1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2016-2021 isis lovecruft
// Copyright (c) 2016-2019 Henry de Valence
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>
//! Field arithmetic modulo \\(p = 2\^{255} - 19\\), using \\(32\\)-bit
//! limbs with \\(64\\)-bit products.
//!
//! This code was originally derived from Adam Langley's Golang ed25519
//! implementation, and was then rewritten to use unsigned limbs instead
//! of signed limbs.
use core::fmt::Debug;
use core::ops::Neg;
use core::ops::{Add, AddAssign};
use core::ops::{Mul, MulAssign};
use core::ops::{Sub, SubAssign};
use subtle::Choice;
use subtle::ConditionallySelectable;
#[cfg(feature = "zeroize")]
use zeroize::Zeroize;
/// A `FieldElement2625` represents an element of the field
/// \\( \mathbb Z / (2\^{255} - 19)\\).
///
/// In the 32-bit implementation, a `FieldElement` is represented in
/// radix \\(2\^{25.5}\\) as ten `u32`s. This means that a field
/// element \\(x\\) is represented as
/// $$
/// x = \sum\_{i=0}\^9 x\_i 2\^{\lceil i \frac {51} 2 \rceil}
/// = x\_0 + x\_1 2\^{26} + x\_2 2\^{51} + x\_3 2\^{77} + \cdots + x\_9 2\^{230};
/// $$
/// the coefficients are alternately bounded by \\(2\^{25}\\) and
/// \\(2\^{26}\\). The limbs are allowed to grow between reductions up
/// to \\(2\^{25+b}\\) or \\(2\^{26+b}\\), where \\(b = 1.75\\).
///
/// # Note
///
/// The `curve25519_dalek::field` module provides a type alias
/// `curve25519_dalek::field::FieldElement` to either `FieldElement51`
/// or `FieldElement2625`.
///
/// The backend-specific type `FieldElement2625` should not be used
/// outside of the `curve25519_dalek::field` module.
#[derive(Copy, Clone)]
pub struct FieldElement2625(pub(crate) [u32; 10]);
impl Debug for FieldElement2625 {
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
write!(f, "FieldElement2625({:?})", &self.0[..])
}
}
#[cfg(feature = "zeroize")]
impl Zeroize for FieldElement2625 {
fn zeroize(&mut self) {
self.0.zeroize();
}
}
impl<'b> AddAssign<&'b FieldElement2625> for FieldElement2625 {
fn add_assign(&mut self, _rhs: &'b FieldElement2625) {
for i in 0..10 {
self.0[i] += _rhs.0[i];
}
}
}
impl<'a, 'b> Add<&'b FieldElement2625> for &'a FieldElement2625 {
type Output = FieldElement2625;
fn add(self, _rhs: &'b FieldElement2625) -> FieldElement2625 {
let mut output = *self;
output += _rhs;
output
}
}
impl<'b> SubAssign<&'b FieldElement2625> for FieldElement2625 {
fn sub_assign(&mut self, _rhs: &'b FieldElement2625) {
// See comment in FieldElement51::Sub
//
// Compute a - b as ((a + 2^4 * p) - b) to avoid underflow.
