplication.
        // * Karatsuba would save a little in some cost models.
        //
        // * Most multiplications by 2 and 19 are 32-bit precomputations;
        //   cheaper than 64-bit postcomputations.
        //
        // * There is one remaining multiplication by 19 in the carry chain;
        //   one *19 precomputation can be merged into this,
        //   but the resulting data flow is considerably less clean.
        //
        // * There are 12 carries below.
        //   10 of them are 2-way parallelizable and vectorizable.
        //   Can get away with 11 carries, but then data flow is much deeper.
        //
        // * With tighter constraints on inputs can squeeze carries into int32.
        let f0 = self.0[0] as i64;
        let f1 = self.0[1] as i64;
        let f2 = self.0[2] as i64;
        let f3 = self.0[3] as i64;
        let f4 = self.0[4] as i64;
        let f5 = self.0[5] as i64;
        let f6 = self.0[6] as i64;
        let f7 = self.0[7] as i64;
        let f8 = self.0[8] as i64;
        let f9 = self.0[9] as i64;

        let f1_2 = (2 * self.0[1]) as i64;
        let f3_2 = (2 * self.0[3]) as i64;
        let f5_2 = (2 * self.0[5]) as i64;
        let f7_2 = (2 * self.0[7]) as i64;
        let f9_2 = (2 * self.0[9]) as i64;

        let g0 = _rhs.0[0] as i64;
        let g1 = _rhs.0[1] as i64;
        let g2 = _rhs.0[2] as i64;
        let g3 = _rhs.0[3] as i64;
        let g4 = _rhs.0[4] as i64;
        let g5 = _rhs.0[5] as i64;
        let g6 = _rhs.0[6] as i64;
        let g7 = _rhs.0[7] as i64;
        let g8 = _rhs.0[8] as i64;
        let g9 = _rhs.0[9] as i64;

        let g1_19 = (19 * _rhs.0[1]) as i64; /* 1.4*2^29 */
        let g2_19 = (19 * _rhs.0[2]) as i64; /* 1.4*2^30; still ok */
        let g3_19 = (19 * _rhs.0[3]) as i64;
        let g4_19 = (19 * _rhs.0[4]) as i64;
        let g5_19 = (19 * _rhs.0[5]) as i64;
        let g6_19 = (19 * _rhs.0[6]) as i64;
        let g7_19 = (19 * _rhs.0[7]) as i64;
        let g8_19 = (19 * _rhs.0[8]) as i64;
        let g9_19 = (19 * _rhs.0[9]) as i64;

        let h0 = f0*g0 + f1_2*g9_19 + f2*g8_19 + f3_2*g7_19 + f4*g6_19 + f5_2*g5_19 + f6*g4_19 + f7_2*g3_19 + f8*g2_19 + f9_2*g1_19;
        let h1 = f0*g1 + f1*g0 + f2*g9_19 + f3*g8_19 + f4*g7_19 + f5*g6_19 + f6*g5_19 + f7*g4_19 + f8*g3_19 + f9*g2_19;
        let h2 = f0*g2 + f1_2*g1 + f2*g0 + f3_2*g9_19 + f4*g8_19 + f5_2*g7_19 + f6*g6_19 + f7_2*g5_19 + f8*g4_19 + f9_2*g3_19;
        let h3 = f0*g3 + f1*g2 + f2*g1 + f3*g0 + f4*g9_19 + f5*g8_19 + f6*g7_19 + f7*g6_19 + f8*g5_19 + f9*g4_19;
        let h4 = f0*g4 + f1_2*g3 + f2*g2 + f3_2*g1 + f4*g0 + f5_2*g9_19 + f6*g8_19 + f7_2*g7_19 + f8*g6_19 + f9_2*g5_19;
        let h5 = f0*g5 + f1*g4 + f2*g3 + f3*g2 + f4*g1 + f5*g0 + f6*g9_19 + f7*g8_19 + f8*g7_19 + f9*g6_19;
        let h6 = f0*g6 + f1_2*g5 + f2*g4 + f3_2*g3 + f4*g2 + f5_2*g1 + f6*g0 + f7_2*g9_19 + f8*g8_19 + f9_2*g7_19;
        let h7 = f0*g7 + f1*g6 + f2*g5 + f3*g4 + f4*g3 + f5*g2 + f6*g1 + f7*g0 + f8*g9_19 + f9*g8_19;
        let h8 = f0*g8 + f1_2*g7 + f2*g6 + f3_2*g5 + f4*g4 + f5_2*g3 + f6*g2 + f7_2*g1 + f8*g0 + f9_2*g9_19;
        let h9 = f0*g9 + f1*g8 + f2*g7 + f3*g6 + f4*g5 + f5*g4 + f6*g3 + f7*g2 + f8*g1 + f9*g0;

