1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
// -*- mode: rust; -*-
//
// To the extent possible under law, the authors have waived all copyright and
// related or neighboring rights to curve25519-dalek, using the Creative
// Commons "CC0" public domain dedication.  See
// <http://creativecommons.org/publicdomain/zero/.0/> for full details.
//
// Authors:
// - Isis Agora Lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>

//! Group operations for Curve25519, in the form of the twisted
//! Edwards curve -x²+y²=1+dx²y² modulo p=2²⁵⁵-19 with
//! parameter d=-121665/121666.
//!
//! # Curve representations
//!
//! Internally, we use several different models for the curve.  Here
//! is a sketch of the relationship between the models, following [a
//! post](https://moderncrypto.org/mail-archive/curves/2016/000807.html)
//! by Ben Smith on the moderncrypto mailing list.
//!
//! Begin with the affine equation for the curve,
//!
//!     -x² + y² = 1 + dx²y².       <span style="float: right">(1)</span>
//!
//! Next, pass to the projective closure 𝗣^1 x 𝗣^1 by setting x=X/Z,
//! y=Y/T.  Clearing denominators gives the model
//!
//!     -X²T² + Y²Z² = Z²T² + dX²Y². <span style="float: right">(2)<span>
//!
//! To map from 𝗣^1 x 𝗣^1, a product of two lines, to 𝗣^3, we use the
//! Segre embedding,
//!
//!     σ : ((X:Z),(Y:T)) ↦ (XY:XT:ZY:ZT).  <span style="float: right">(3)</span>
//!
//! Using coordinates (W₀:W₁:W₂:W₃) for 𝗣^3, the image of σ(𝗣^1 x 𝗣^1)
//! is the surface defined by W₀W₃=W₁W₂, and under σ, equation (2)
//! becomes
//!
//!     -W₁² + W₂² = W₃² + dW₀².   <span style="float: right">(4)</span>
//!
//! Up to variable naming, this is exactly the curve model introduced
//! in ["Twisted Edwards Curves
//! Revisited"](https://www.iacr.org/archive/asiacrypt2008/53500329/53500329.pdf)
//! by Hisil, Wong, Carter, and Dawson.  We can map from 𝗣^3 to 𝗣² by
//! sending (W₀:W₁:W₂:W₃) to (W₁:W₂:W₃).  Notice that
//!
//!     W₁/W₃ = XT/ZT = X/Z = x    <span style="float: right">(5)</span>
//!
//!     W₂/W₃ = ZY/ZT = Y/T = y,   <span style="float: right">(6)</span>
//!
//! so this is the same as if we had started with the affine model (1)
//! and passed to 𝗣^2 by setting `x = W₁/W₃`, `y = W₂/W₃`.  Up to
//! variable naming, this is the projective representation introduced
//! in ["Twisted Edwards Curves"](https://eprint.iacr.org/2008/013).
//!
//! Following the implementation strategy in the ref10 reference
//! implementation for Ed25519, we use several different models for
//! curve points:
//!
//! * CompletedPoint: points in 𝗣^1 x 𝗣^1;
//! * ExtendedPoint: points in 𝗣^3;
//! * ProjectivePoint: points in 𝗣^2.
//!
//! Finally, to accelerate additions, we use two cached point formats,
//! one for the affine model and one for the 𝗣^3 model:
//!
//! * PreComputedPoint: `(y+x, y-x, 2dxy)`
//! * CachedPoint: `(Y+X, Y-X, Z, 2dXY)`
//!
//! [1]: https://moderncrypto.org/mail-archive/curves/2016/000807.html

// We allow non snake_case names because coordinates in projective space are
// traditionally denoted by the capitalisation of their respective
// counterparts in affine space.  Yeah, you heard me, rustc, I'm gonna have my
// affine and projective cakes and eat both of them too.
#![allow(non_snake_case)]

use core::fmt::Debug;
use core::iter::Iterator;
use core::ops::{Add, Sub, Neg, Index};
use core::cmp::{PartialEq, Eq};

use constants;
use field::FieldElement;
use scalar::Scalar;
use util::bytes_equal_ct;
use util::CTAssignable;

// ------------------------------------------------------------------------
// Compressed points
// ------------------------------------------------------------------------

/// In "Edwards y" format, the point `(x,y)` on the curve is
/// determined by the `y`-coordinate and the sign of `x`, marshalled
/// into a 32-byte array.
///
/// The first 255 bits of a CompressedEdwardsY represent the
/// y-coordinate. The high bit of the 32nd byte gives the sign of `x`.
#[derive(Copy, Clone)]
pub struct CompressedEdwardsY(pub [u8; 32]);

impl Debug for CompressedEdwardsY {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "CompressedPoint: {:?}", &self.0[..])
    }
}

impl Eq for CompressedEdwardsY {}
impl PartialEq for CompressedEdwardsY {
    /// Determine if this `CompressedEdwardsY` is equal to another.
    ///
    /// # Warning
    ///
    /// This function is NOT constant time.
    fn eq(&self, other: &CompressedEdwardsY) -> bool {
        return self.0 == other.0;
    }
}

impl Index<usize> for CompressedEdwardsY {
    type Output = u8;

    fn index<'a>(&'a self, _index: usize) -> &'a u8 {
        let ret: &'a u8 = &(self.0[_index]);
        ret
    }
}

impl CompressedEdwardsY {
    /// View this `CompressedEdwardsY` as an array of bytes.
    pub fn to_bytes(&self) -> [u8;32] {
        self.0
    }