let b = &_rhs.0;
self.0 = FieldElement2625::reduce([
((self.0[0] + (0x3ffffed << 4)) - b[0]) as u64,
((self.0[1] + (0x1ffffff << 4)) - b[1]) as u64,
((self.0[2] + (0x3ffffff << 4)) - b[2]) as u64,
((self.0[3] + (0x1ffffff << 4)) - b[3]) as u64,
((self.0[4] + (0x3ffffff << 4)) - b[4]) as u64,
((self.0[5] + (0x1ffffff << 4)) - b[5]) as u64,
((self.0[6] + (0x3ffffff << 4)) - b[6]) as u64,
((self.0[7] + (0x1ffffff << 4)) - b[7]) as u64,
((self.0[8] + (0x3ffffff << 4)) - b[8]) as u64,
((self.0[9] + (0x1ffffff << 4)) - b[9]) as u64,
])
.0;
}
}
impl<'a, 'b> Sub<&'b FieldElement2625> for &'a FieldElement2625 {
type Output = FieldElement2625;
fn sub(self, _rhs: &'b FieldElement2625) -> FieldElement2625 {
let mut output = *self;
output -= _rhs;
output
}
}
impl<'b> MulAssign<&'b FieldElement2625> for FieldElement2625 {
fn mul_assign(&mut self, _rhs: &'b FieldElement2625) {
let result = (self as &FieldElement2625) * _rhs;
self.0 = result.0;
}
}
impl<'a, 'b> Mul<&'b FieldElement2625> for &'a FieldElement2625 {
type Output = FieldElement2625;
#[rustfmt::skip] // keep alignment of z* calculations
fn mul(self, _rhs: &'b FieldElement2625) -> FieldElement2625 {
/// Helper function to multiply two 32-bit integers with 64 bits
/// of output.
#[inline(always)]
fn m(x: u32, y: u32) -> u64 {
(x as u64) * (y as u64)
}
// Alias self, _rhs for more readable formulas
let x: &[u32; 10] = &self.0;
let y: &[u32; 10] = &_rhs.0;
// We assume that the input limbs x[i], y[i] are bounded by:
//
// x[i], y[i] < 2^(26 + b) if i even
// x[i], y[i] < 2^(25 + b) if i odd
//
// where b is a (real) parameter representing the excess bits of
// the limbs. We track the bitsizes of all variables through
// the computation and solve at the end for the allowable
// headroom bitsize b (which determines how many additions we
// can perform between reductions or multiplications).
let y1_19 = 19 * y[1]; // This fits in a u32
let y2_19 = 19 * y[2]; // iff 26 + b + lg(19) < 32
let y3_19 = 19 * y[3]; // if b < 32 - 26 - 4.248 = 1.752
let y4_19 = 19 * y[4];
let y5_19 = 19 * y[5]; // below, b<2.5: this is a bottleneck,
let y6_19 = 19 * y[6]; // could be avoided by promoting to
let y7_19 = 19 * y[7]; // u64 here instead of in m()
let y8_19 = 19 * y[8];
let y9_19 = 19 * y[9];
// What happens when we multiply x[i] with y[j] and place the
// result into the (i+j)-th limb?
//
// x[i] represents the value x[i]*2^ceil(i*51/2)
// y[j] represents the value y[j]*2^ceil(j*51/2)
// z[i+j] represents the value z[i+j]*2^ceil((i+j)*51/2)
// x[i]*y[j] represents the value x[i]*y[i]*2^(ceil(i*51/2)+ceil(j*51/2))
//
// Since the radix is already accounted for, the result placed
// into the (i+j)-th limb should be
//
// x[i]*y[i]*2^(ceil(i*51/2)+ceil(j*51/2) - ceil((i+j)*51/2)).