        FieldElement32::reduce([h0, h1, h2, h3, h4, h5, h6, h7, h8, h9])
    }
}

impl<'a> Neg for &'a FieldElement32 {
    type Output = FieldElement32;
    fn neg(self) -> FieldElement32 {
        let mut output = *self;
        output.negate();
        output
    }
}

impl ConditionallyAssignable for FieldElement32 {
    fn conditional_assign(&mut self, f: &FieldElement32, choice: u8) {
        let mask = -(choice as i32);
        for i in 0..10 {
            self.0[i] ^= mask & (self.0[i] ^ f.0[i]);
        }
    }
}

impl FieldElement32 {
    /// Invert the sign of this field element
    pub fn negate(&mut self) {
        for i in 0..10 {
            self.0[i] = -self.0[i];
        }
    }

    /// Construct zero.
    pub fn zero() -> FieldElement32 {
        FieldElement32([ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ])
    }

    /// Construct one.
    pub fn one() -> FieldElement32 {
        FieldElement32([ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ])
    }

    /// Construct -1.
    pub fn minus_one() -> FieldElement32 {
        FieldElement32([-1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ])
    }

    fn reduce(mut h: [i64; 10]) -> FieldElement32 { //FeCombine
        let mut c = [0i64; 10];

        /*
          |h[0]| <= (1.1*1.1*2^52*(1+19+19+19+19)+1.1*1.1*2^50*(38+38+38+38+38))
            i.e. |h[0]| <= 1.2*2^59; narrower ranges for h[2], h[4], h[6], h[8]
          |h[1]| <= (1.1*1.1*2^51*(1+1+19+19+19+19+19+19+19+19))
            i.e. |h[1]| <= 1.5*2^58; narrower ranges for h[3], h[5], h[7], h[9]
        */

        c[0] = (h[0] + (1 << 25)) >> 26;
        h[1] += c[0];
        h[0] -= c[0] << 26;
        c[4] = (h[4] + (1 << 25)) >> 26;
        h[5] += c[4];
        h[4] -= c[4] << 26;
        /* |h[0]| <= 2^25 */
        /* |h[4]| <= 2^25 */
        /* |h[1]| <= 1.51*2^58 */
        /* |h[5]| <= 1.51*2^58 */

        c[1] = (h[1] + (1 << 24)) >> 25;
        h[2] += c[1];
        h[1] -= c[1] << 25;
        c[5] = (h[5] + (1 << 24)) >> 25;
        h[6] += c[5];
        h[5] -= c[5] << 25;
        /* |h[1]| <= 2^24; from now on fits into int32 */
        /* |h[5]| <= 2^24; from now on fits into int32 */
        /* |h[2]| <= 1.21*2^59 */
        /* |h[6]| <= 1.21*2^59 */

        c[2] = (h[2] + (1 << 25)) >> 26;
        h[3] += c[2];
        h[2] -= c[2] << 26;
        c[6] = (h[6] + (1 << 25)) >> 26;
        h[7] += c[6];
        h[6] -= c[6] << 26;
        /* |h[2]| <= 2^25; from now on fits into int32 unchanged */
        /* |h[6]| <= 2^25; from now on fits into int32 unchanged */
        /* |h[3]| <= 1.51*2^58 */
        /* |h[7]| <= 1.51*2^58 */

        c[3] = (h[3] + (1 << 24)) >> 25;
        h[4] += c[3];
        h[3] -= c[3] << 25;
        c[7] = (h[7] + (1 << 24)) >> 25;
        h[8] += c[7];
        h[7] -= c[7] << 25;
        /* |h[3]| <= 2^24; from now on fits into int32 unchanged */
        /* |h[7]| <= 2^24; from now on fits into int32 unchanged */
        /* |h[4]| <= 1.52*2^33 */
        /* |h[8]| <= 1.52*2^33 */