    /// Attempt to decompress to an `ExtendedPoint`.
    ///
    /// # Warning
    ///
    /// This function will fail and return None if both vx²-u=0 and vx²+u=0.
    pub fn decompress(&self) -> Option<ExtendedPoint> { // FromBytes()
        let mut u:     FieldElement;
        let mut v:     FieldElement;
        let     v3:    FieldElement;
        let     vxx:   FieldElement;

        let mut X: FieldElement;
        let     Y: FieldElement;
        let     Z: FieldElement;
        let     T: FieldElement;

        Y = FieldElement::from_bytes(&self.0);
        Z = FieldElement::one();

        u  = Y.square();
        v  = &u * &constants::d;
        u -= &Z;                   // u = y²-1
        v += &Z;                   // v = dy²+1
        v3 = &v.square() * &v;     // v3 = v³
        X  = (&v3.square() * &(&v * &u)).pow_p58(); // x = (uv⁷)^((q-5)/8)
        X *= &(&u * &v3);                           // x = (uv³)(uv⁷)^((q-5)/8)

        vxx = &v * &X.square();
        if (&vxx - &u).is_nonzero() == 1 {     // vx²-u
            if (&vxx + &u).is_nonzero() == 1 { // vx²+u
                return None;
            }
            X *= &constants::SQRT_M1;
        }

        if X.is_negative() != (self[31] >> 7) as i32 {
            X = X.neg();
        }
        T = &X * &Y;

        Some(ExtendedPoint{ X: X, Y: Y, Z: Z, T: T })
    }
}

// ------------------------------------------------------------------------
// Internal point representations
// ------------------------------------------------------------------------

/// An `ExtendedPoint` is a point on the curve in 𝗣³(𝔽ₚ).
/// A point (x,y) in the affine model corresponds to (x:y:1:xy).
#[derive(Copy, Clone)]
pub struct ExtendedPoint {
    X: FieldElement,
    Y: FieldElement,
    Z: FieldElement,
    T: FieldElement,
}

/// A `ProjectivePoint` is a point on the curve in 𝗣²(𝔽ₚ).
/// A point (x,y) in the affine model corresponds to (x:y:1).
#[derive(Copy, Clone)]
pub struct ProjectivePoint {
    X: FieldElement,
    Y: FieldElement,
    Z: FieldElement,
}

/// A CompletedPoint is a point ((X:Z), (Y:T)) in 𝗣¹(𝔽ₚ)×𝗣¹(𝔽ₚ).
/// A point (x,y) in the affine model corresponds to ((x:1),(y:1)).
#[derive(Copy, Clone)]
pub struct CompletedPoint {
    X: FieldElement,
    Y: FieldElement,
    Z: FieldElement,
    T: FieldElement,
}

/// A pre-computed point in the affine model for the curve,
/// represented as (y+x, y-x, 2dxy).  These precomputations
/// accelerate addition and subtraction.
// Safe to derive Eq because affine coordinates.
#[derive(Copy, Clone, Eq, PartialEq)]
#[allow(missing_docs)]
pub struct PreComputedPoint {
    pub y_plus_x:  FieldElement,
    pub y_minus_x: FieldElement,
    pub xy2d:      FieldElement,
}

/// A pre-computed point in the P³(𝔽ₚ) model for the curve,
/// represented as (Y+X, Y-X, Z, 2dXY).  These precomputations
/// accelerate addition and subtraction.
#[derive(Copy, Clone)]
pub struct CachedPoint {
    Y_plus_X:  FieldElement,
    Y_minus_X: FieldElement,
    Z:         FieldElement,
    T2d:       FieldElement,
}

// ------------------------------------------------------------------------
// Constructors
// ------------------------------------------------------------------------

/// Trait for curve point types that have an identity constructor.
pub trait Identity {
    /// Returns the identity element of the curve.
    /// Can be used as a constructor.
    fn identity() -> Self;
}

impl Identity for ExtendedPoint {
    fn identity() -> ExtendedPoint {
        ExtendedPoint{ X: FieldElement::zero(),
                       Y: FieldElement::one(),
                       Z: FieldElement::one(),
                       T: FieldElement::zero() }
    }
}

impl Identity for ProjectivePoint {
    fn identity() -> ProjectivePoint {
        ProjectivePoint{ X: FieldElement::zero(),
                         Y: FieldElement::one(),
                         Z: FieldElement::one() }
    }
}

impl Identity for CachedPoint {
    fn identity() -> CachedPoint {
        CachedPoint{ Y_plus_X:  FieldElement::one(),
                     Y_minus_X: FieldElement::one(),
                     Z:         FieldElement::one(),
                     T2d:       FieldElement::zero() }
    }
}

impl Identity for PreComputedPoint {
    fn identity() -> PreComputedPoint {
        PreComputedPoint{
            y_plus_x:  FieldElement::one(),
            y_minus_x: FieldElement::one(),
            xy2d:      FieldElement::zero(),
        }
    }
}

// ------------------------------------------------------------------------
// Constant-time assignment
// ------------------------------------------------------------------------

impl CTAssignable for CachedPoint {
    fn conditional_assign(&mut self, other: &CachedPoint, choice: u8) {
        self.Y_plus_X.conditional_assign(&other.Y_plus_X, choice);
        self.Y_minus_X.conditional_assign(&other.Y_minus_X, choice);
        self.Z.conditional_assign(&other.Z, choice);
        self.T2d.conditional_assign(&other.T2d, choice);
    }
}

impl CTAssignable for PreComputedPoint {
    fn conditional_assign(&mut self, other: &PreComputedPoint, choice: u8) {
        // PreComputedGroupElementCMove()
        self.y_plus_x.conditional_assign(&other.y_plus_x, choice);
        self.y_minus_x.conditional_assign(&other.y_minus_x, choice);
        self.xy2d.conditional_assign(&other.xy2d, choice);
    }
}