//
// The value of ceil(i*51/2)+ceil(j*51/2) - ceil((i+j)*51/2) is
// 1 when both i and j are odd, and 0 otherwise. So we add
//
// x[i]*y[j] if either i or j is even
// 2*x[i]*y[j] if i and j are both odd
//
// by using precomputed multiples of x[i] for odd i:
let x1_2 = 2 * x[1]; // This fits in a u32 iff 25 + b + 1 < 32
let x3_2 = 2 * x[3]; // iff b < 6
let x5_2 = 2 * x[5];
let x7_2 = 2 * x[7];
let x9_2 = 2 * x[9];
let z0 = m(x[0], y[0]) + m(x1_2, y9_19) + m(x[2], y8_19) + m(x3_2, y7_19) + m(x[4], y6_19) + m(x5_2, y5_19) + m(x[6], y4_19) + m(x7_2, y3_19) + m(x[8], y2_19) + m(x9_2, y1_19);
let z1 = m(x[0], y[1]) + m(x[1], y[0]) + m(x[2], y9_19) + m(x[3], y8_19) + m(x[4], y7_19) + m(x[5], y6_19) + m(x[6], y5_19) + m(x[7], y4_19) + m(x[8], y3_19) + m(x[9], y2_19);
let z2 = m(x[0], y[2]) + m(x1_2, y[1]) + m(x[2], y[0]) + m(x3_2, y9_19) + m(x[4], y8_19) + m(x5_2, y7_19) + m(x[6], y6_19) + m(x7_2, y5_19) + m(x[8], y4_19) + m(x9_2, y3_19);
let z3 = m(x[0], y[3]) + m(x[1], y[2]) + m(x[2], y[1]) + m(x[3], y[0]) + m(x[4], y9_19) + m(x[5], y8_19) + m(x[6], y7_19) + m(x[7], y6_19) + m(x[8], y5_19) + m(x[9], y4_19);
let z4 = m(x[0], y[4]) + m(x1_2, y[3]) + m(x[2], y[2]) + m(x3_2, y[1]) + m(x[4], y[0]) + m(x5_2, y9_19) + m(x[6], y8_19) + m(x7_2, y7_19) + m(x[8], y6_19) + m(x9_2, y5_19);
let z5 = m(x[0], y[5]) + m(x[1], y[4]) + m(x[2], y[3]) + m(x[3], y[2]) + m(x[4], y[1]) + m(x[5], y[0]) + m(x[6], y9_19) + m(x[7], y8_19) + m(x[8], y7_19) + m(x[9], y6_19);
let z6 = m(x[0], y[6]) + m(x1_2, y[5]) + m(x[2], y[4]) + m(x3_2, y[3]) + m(x[4], y[2]) + m(x5_2, y[1]) + m(x[6], y[0]) + m(x7_2, y9_19) + m(x[8], y8_19) + m(x9_2, y7_19);
let z7 = m(x[0], y[7]) + m(x[1], y[6]) + m(x[2], y[5]) + m(x[3], y[4]) + m(x[4], y[3]) + m(x[5], y[2]) + m(x[6], y[1]) + m(x[7], y[0]) + m(x[8], y9_19) + m(x[9], y8_19);
let z8 = m(x[0], y[8]) + m(x1_2, y[7]) + m(x[2], y[6]) + m(x3_2, y[5]) + m(x[4], y[4]) + m(x5_2, y[3]) + m(x[6], y[2]) + m(x7_2, y[1]) + m(x[8], y[0]) + m(x9_2, y9_19);
let z9 = m(x[0], y[9]) + m(x[1], y[8]) + m(x[2], y[7]) + m(x[3], y[6]) + m(x[4], y[5]) + m(x[5], y[4]) + m(x[6], y[3]) + m(x[7], y[2]) + m(x[8], y[1]) + m(x[9], y[0]);
// How big is the contribution to z[i+j] from x[i], y[j]?