        c[4] = (h[4] + (1 << 25)) >> 26;
        h[5] += c[4];
        h[4] -= c[4] << 26;
        c[8] = (h[8] + (1 << 25)) >> 26;
        h[9] += c[8];
        h[8] -= c[8] << 26;
        /* |h[4]| <= 2^25; from now on fits into int32 unchanged */
        /* |h[8]| <= 2^25; from now on fits into int32 unchanged */
        /* |h[5]| <= 1.01*2^24 */
        /* |h[9]| <= 1.51*2^58 */

        c[9] = (h[9] + (1 << 24)) >> 25;
        h[0] += c[9] * 19;
        h[9] -= c[9] << 25;
        /* |h[9]| <= 2^24; from now on fits into int32 unchanged */
        /* |h[0]| <= 1.8*2^37 */

        c[0] = (h[0] + (1 << 25)) >> 26;
        h[1] += c[0];
        h[0] -= c[0] << 26;
        /* |h[0]| <= 2^25; from now on fits into int32 unchanged */
        /* |h[1]| <= 1.01*2^24 */

        let mut output = FieldElement32([0i32; 10]);
        output.0[0] = h[0] as i32;
        output.0[1] = h[1] as i32;
        output.0[2] = h[2] as i32;
        output.0[3] = h[3] as i32;
        output.0[4] = h[4] as i32;
        output.0[5] = h[5] as i32;
        output.0[6] = h[6] as i32;
        output.0[7] = h[7] as i32;
        output.0[8] = h[8] as i32;
        output.0[9] = h[9] as i32;
        output
    }

    /// Load a `FieldElement64` from the low 255 bits of a 256-bit
    /// input.
    ///
    /// # Warning
    ///
    /// This function does not check that the input used the canonical
    /// representative.  It masks the high bit, but it will happily
    /// decode 2^255 - 18 to 1.  Applications that require a canonical
    /// encoding of every field element should decode, re-encode to
    /// the canonical encoding, and check that the input was
    /// canonical.
    ///
    /// XXX the above applies to the 64-bit implementation; check that
    /// it applies here too.
    pub fn from_bytes(data: &[u8; 32]) -> FieldElement32 { //FeFromBytes
        let mut h = [0i64;10];
        h[0] =  load4(&data[ 0..]);
        h[1] =  load3(&data[ 4..]) << 6;
        h[2] =  load3(&data[ 7..]) << 5;
        h[3] =  load3(&data[10..]) << 3;
        h[4] =  load3(&data[13..]) << 2;
        h[5] =  load4(&data[16..]);
        h[6] =  load3(&data[20..]) << 7;
        h[7] =  load3(&data[23..]) << 5;
        h[8] =  load3(&data[26..]) << 4;
        h[9] = (load3(&data[29..]) & 8388607) << 2;

        FieldElement32::reduce(h)
    }

    /// Serialize this `FieldElement64` to a 32-byte array.  The
    /// encoding is canonical.
    pub fn to_bytes(&self) -> [u8; 32] { //FeToBytes
        // Comment preserved from ed25519.go (presumably originally from ref10):
        //
        // # Preconditions
        //
        // * `|h[i]|` bounded by 1.1*2^25, 1.1*2^24, 1.1*2^25, 1.1*2^24, etc.
        //
        // # Lemma
        //
        // Write p = 2^255 - 19 and q = floor(h/p).
        //
        // Basic claim: q = floor(2^(-255)(h + 19 * 2^-25 h9 + 2^-1)).
        //
        // # Proof
        //
        // Have |h|<=p so |q|<=1 so |19^2 * 2^-255 * q| < 1/4.
        //
        // Also have |h-2^230 * h9| < 2^230 so |19 * 2^-255 * (h-2^230 * h9)| < 1/4.
        //
        // Write y=2^(-1)-19^2 2^(-255)q-19 2^(-255)(h-2^230 h9), then 0<y<1.
        //
        // Write r = h - pq.
        //
        // Have 0 <= r< = p-1 = 2^255 - 20.
        //
        // Thus 0 <= r + 19 * 2^-255 * r < r + 19 * 2^-255 * 2^255 <= 2^255 - 1.
        //
        // Write x = r + 19 * 2^-255 * r + y.
        //
        // Then 0 < x < 2^255 so floor(2^(-255)x) = 0 so floor(q+2^(-255)x) = q.
        //
        // Have q+2^(-255)x = 2^-255 * (h + 19 * 2^-25 * h9 + 2^-1),
        // so floor(2^-255 * (h + 19 * 2^-25 * h9 + 2^-1)) = q.
        //
        let mut carry = [0i32; 10];
        let mut h: [i32; 10] = self.0;