// ------------------------------------------------------------------------
// Point conversions
// ------------------------------------------------------------------------

impl ProjectivePoint {
    /// Convert to the extended twisted Edwards representation of this
    /// point.
    ///
    /// From §3 in [0]:
    ///
    /// Given (X:Y:Z) in Ɛ, passing to Ɛₑ can be performed in 3M+1S by
    /// computing (XZ,YZ,XY,Z²).  (Note that in that paper, points are
    /// (X:Y:T:Z) so this really does match the code below).
    #[allow(dead_code)]  // rustc complains this is unused even when it's used
    fn to_extended(&self) -> ExtendedPoint {
        ExtendedPoint{
            X: &self.X * &self.Z,
            Y: &self.Y * &self.Z,
            Z: self.Z.square(),
            T: &self.X * &self.Y,
        }
    }

    /// Convert this point to a `CompressedEdwardsY`
    pub fn compress(&self) -> CompressedEdwardsY {
        let recip = self.Z.invert();
        let x = &self.X * &recip;
        let y = &self.Y * &recip;
        let mut s: [u8; 32];

        s      =  y.to_bytes();
        s[31] ^= (x.is_negative() << 7) as u8;
        CompressedEdwardsY(s)
    }
}

impl ExtendedPoint {
    /// Convert to a CachedPoint
    pub fn to_cached(&self) -> CachedPoint {
        CachedPoint{
            Y_plus_X:  &self.Y + &self.X,
            Y_minus_X: &self.Y - &self.X,
            Z:          self.Z,
            T2d:       &self.T * &constants::d2,
        }
    }

    /// Convert the representation of this point from extended Twisted Edwards
    /// coodinates to projective coordinates.
    ///
    /// Given a point in Ɛₑ, we can convert to projective coordinates
    /// cost-free by simply ignoring T.
    fn to_projective(&self) -> ProjectivePoint {
        ProjectivePoint{
            X: self.X,
            Y: self.Y,
            Z: self.Z,
        }
    }

    /// Compress this point to `CompressedEdwardsY` format
    pub fn compress(&self) -> CompressedEdwardsY {
        self.to_projective().compress()
    }

    /// Dehomogenize to a PreComputedPoint.
    /// Mainly for testing.
    pub fn to_precomputed(&self) -> PreComputedPoint {
        let recip = self.Z.invert();
        let x = &self.X * &recip;
        let y = &self.Y * &recip;
        let xy2d = &(&x * &y) * &constants::d2;
        PreComputedPoint{
            y_plus_x:  &y + &x,
            y_minus_x: &y - &x,
            xy2d:      xy2d
        }
    }
}

impl CompletedPoint {
    /// Convert to a ProjectivePoint
    pub fn to_projective(&self) -> ProjectivePoint {
        ProjectivePoint{
            X: &self.X * &self.T,
            Y: &self.Y * &self.Z,
            Z: &self.Z * &self.T,
        }
    }

    /// Convert to an ExtendedPoint
    pub fn to_extended(&self) -> ExtendedPoint {
        ExtendedPoint{
            X: &self.X * &self.T,
            Y: &self.Y * &self.Z,
            Z: &self.Z * &self.T,
            T: &self.X * &self.Y,
        }
    }
}

// ------------------------------------------------------------------------
// Doubling
// ------------------------------------------------------------------------

impl ProjectivePoint {
    /// Double this point: return self + self
    fn double(&self) -> CompletedPoint { // Double()
        let XX          = self.X.square();
        let YY          = self.Y.square();
        let ZZ2         = self.Z.square2();
        let X_plus_Y    = &self.X + &self.Y;
        let X_plus_Y_sq = X_plus_Y.square();
        let YY_plus_XX  = &YY + &XX;
        let YY_minus_XX = &YY - &XX;

        CompletedPoint{
            X: &X_plus_Y_sq - &YY_plus_XX,
            Y: YY_plus_XX,
            Z: YY_minus_XX,
            T: &ZZ2 - &YY_minus_XX
        }
    }
}

impl ExtendedPoint {
    /// Add this point to itself.
    fn double(&self) -> ExtendedPoint {
        self.to_projective().double().to_extended()
    }
}

// ------------------------------------------------------------------------
// Addition and Subtraction
// ------------------------------------------------------------------------

impl<'a,'b> Add<&'b CachedPoint> for &'a ExtendedPoint {
    type Output = CompletedPoint;

    fn add(self, other: &'b CachedPoint) -> CompletedPoint {
        let Y_plus_X  = &self.Y + &self.X;
        let Y_minus_X = &self.Y - &self.X;
        let PP = &Y_plus_X  * &other.Y_plus_X;
        let MM = &Y_minus_X * &other.Y_minus_X;
        let TT2d = &self.T * &other.T2d;
        let ZZ   = &self.Z * &other.Z;
        let ZZ2  = &ZZ + &ZZ;

        CompletedPoint{
            X: &PP - &MM,
            Y: &PP + &MM,
            Z: &ZZ2 + &TT2d,
            T: &ZZ2 - &TT2d
        }
    }
}

impl<'a,'b> Sub<&'b CachedPoint> for &'a ExtendedPoint {
    type Output = CompletedPoint;

    fn sub(self, other: &'b CachedPoint) -> CompletedPoint {
        let Y_plus_X  = &self.Y + &self.X;
        let Y_minus_X = &self.Y - &self.X;
        let PM = &Y_plus_X * &other.Y_minus_X;
        let MP = &Y_minus_X  * &other.Y_plus_X;
        let TT2d = &self.T * &other.T2d;
        let ZZ   = &self.Z * &other.Z;
        let ZZ2  = &ZZ + &ZZ;