//
// Using the bounds above, we get:
//
// i even, j even: x[i]*y[j] < 2^(26+b)*2^(26+b) = 2*2^(51+2*b)
// i odd, j even: x[i]*y[j] < 2^(25+b)*2^(26+b) = 1*2^(51+2*b)
// i even, j odd: x[i]*y[j] < 2^(26+b)*2^(25+b) = 1*2^(51+2*b)
// i odd, j odd: 2*x[i]*y[j] < 2*2^(25+b)*2^(25+b) = 1*2^(51+2*b)
//
// We perform inline reduction mod p by replacing 2^255 by 19
// (since 2^255 - 19 = 0 mod p). This adds a factor of 19, so
// we get the bounds (z0 is the biggest one, but calculated for
// posterity here in case finer estimation is needed later):
//
// z0 < ( 2 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 )*2^(51 + 2b) = 249*2^(51 + 2*b)
// z1 < ( 1 + 1 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 )*2^(51 + 2b) = 154*2^(51 + 2*b)
// z2 < ( 2 + 1 + 2 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 )*2^(51 + 2b) = 195*2^(51 + 2*b)
// z3 < ( 1 + 1 + 1 + 1 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 + 1*19 )*2^(51 + 2b) = 118*2^(51 + 2*b)
// z4 < ( 2 + 1 + 2 + 1 + 2 + 1*19 + 2*19 + 1*19 + 2*19 + 1*19 )*2^(51 + 2b) = 141*2^(51 + 2*b)
// z5 < ( 1 + 1 + 1 + 1 + 1 + 1 + 1*19 + 1*19 + 1*19 + 1*19 )*2^(51 + 2b) = 82*2^(51 + 2*b)
// z6 < ( 2 + 1 + 2 + 1 + 2 + 1 + 2 + 1*19 + 2*19 + 1*19 )*2^(51 + 2b) = 87*2^(51 + 2*b)
// z7 < ( 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1*19 + 1*19 )*2^(51 + 2b) = 46*2^(51 + 2*b)
// z6 < ( 2 + 1 + 2 + 1 + 2 + 1 + 2 + 1 + 2 + 1*19 )*2^(51 + 2b) = 33*2^(51 + 2*b)
// z7 < ( 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 )*2^(51 + 2b) = 10*2^(51 + 2*b)
//
// So z[0] fits into a u64 if 51 + 2*b + lg(249) < 64
// if b < 2.5.
FieldElement2625::reduce([z0, z1, z2, z3, z4, z5, z6, z7, z8, z9])
}
}
impl<'a> Neg for &'a FieldElement2625 {
type Output = FieldElement2625;
fn neg(self) -> FieldElement2625 {
let mut output = *self;
output.negate();
output
}
}
impl ConditionallySelectable for FieldElement2625 {
fn conditional_select(
a: &FieldElement2625,
b: &FieldElement2625,
choice: Choice,
) -> FieldElement2625 {
FieldElement2625([
u32::conditional_select(&a.0[0], &b.0[0], choice),
u32::conditional_select(&a.0[1], &b.0[1], choice),
u32::conditional_select(&a.0[2], &b.0[2], choice),
u32::conditional_select(&a.0[3], &b.0[3], choice),
u32::conditional_select(&a.0[4], &b.0[4], choice),
u32::conditional_select(&a.0[5], &b.0[5], choice),
u32::conditional_select(&a.0[6], &b.0[6], choice),
u32::conditional_select(&a.0[7], &b.0[7], choice),
u32::conditional_select(&a.0[8], &b.0[8], choice),
u32::conditional_select(&a.0[9], &b.0[9], choice),
])
}
fn conditional_assign(&mut self, other: &FieldElement2625, choice: Choice) {
self.0[0].conditional_assign(&other.0[0], choice);
self.0[1].conditional_assign(&other.0[1], choice);
self.0[2].conditional_assign(&other.0[2], choice);
self.0[3].conditional_assign(&other.0[3], choice);
self.0[4].conditional_assign(&other.0[4], choice);
self.0[5].conditional_assign(&other.0[5], choice);
self.0[6].conditional_assign(&other.0[6], choice);
self.0[7].conditional_assign(&other.0[7], choice);
self.0[8].conditional_assign(&other.0[8], choice);
self.0[9].conditional_assign(&other.0[9], choice);
}
fn conditional_swap(a: &mut FieldElement2625, b: &mut FieldElement2625, choice: Choice) {
u32::conditional_swap(&mut a.0[0], &mut b.0[0], choice);
u32::conditional_swap(&mut a.0[1], &mut b.0[1], choice);
u32::conditional_swap(&mut a.0[2], &mut b.0[2], choice);
u32::conditional_swap(&mut a.0[3], &mut b.0[3], choice);
u32::conditional_swap(&mut a.0[4], &mut b.0[4], choice);
u32::conditional_swap(&mut a.0[5], &mut b.0[5], choice);
u32::conditional_swap(&mut a.0[6], &mut b.0[6], choice);
u32::conditional_swap(&mut a.0[7], &mut b.0[7], choice);
u32::conditional_swap(&mut a.0[8], &mut b.0[8], choice);
u32::conditional_swap(&mut a.0[9], &mut b.0[9], choice);
}
}
impl FieldElement2625 {
/// The scalar \\( 0 \\).