        let mut q:i32 = (19*h[9] + (1 << 24)) >> 25;
        q = (h[0] + q) >> 26;
        q = (h[1] + q) >> 25;
        q = (h[2] + q) >> 26;
        q = (h[3] + q) >> 25;
        q = (h[4] + q) >> 26;
        q = (h[5] + q) >> 25;
        q = (h[6] + q) >> 26;
        q = (h[7] + q) >> 25;
        q = (h[8] + q) >> 26;
        q = (h[9] + q) >> 25;

        // Goal: Output h-(2^255-19)q, which is between 0 and 2^255-20.
        h[0] += 19 * q;
        // Goal: Output h-2^255 q, which is between 0 and 2^255-20.

        carry[0] = h[0] >> 26;
        h[1] += carry[0];
        h[0] -= carry[0] << 26;
        carry[1] = h[1] >> 25;
        h[2] += carry[1];
        h[1] -= carry[1] << 25;
        carry[2] = h[2] >> 26;
        h[3] += carry[2];
        h[2] -= carry[2] << 26;
        carry[3] = h[3] >> 25;
        h[4] += carry[3];
        h[3] -= carry[3] << 25;
        carry[4] = h[4] >> 26;
        h[5] += carry[4];
        h[4] -= carry[4] << 26;
        carry[5] = h[5] >> 25;
        h[6] += carry[5];
        h[5] -= carry[5] << 25;
        carry[6] = h[6] >> 26;
        h[7] += carry[6];
        h[6] -= carry[6] << 26;
        carry[7] = h[7] >> 25;
        h[8] += carry[7];
        h[7] -= carry[7] << 25;
        carry[8] = h[8] >> 26;
        h[9] += carry[8];
        h[8] -= carry[8] << 26;
        carry[9] = h[9] >> 25;
        h[9] -= carry[9] << 25;
        // h10 = carry9

        // Goal: Output h[0]+...+2^255 h10-2^255 q, which is between 0 and 2^255-20.
        // Have h[0]+...+2^230 h[9] between 0 and 2^255-1;
        // evidently 2^255 h10-2^255 q = 0.
        // Goal: Output h[0]+...+2^230 h[9].

        let mut s = [0u8; 32];
        s[0] = (h[0] >> 0) as u8;
        s[1] = (h[0] >> 8) as u8;
        s[2] = (h[0] >> 16) as u8;
        s[3] = ((h[0] >> 24) | (h[1] << 2)) as u8;
        s[4] = (h[1] >> 6) as u8;
        s[5] = (h[1] >> 14) as u8;
        s[6] = ((h[1] >> 22) | (h[2] << 3)) as u8;
        s[7] = (h[2] >> 5) as u8;
        s[8] = (h[2] >> 13) as u8;
        s[9] = ((h[2] >> 21) | (h[3] << 5)) as u8;
        s[10] = (h[3] >> 3) as u8;
        s[11] = (h[3] >> 11) as u8;
        s[12] = ((h[3] >> 19) | (h[4] << 6)) as u8;
        s[13] = (h[4] >> 2) as u8;
        s[14] = (h[4] >> 10) as u8;
        s[15] = (h[4] >> 18) as u8;
        s[16] = (h[5] >> 0) as u8;
        s[17] = (h[5] >> 8) as u8;
        s[18] = (h[5] >> 16) as u8;
        s[19] = ((h[5] >> 24) | (h[6] << 1)) as u8;
        s[20] = (h[6] >> 7) as u8;
        s[21] = (h[6] >> 15) as u8;
        s[22] = ((h[6] >> 23) | (h[7] << 3)) as u8;
        s[23] = (h[7] >> 5) as u8;
        s[24] = (h[7] >> 13) as u8;
        s[25] = ((h[7] >> 21) | (h[8] << 4)) as u8;
        s[26] = (h[8] >> 4) as u8;
        s[27] = (h[8] >> 12) as u8;
        s[28] = ((h[8] >> 20) | (h[9] << 6)) as u8;
        s[29] = (h[9] >> 2) as u8;
        s[30] = (h[9] >> 10) as u8;
        s[31] = (h[9] >> 18) as u8;