        CompletedPoint{
            X: &PM - &MP,
            Y: &PM + &MP,
            Z: &ZZ2 - &TT2d,
            T: &ZZ2 + &TT2d
        }
    }
}

impl<'a,'b> Add<&'b PreComputedPoint> for &'a ExtendedPoint {
    type Output = CompletedPoint;

    fn add(self, other: &'b PreComputedPoint) -> CompletedPoint {
        let Y_plus_X  = &self.Y + &self.X;
        let Y_minus_X = &self.Y - &self.X;
        let PP        = &Y_plus_X  * &other.y_plus_x;
        let MM        = &Y_minus_X * &other.y_minus_x;
        let Txy2d     = &self.T * &other.xy2d;
        let Z2        = &self.Z + &self.Z;

        CompletedPoint{
            X: &PP - &MM,
            Y: &PP + &MM,
            Z: &Z2 + &Txy2d,
            T: &Z2 - &Txy2d
        }
    }
}

impl<'a,'b> Sub<&'b PreComputedPoint> for &'a ExtendedPoint {
    type Output = CompletedPoint;

    fn sub(self, other: &'b PreComputedPoint) -> CompletedPoint {
        let Y_plus_X  = &self.Y + &self.X;
        let Y_minus_X = &self.Y - &self.X;
        let PM        = &Y_plus_X  * &other.y_minus_x;
        let MP        = &Y_minus_X * &other.y_plus_x;
        let Txy2d     = &self.T * &other.xy2d;
        let Z2        = &self.Z + &self.Z;

        CompletedPoint{
            X: &PM - &MP,
            Y: &PM + &MP,
            Z: &Z2 - &Txy2d,
            T: &Z2 + &Txy2d
        }
    }
}

impl<'a,'b> Add<&'b ExtendedPoint> for &'a ExtendedPoint {
    type Output = ExtendedPoint;
    fn add(self, other: &'b ExtendedPoint) -> ExtendedPoint {
        (self + &other.to_cached()).to_extended()
    }
}

impl<'a,'b> Sub<&'b ExtendedPoint> for &'a ExtendedPoint {
    type Output = ExtendedPoint;
    fn sub(self, other: &'b ExtendedPoint) -> ExtendedPoint {
        (self - &other.to_cached()).to_extended()
    }
}

impl<'a> Neg for &'a ExtendedPoint {
    type Output = ExtendedPoint;

    fn neg(self) -> ExtendedPoint {
        ExtendedPoint{
            X: -(&self.X),
            Y:  self.Y,
            Z:  self.Z,
            T: -(&self.T),
        }
    }
}

impl<'a> Neg for &'a CachedPoint {
    type Output = CachedPoint;

    fn neg(self) -> CachedPoint {
        CachedPoint{
            Y_plus_X:   self.Y_minus_X,
            Y_minus_X:  self.Y_plus_X,
            Z:          self.Z,
            T2d:        -(&self.T2d),
        }
    }
}


impl<'a> Neg for &'a PreComputedPoint {
    type Output = PreComputedPoint;

    fn neg(self) -> PreComputedPoint {
        PreComputedPoint{
            y_plus_x:   self.y_minus_x,
            y_minus_x:  self.y_plus_x,
            xy2d:       -(&self.xy2d)
        }
    }
}

// ------------------------------------------------------------------------
// Scalar multiplication
// ------------------------------------------------------------------------

impl ExtendedPoint {
    /// Scalar multiplication: compute `a * self`.
    ///
    /// Uses a window of size 4.  Note: for scalar multiplication of
    /// the basepoint, `basepoint_mult` is approximately 4x faster.
    pub fn scalar_mult(&self, a: &Scalar) -> ExtendedPoint {
        let A = self.to_cached();
        let mut As: [CachedPoint; 8] = [A; 8];
        for i in 0..7 {
            As[i+1] = (self + &As[i]).to_extended().to_cached();
        }
        let e = a.to_radix_16();
        let mut h = ExtendedPoint::identity();
        let mut t: CompletedPoint;
        for i in (0..64).rev() {
            h = h.mult_by_pow_2(4);
            t = &h + &select_precomputed_point(e[i], &As);
            h = t.to_extended();
        }
        h
    }

    /// Construct an `ExtendedPoint` from a `Scalar`, `a`, by
    /// computing the multiple `aB` of the basepoint `B`.
    ///
    /// Precondition: the scalar must be reduced.
    ///
    /// The computation proceeds as follows, as described on page 13
    /// of the Ed25519 paper.  Write the scalar `a` in radix 16 with
    /// coefficients in [-8,8), i.e.,
    ///
    ///    a = a_0 + a_1*16^1 + ... + a_63*16^63,
    ///
    /// with -8 ≤ a_i < 8.  Then
    ///
    ///    a*B = a_0*B + a_1*16^1*B + ... + a_63*16^63*B.
    ///
    /// Grouping even and odd coefficients gives
    ///
    ///    a*B =       a_0*16^0*B + a_2*16^2*B + ... + a_62*16^62*B
    ///              + a_1*16^1*B + a_3*16^3*B + ... + a_63*16^63*B
    ///        =      (a_0*16^0*B + a_2*16^2*B + ... + a_62*16^62*B)
    ///          + 16*(a_1*16^0*B + a_3*16^2*B + ... + a_63*16^62*B).
    ///
    /// We then use the `select_precomputed_point` function, which
    /// takes `-8 ≤ x < 8` and `[16^2i * B, ..., 8 * 16^2i * B]`,
    /// and returns `x * 16^2i * B` in constant time.
    pub fn basepoint_mult(a: &Scalar) -> ExtendedPoint { //GeScalarMultBase
        let e = a.to_radix_16();
        let mut h = ExtendedPoint::identity();
        let mut t: CompletedPoint;