pub const ZERO: FieldElement2625 = FieldElement2625([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
/// The scalar \\( 1 \\).
pub const ONE: FieldElement2625 = FieldElement2625([1, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
/// The scalar \\( -1 \\).
pub const MINUS_ONE: FieldElement2625 = FieldElement2625([
0x3ffffec, 0x1ffffff, 0x3ffffff, 0x1ffffff, 0x3ffffff, 0x1ffffff, 0x3ffffff, 0x1ffffff,
0x3ffffff, 0x1ffffff,
]);
/// Invert the sign of this field element
pub fn negate(&mut self) {
// Compute -b as ((2^4 * p) - b) to avoid underflow.
let neg = FieldElement2625::reduce([
((0x3ffffed << 4) - self.0[0]) as u64,
((0x1ffffff << 4) - self.0[1]) as u64,
((0x3ffffff << 4) - self.0[2]) as u64,
((0x1ffffff << 4) - self.0[3]) as u64,
((0x3ffffff << 4) - self.0[4]) as u64,
((0x1ffffff << 4) - self.0[5]) as u64,
((0x3ffffff << 4) - self.0[6]) as u64,
((0x1ffffff << 4) - self.0[7]) as u64,
((0x3ffffff << 4) - self.0[8]) as u64,
((0x1ffffff << 4) - self.0[9]) as u64,
]);
self.0 = neg.0;
}
/// Given `k > 0`, return `self^(2^k)`.
pub fn pow2k(&self, k: u32) -> FieldElement2625 {
debug_assert!(k > 0);
let mut z = self.square();
for _ in 1..k {
z = z.square();
}
z
}
/// Given unreduced coefficients `z[0], ..., z[9]` of any size,
/// carry and reduce them mod p to obtain a `FieldElement2625`
/// whose coefficients have excess `b < 0.007`.
///
/// In other words, each coefficient of the result is bounded by
/// either `2^(25 + 0.007)` or `2^(26 + 0.007)`, as appropriate.
#[rustfmt::skip] // keep alignment of carry chain
fn reduce(mut z: [u64; 10]) -> FieldElement2625 {
const LOW_25_BITS: u64 = (1 << 25) - 1;
const LOW_26_BITS: u64 = (1 << 26) - 1;
/// Carry the value from limb i = 0..8 to limb i+1
#[inline(always)]
fn carry(z: &mut [u64; 10], i: usize) {
debug_assert!(i < 9);
if i % 2 == 0 {
// Even limbs have 26 bits
z[i + 1] += z[i] >> 26;
z[i] &= LOW_26_BITS;
} else {
// Odd limbs have 25 bits
z[i + 1] += z[i] >> 25;
z[i] &= LOW_25_BITS;
}
}
// Perform two halves of the carry chain in parallel.
carry(&mut z, 0); carry(&mut z, 4);
carry(&mut z, 1); carry(&mut z, 5);
carry(&mut z, 2); carry(&mut z, 6);
carry(&mut z, 3); carry(&mut z, 7);
// Since z[3] < 2^64, c < 2^(64-25) = 2^39,
// so z[4] < 2^26 + 2^39 < 2^39.0002
carry(&mut z, 4); carry(&mut z, 8);
// Now z[4] < 2^26
// and z[5] < 2^25 + 2^13.0002 < 2^25.0004 (good enough)
// Last carry has a multiplication by 19:
z[0] += 19 * (z[9] >> 25);
z[9] &= LOW_25_BITS;
// Since z[9] < 2^64, c < 2^(64-25) = 2^39,
// so z[0] + 19*c < 2^26 + 2^43.248 < 2^43.249.
carry(&mut z, 0);
// Now z[1] < 2^25 - 2^(43.249 - 26)
// < 2^25.007 (good enough)
// and we're done.