        // Check that high bit is cleared
        debug_assert!((s[31] & 0b1000_0000u8) == 0u8);

        s
    }

    fn square_inner(&self) -> [i64; 10] {
        let f0     = self.0[0]       as i64;
        let f1     = self.0[1]       as i64;
        let f2     = self.0[2]       as i64;
        let f3     = self.0[3]       as i64;
        let f4     = self.0[4]       as i64;
        let f5     = self.0[5]       as i64;
        let f6     = self.0[6]       as i64;
        let f7     = self.0[7]       as i64;
        let f8     = self.0[8]       as i64;
        let f9     = self.0[9]       as i64;
        let f0_2   = (2 * self.0[0]) as i64;
        let f1_2   = (2 * self.0[1]) as i64;
        let f2_2   = (2 * self.0[2]) as i64;
        let f3_2   = (2 * self.0[3]) as i64;
        let f4_2   = (2 * self.0[4]) as i64;
        let f5_2   = (2 * self.0[5]) as i64;
        let f6_2   = (2 * self.0[6]) as i64;
        let f7_2   = (2 * self.0[7]) as i64;
        let f5_38  = 38 * f5; // 1.31*2^30
        let f6_19  = 19 * f6; // 1.31*2^30
        let f7_38  = 38 * f7; // 1.31*2^30
        let f8_19  = 19 * f8; // 1.31*2^30
        let f9_38  = 38 * f9; // 1.31*2^30

        let mut h = [0i64;10];
        h[0] =   f0*f0 + f1_2*f9_38 + f2_2*f8_19 + f3_2*f7_38 + f4_2*f6_19 + f5*f5_38;
        h[1] = f0_2*f1 +   f2*f9_38 + f3_2*f8_19 +   f4*f7_38 + f5_2*f6_19;
        h[2] = f0_2*f2 + f1_2*f1    + f3_2*f9_38 + f4_2*f8_19 + f5_2*f7_38 + f6*f6_19;
        h[3] = f0_2*f3 + f1_2*f2    +   f4*f9_38 + f5_2*f8_19 +   f6*f7_38;
        h[4] = f0_2*f4 + f1_2*f3_2  +   f2*f2    + f5_2*f9_38 + f6_2*f8_19 + f7*f7_38;
        h[5] = f0_2*f5 + f1_2*f4    +   f2_2*f3  +   f6*f9_38 + f7_2*f8_19;
        h[6] = f0_2*f6 + f1_2*f5_2  +   f2_2*f4  + f3_2*f3    + f7_2*f9_38 + f8*f8_19;
        h[7] = f0_2*f7 + f1_2*f6    +   f2_2*f5  + f3_2*f4    +   f8*f9_38;
        h[8] = f0_2*f8 + f1_2*f7_2  +   f2_2*f6  + f3_2*f5_2  +   f4*f4    + f9*f9_38;
        h[9] = f0_2*f9 + f1_2*f8    +   f2_2*f7  + f3_2*f6    + f4_2*f5;

        h
    }

    /// Calculates h = f*f. Can overlap h with f.
    ///
    /// XXX limbs: better to talk about headroom?
    ///
    /// # Preconditions
    ///
    /// * |f[i]| bounded by 1.1*2^26, 1.1*2^25, 1.1*2^26, 1.1*2^25, etc.
    ///
    /// # Postconditions
    ///
    /// * |h[i]| bounded by 1.1*2^25, 1.1*2^24, 1.1*2^25, 1.1*2^24, etc.
    pub fn square(&self) -> FieldElement32 {
        FieldElement32::reduce(self.square_inner())
    }

    /// Square this field element and multiply the result by 2.
    ///
    /// XXX explain why square2 exists vs square (overflow)
    ///
    /// # Preconditions
    ///
    /// * |f[i]| bounded by 1.65*2^26, 1.65*2^25, 1.65*2^26, 1.65*2^25, etc.
    ///
    /// # Postconditions
    ///
    /// * |h[i]| bounded by 1.01*2^25, 1.01*2^24, 1.01*2^25, 1.01*2^24, etc.
    ///
    /// # Notes
    ///
    /// See fe_mul.c in ref10 implementation for discussion of implementation
    /// strategy.
    pub fn square2(&self) -> FieldElement32 {
        let mut coeffs = self.square_inner();
        for i in 0..self.0.len() {
            coeffs[i] += coeffs[i];
        }
        FieldElement32::reduce(coeffs)
    }
}