        for i in (0..64).filter(|x| x % 2 == 1) {
            t = &h + &select_precomputed_point(e[i], &constants::base[i/2]);
            h = t.to_extended();
        }

        h = h.mult_by_pow_2(4);

        for i in (0..64).filter(|x| x % 2 == 0) {
            t = &h + &select_precomputed_point(e[i], &constants::base[i/2]);
            h = t.to_extended();
        }

        h
    }

    /// Multiply by the cofactor: compute `8 * self`.
    ///
    /// Convenience wrapper around `mult_by_pow_2`.
    #[inline]
    pub fn mult_by_cofactor(&self) -> ExtendedPoint {
        self.mult_by_pow_2(3)
    }

    /// Compute `2^k * self` by successive doublings.
    /// Requires `k > 0`.
    #[inline]
    pub fn mult_by_pow_2(&self, k: u32) -> ExtendedPoint {
        let mut r: CompletedPoint;
        let mut s = self.to_projective();
        for _ in 0..(k-1) {
            r = s.double(); s = r.to_projective();
        }
        // Unroll last iteration so we can go directly to_extended()
        r = s.double();
        return r.to_extended();
    }
}

/// Given a point `A` and scalars `a` and `b`, compute the point
/// `aA+bB`, where `B` is the Ed25519 basepoint (i.e., `B = (x,4/5)`
/// with x positive).
///
/// # Warning
///
/// This function is *not* constant time, hence its name.
// XXX should return ExtendedPoint?
pub fn double_scalar_mult_vartime(a: &Scalar, A: &ExtendedPoint, b: &Scalar) -> ProjectivePoint {
    let a_naf = a.non_adjacent_form();
    let b_naf = b.non_adjacent_form();

    // Build a lookup table of odd multiples of A
    let mut Ai = [CachedPoint::identity(); 8];
    let A2 = A.double();
    Ai[0]  = A.to_cached();
    for i in 0..7 {
        Ai[i+1] = (&A2 + &Ai[i]).to_extended().to_cached();
    }
    // Now Ai = [A, 3A, 5A, 7A, 9A, 11A, 13A, 15A]

    // Find starting index
    let mut i: usize = 255;
    for j in (0..255).rev() {
        i = j;
        if a_naf[i] != 0 || b_naf[i] != 0 {
            break;
        }
    }

    let mut r = ProjectivePoint::identity();
    loop {
        let mut t = r.double();

        if a_naf[i] > 0 {
            t = &t.to_extended() + &Ai[( a_naf[i]/2) as usize];
        } else if a_naf[i] < 0 {
            t = &t.to_extended() - &Ai[(-a_naf[i]/2) as usize];
        }

        if b_naf[i] > 0 {
            t = &t.to_extended() + &constants::bi[( b_naf[i]/2) as usize];
        } else if b_naf[i] < 0 {
            t = &t.to_extended() - &constants::bi[(-b_naf[i]/2) as usize];
        }

        r = t.to_projective();

        if i == 0 {
            break;
        }
        i -= 1;
    }

    r
}

/// Given precomputed points `[P, 2P, 3P, ..., 8P]`, as well as `-8 ≤
/// x ≤ 8`, compute `x * B` in constant time, i.e., without branching
/// on x or using it as an array index.
fn select_precomputed_point<T>(x: i8, points: &[T; 8]) -> T
    where T: Identity + CTAssignable, for<'a> &'a T: Neg<Output=T>
{
    debug_assert!(x >= -8); debug_assert!(x <= 8);

    // Compute xabs = |x|
    let xmask = x >> 7;
    let xabs  = (x + xmask) ^ xmask;

    // Set t = 0 * P = identity
    let mut t = T::identity();
    for j in 1..9 {
        // Copy `points[j-1] == j*P` onto `t` in constant time if `|x| == j`.
        t.conditional_assign(&points[j-1],
                             bytes_equal_ct(xabs as u8, j as u8));
    }
    // Now t == |x| * P.

    let minus_t = -(&t);
    let neg_mask = (xmask & 1) as u8;
    t.conditional_assign(&minus_t, neg_mask);
    // Now t == x * P.

    t
}

// ------------------------------------------------------------------------
// Elligator2 (uniform encoding/decoding of curve points)
// ------------------------------------------------------------------------

impl ExtendedPoint {
    /// Use Elligator2 to try to convert `self` to a uniformly random
    /// string.
    ///
    /// Returns `Some<[u8;32]>` if `self` is in the image of the
    /// Elligator2 map.  For a random point on the curve, this happens
    /// with probability 1/2.  Otherwise, returns `None`.
    pub fn to_uniform_representative(&self) -> Option<[u8;32]> {
        unimplemented!();
    }

    /// Use Elligator2 to convert a uniformly random string to a curve
    /// point.
    #[allow(unused_variables)] // REMOVE WHEN IMPLEMENTED
    pub fn from_uniform_representative(bytes: &[u8;32]) -> ExtendedPoint {
        unimplemented!();
    }
}

// ------------------------------------------------------------------------
// Debug traits
// ------------------------------------------------------------------------

impl Debug for ExtendedPoint {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "ExtendedPoint(\n\tX: {:?},\n\tY: {:?},\n\tZ: {:?},\n\tT: {:?}\n)",
               &self.X, &self.Y, &self.Z, &self.T)
    }
}

impl Debug for ProjectivePoint {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "ProjectivePoint(\n\tX: {:?},\n\tY: {:?},\n\tZ: {:?}\n)",
               &self.X, &self.Y, &self.Z)
    }
}

impl Debug for CompletedPoint {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "CompletedPoint(\n\tX: {:?},\n\tY: {:?},\n\tZ: {:?},\n\tT: {:?}\n)",
               &self.X, &self.Y, &self.Z, &self.T)
    }
}

impl Debug for PreComputedPoint {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "PreComputedPoint(\n\ty_plus_x: {:?},\n\ty_minus_x: {:?},\n\txy2d: {:?}\n)",
               &self.y_plus_x, &self.y_minus_x, &self.xy2d)
    }
}

impl Debug for CachedPoint {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "CachedPoint(\n\tY_plus_X: {:?},\n\tY_minus_X: {:?},\n\tZ: {:?},\n\tT2d: {:?}\n)",
               &self.Y_plus_X, &self.Y_minus_X, &self.Z, &self.T2d)
    }
}

// ------------------------------------------------------------------------
// Tests
// ------------------------------------------------------------------------

#[cfg(test)]
mod test {
    use test::Bencher;
    use field::FieldElement;
    use scalar::Scalar;
    use util::CTAssignable;
    use constants;
    use constants::BASE_CMPRSSD;
    use super::*;
    use super::select_precomputed_point;

    /// X coordinate of the basepoint.
    /// = 15112221349535400772501151409588531511454012693041857206046113283949847762202
    static BASE_X_COORD_BYTES: [u8; 32] =
        [0x1a, 0xd5, 0x25, 0x8f, 0x60, 0x2d, 0x56, 0xc9, 0xb2, 0xa7, 0x25, 0x95, 0x60, 0xc7, 0x2c, 0x69,
         0x5c, 0xdc, 0xd6, 0xfd, 0x31, 0xe2, 0xa4, 0xc0, 0xfe, 0x53, 0x6e, 0xcd, 0xd3, 0x36, 0x69, 0x21];

    static BASE2_CMPRSSD: CompressedEdwardsY =
        CompressedEdwardsY([0xc9, 0xa3, 0xf8, 0x6a, 0xae, 0x46, 0x5f, 0xe,
                            0x56, 0x51, 0x38, 0x64, 0x51, 0x0f, 0x39, 0x97,
                            0x56, 0x1f, 0xa2, 0xc9, 0xe8, 0x5e, 0xa2, 0x1d,
                            0xc2, 0x29, 0x23, 0x09, 0xf3, 0xcd, 0x60, 0x22]);

    static BASE16_CMPRSSD: CompressedEdwardsY =
        CompressedEdwardsY([0xeb, 0x27, 0x67, 0xc1, 0x37, 0xab, 0x7a, 0xd8,
                            0x27, 0x9c, 0x07, 0x8e, 0xff, 0x11, 0x6a, 0xb0,
                            0x78, 0x6e, 0xad, 0x3a, 0x2e, 0x0f, 0x98, 0x9f,
                            0x72, 0xc3, 0x7f, 0x82, 0xf2, 0x96, 0x96, 0x70]);

    /// 4493907448824000747700850167940867464579944529806937181821189941592931634714
    static A_SCALAR: Scalar = Scalar([
        0x1a, 0x0e, 0x97, 0x8a, 0x90, 0xf6, 0x62, 0x2d,
        0x37, 0x47, 0x02, 0x3f, 0x8a, 0xd8, 0x26, 0x4d,
        0xa7, 0x58, 0xaa, 0x1b, 0x88, 0xe0, 0x40, 0xd1,
        0x58, 0x9e, 0x7b, 0x7f, 0x23, 0x76, 0xef, 0x09]);

    /// 2506056684125797857694181776241676200180934651973138769173342316833279714961
    static B_SCALAR: Scalar = Scalar([
        0x91, 0x26, 0x7a, 0xcf, 0x25, 0xc2, 0x09, 0x1b,
        0xa2, 0x17, 0x74, 0x7b, 0x66, 0xf0, 0xb3, 0x2e,
        0x9d, 0xf2, 0xa5, 0x67, 0x41, 0xcf, 0xda, 0xc4,
        0x56, 0xa7, 0xd4, 0xaa, 0xb8, 0x60, 0x8a, 0x05]);

    /// A_SCALAR * basepoint, computed with ed25519.py
    static A_TIMES_BASEPOINT: CompressedEdwardsY = CompressedEdwardsY([
        0xea, 0x27, 0xe2, 0x60, 0x53, 0xdf, 0x1b, 0x59,
        0x56, 0xf1, 0x4d, 0x5d, 0xec, 0x3c, 0x34, 0xc3,
        0x84, 0xa2, 0x69, 0xb7, 0x4c, 0xc3, 0x80, 0x3e,
        0xa8, 0xe2, 0xe7, 0xc9, 0x42, 0x5e, 0x40, 0xa5]);

    /// A_SCALAR * (A_TIMES_BASEPOINT) + B_SCALAR * BASEPOINT
    static DOUBLE_SCALAR_MULT_RESULT: CompressedEdwardsY = CompressedEdwardsY([
        0x7d, 0xfd, 0x6c, 0x45, 0xaf, 0x6d, 0x6e, 0x0e,
        0xba, 0x20, 0x37, 0x1a, 0x23, 0x64, 0x59, 0xc4,
        0xc0, 0x46, 0x83, 0x43, 0xde, 0x70, 0x4b, 0x85,
        0x09, 0x6f, 0xfe, 0x35, 0x4f, 0x13, 0x2b, 0x42]);

    /// Test round-trip decompression for the basepoint.
    #[test]
    fn test_basepoint_decompression_compression() {
        let base_X = FieldElement::from_bytes(&BASE_X_COORD_BYTES);
        let bp  =  BASE_CMPRSSD.decompress().unwrap();
        let bp2 = BASE2_CMPRSSD.decompress().unwrap();
        let compressed  =  bp.compress();
        let compressed2 = bp2.compress();
        // Check that decompression actually gives the correct X coordinate
        assert_eq!(base_X, bp.X);
        assert_eq!(compressed,   BASE_CMPRSSD);
        assert_eq!(compressed2, BASE2_CMPRSSD);
    }

    /// Test sign handling in decompression
    #[test]
    fn test_decompression_sign_handling() {
        let mut m_bp_bytes: [u8;32] = BASE_CMPRSSD.to_bytes().clone();
        // Set the high bit of the last byte to flip the sign
        m_bp_bytes[31] |= 1 << 7;
        let m_bp = CompressedEdwardsY(m_bp_bytes).decompress().unwrap();
        let bp = BASE_CMPRSSD.decompress().unwrap();
        assert_eq!(m_bp.X, -(&bp.X));
        assert_eq!(m_bp.Y,  bp.Y);
        assert_eq!(m_bp.Z,  bp.Z);
        assert_eq!(m_bp.T, -(&bp.T));
    }

    /// Test that computing 1*basepoint gives the correct basepoint.
    #[test]
    fn test_basepoint_mult_one_vs_basepoint() {
        let bp = ExtendedPoint::basepoint_mult(&Scalar::one());
        let compressed = bp.compress();
        assert_eq!(compressed, BASE_CMPRSSD);
    }

    /// Test `impl Add<ExtendedPoint> for ExtendedPoint`
    /// using basepoint + basepoint versus the 2*basepoint constant.
    #[test]
    fn test_basepoint_plus_basepoint() {
        let bp = BASE_CMPRSSD.decompress().unwrap();
        let bp_added = &bp + &bp;
        assert_eq!(  bp_added.compress(), BASE2_CMPRSSD);
    }

    /// Test `impl Add<CachedPoint> for ExtendedPoint`
    /// using the basepoint, basepoint2 constants
    #[test]
    fn test_basepoint_plus_basepoint_cached() {
        let bp = BASE_CMPRSSD.decompress().unwrap();
        let bp_added = (&bp + &bp.to_cached()).to_extended();
        assert_eq!(  bp_added.compress(), BASE2_CMPRSSD);
    }

    /// Test `impl Add<PreComputedPoint> for ExtendedPoint`
    /// using the basepoint, basepoint2 constants
    #[test]
    fn test_basepoint_plus_basepoint_precomputed() {
        let bp = BASE_CMPRSSD.decompress().unwrap();
        // on decode, Z =1, so x = X/Z = X, y = Y/Z = Y, xy = T
        let bp_precomputed = PreComputedPoint{
            y_plus_x:  &bp.Y + &bp.X,
            y_minus_x: &bp.Y - &bp.X,
            xy2d:      &bp.T * &constants::d2,
        };
        let bp_added = (&bp + &bp_precomputed).to_extended();
        assert_eq!(  bp_added.compress(), BASE2_CMPRSSD);
    }

    /// Sanity check for conversion to precomputed points
    #[test]
    fn test_convert_to_precomputed() {
        // construct a point as aB so it has denominators (ie. Z != 1)
        let aB = ExtendedPoint::basepoint_mult(&A_SCALAR);
        let aB_pc = aB.to_precomputed();
        let id = ExtendedPoint::identity();
        let P = &id + &aB_pc;
        assert_eq!(P.to_extended().compress(), aB.compress())
    }

    /// Test basepoint_mult versus a known scalar multiple from ed25519.py
    #[test]
    fn test_basepoint_mult() {
        let aB = ExtendedPoint::basepoint_mult(&A_SCALAR);
        assert_eq!(aB.compress(), A_TIMES_BASEPOINT);
    }

    /// Test scalar_mult versus a known scalar multiple from ed25519.py
    #[test]
    fn test_scalar_mult() {
        let bp = BASE_CMPRSSD.decompress().unwrap();
        let aB = bp.scalar_mult(&A_SCALAR);
        assert_eq!(aB.compress(), A_TIMES_BASEPOINT);
    }

    /// Test double_scalar_mult_vartime vs ed25519.py
    #[test]
    fn test_double_scalar_mult_vartime() {
        let A = A_TIMES_BASEPOINT.decompress().unwrap();
        let result = double_scalar_mult_vartime(&A_SCALAR, &A, &B_SCALAR);
        assert_eq!(result.compress(), DOUBLE_SCALAR_MULT_RESULT);
    }

    /// Test basepoint.double() versus the 2*basepoint constant.
    #[test]
    fn test_basepoint_double() {
        let bp = BASE_CMPRSSD.decompress().unwrap();
        let bp_doubled = bp.double();
        assert_eq!(bp_doubled.compress(), BASE2_CMPRSSD);
    }

    /// Test that computing 2*basepoint is the same as basepoint.double()
    #[test]
    fn test_scalar_mult_two_vs_double() {
        // XXX this seems like a pain point: better way to construct small
        // scalars?
        let two = Scalar([ 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                           0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]);
        let bp = BASE_CMPRSSD.decompress().unwrap();
        let bp_doubled = bp.double();
        let bp2 = ExtendedPoint::basepoint_mult(&two);
        assert_eq!(bp_doubled.compress(), bp2.compress());
    }

    #[test]
    fn test_basepoint_projective_extended_round_trip() {
        let bp = BASE_CMPRSSD.decompress().unwrap();
        let bp_roundtrip = bp.to_projective().to_extended();

        assert_eq!(BASE_CMPRSSD, bp_roundtrip.compress());
    }

    /// Test computing 16*basepoint vs mult_by_pow_2
    #[test]
    fn test_mult_by_pow_2() {
        let bp   =   BASE_CMPRSSD.decompress().unwrap();
        let bp16 = bp.mult_by_pow_2(4);
        assert_eq!(bp16.compress(), BASE16_CMPRSSD);
    }

    /// The basepoint, doubled, minus the basepoint should equal the basepoint.
    #[test]
    fn test_ge_sub() {
        let p1: ExtendedPoint = BASE_CMPRSSD.decompress().unwrap();
        let p2: ExtendedPoint = BASE2_CMPRSSD.decompress().unwrap();
        let p3: ExtendedPoint = (&p2 - &p1.to_cached()).to_extended();

        assert_eq!(p1.compress(), p3.compress());
    }

    /// The basepoint plus the identity should equal the basepoint.
    #[test]
    fn test_ge_add() {
        let p1: ExtendedPoint = BASE_CMPRSSD.decompress().unwrap();
        let p2: ExtendedPoint = ExtendedPoint::identity();
        let p3: ExtendedPoint = (&p1 + &p2.to_cached()).to_extended();

        assert_eq!(p1.compress(), p3.compress());
    }

    #[test]
    fn test_PreComputedPoint_conditional_assign() {
        let id     = PreComputedPoint::identity();
        let mut p1 = PreComputedPoint::identity();
        let p2:     PreComputedPoint = PreComputedPoint{
            y_plus_x:  FieldElement([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
            y_minus_x: FieldElement([11, 22, 33, 44, 55, 66, 77, 88, 99, 100]),
            xy2d:    FieldElement([10, 20, 30, 40, 50, 60, 70, 80, 90, 101]),
        };

        p1.conditional_assign(&p2, 0);
        assert_eq!(p1.y_plus_x,  id.y_plus_x);
        assert_eq!(p1.y_minus_x, id.y_minus_x);
        assert_eq!(p1.xy2d,      id.xy2d);
        p1.conditional_assign(&p2, 1);
        assert_eq!(p1.y_plus_x,  p2.y_plus_x);
        assert_eq!(p1.y_minus_x, p2.y_minus_x);
        assert_eq!(p1.xy2d,      p2.xy2d);
    }

    #[bench]
    fn bench_basepoint_mult(b: &mut Bencher) {
        b.iter(|| ExtendedPoint::basepoint_mult(&A_SCALAR));
    }

    #[bench]
    fn bench_scalar_mult(b: &mut Bencher) {
        let bp = BASE_CMPRSSD.decompress().unwrap();
        b.iter(|| bp.scalar_mult(&A_SCALAR));
    }

    #[bench]
    fn bench_select_precomputed_point(b: &mut Bencher) {
        b.iter(|| select_precomputed_point(0, &constants::base[12]));
    }

    #[bench]
    fn bench_double_scalar_mult_vartime(bench: &mut Bencher) {
        let A = A_TIMES_BASEPOINT.decompress().unwrap();
        bench.iter(|| double_scalar_mult_vartime(&A_SCALAR, &A, &B_SCALAR));
    }

    #[bench]
    fn bench_extended_add_cached(b: &mut Bencher) {
        let p1 = BASE_CMPRSSD.decompress().unwrap();
        let p2 = BASE2_CMPRSSD.decompress().unwrap().to_cached();

        b.iter(| | &p1 + &p2);
    }

    #[bench]
    fn bench_extended_add_cached_to_extended(b: &mut Bencher) {
        let p1 = BASE_CMPRSSD.decompress().unwrap();
        let p2 = BASE2_CMPRSSD.decompress().unwrap().to_cached();

        b.iter(| | (&p1 + &p2).to_extended());
    }

    #[bench]
    fn bench_extended_add_precomputed(b: &mut Bencher) {
        let p1 = BASE_CMPRSSD.decompress().unwrap();
        let p2 = select_precomputed_point(6, &constants::base[27]);

        b.iter(| | &p1 + &p2);
    }

    #[bench]
    fn bench_extended_add_precomputed_to_extended(b: &mut Bencher) {
        let p1 = BASE_CMPRSSD.decompress().unwrap();
        let p2 = select_precomputed_point(6, &constants::base[27]);

        b.iter(| | (&p1 + &p2).to_extended());
    }

    #[bench]
    fn bench_double(b: &mut Bencher) {
        let p1 = BASE_CMPRSSD.decompress().unwrap().to_projective();

        b.iter(| | p1.double() );
    }

    #[bench]
    fn bench_double_to_extended(b: &mut Bencher) {
        let p1 = BASE_CMPRSSD.decompress().unwrap().to_projective();

        b.iter(| | p1.double().to_extended() );
    }

    #[bench]
    fn bench_mult_by_pow2_4(b: &mut Bencher) {
        let p1 = BASE_CMPRSSD.decompress().unwrap();

        b.iter(| | p1.mult_by_pow_2(4) );
    }
}