FieldElement2625([
z[0] as u32,
z[1] as u32,
z[2] as u32,
z[3] as u32,
z[4] as u32,
z[5] as u32,
z[6] as u32,
z[7] as u32,
z[8] as u32,
z[9] as u32,
])
}
/// Load a `FieldElement51` from the low 255 bits of a 256-bit
/// input.
///
/// # Warning
///
/// This function does not check that the input used the canonical
/// representative. It masks the high bit, but it will happily
/// decode 2^255 - 18 to 1. Applications that require a canonical
/// encoding of every field element should decode, re-encode to
/// the canonical encoding, and check that the input was
/// canonical.
#[rustfmt::skip] // keep alignment of h[*] values
pub fn from_bytes(data: &[u8; 32]) -> FieldElement2625 {
#[inline]
fn load3(b: &[u8]) -> u64 {
(b[0] as u64) | ((b[1] as u64) << 8) | ((b[2] as u64) << 16)
}
#[inline]
fn load4(b: &[u8]) -> u64 {
(b[0] as u64) | ((b[1] as u64) << 8) | ((b[2] as u64) << 16) | ((b[3] as u64) << 24)
}
let mut h = [0u64;10];
const LOW_23_BITS: u64 = (1 << 23) - 1;
h[0] = load4(&data[ 0..]);
h[1] = load3(&data[ 4..]) << 6;
h[2] = load3(&data[ 7..]) << 5;
h[3] = load3(&data[10..]) << 3;
h[4] = load3(&data[13..]) << 2;
h[5] = load4(&data[16..]);
h[6] = load3(&data[20..]) << 7;
h[7] = load3(&data[23..]) << 5;
h[8] = load3(&data[26..]) << 4;
h[9] = (load3(&data[29..]) & LOW_23_BITS) << 2;
FieldElement2625::reduce(h)
}
/// Serialize this `FieldElement51` to a 32-byte array. The
/// encoding is canonical.
#[allow(clippy::identity_op)]
pub fn as_bytes(&self) -> [u8; 32] {
let inp = &self.0;
// Reduce the value represented by `in` to the range [0,2*p)
let mut h: [u32; 10] = FieldElement2625::reduce([
// XXX this cast is annoying
inp[0] as u64,
inp[1] as u64,
inp[2] as u64,
inp[3] as u64,
inp[4] as u64,
inp[5] as u64,
inp[6] as u64,
inp[7] as u64,
inp[8] as u64,
inp[9] as u64,
])
.0;
// Let h be the value to encode.
//
// Write h = pq + r with 0 <= r < p. We want to compute r = h mod p.
//
// Since h < 2*p, q = 0 or 1, with q = 0 when h < p and q = 1 when h >= p.
//
// Notice that h >= p <==> h + 19 >= p + 19 <==> h + 19 >= 2^255.
// Therefore q can be computed as the carry bit of h + 19.
let mut q: u32 = (h[0] + 19) >> 26;
q = (h[1] + q) >> 25;
q = (h[2] + q) >> 26;
q = (h[3] + q) >> 25;
q = (h[4] + q) >> 26;
q = (h[5] + q) >> 25;
q = (h[6] + q) >> 26;
q = (h[7] + q) >> 25;
q = (h[8] + q) >> 26;
q = (h[9] + q) >> 25;
debug_assert!(q == 0 || q == 1);
// Now we can compute r as r = h - pq = r - (2^255-19)q = r + 19q - 2^255q
const LOW_25_BITS: u32 = (1 << 25) - 1;
const LOW_26_BITS: u32 = (1 << 26) - 1;
h[0] += 19 * q;
// Now carry the result to compute r + 19q...
h[1] += h[0] >> 26;
h[0] &= LOW_26_BITS;
h[2] += h[1] >> 25;
h[1] &= LOW_25_BITS;
h[3] += h[2] >> 26;
h[2] &= LOW_26_BITS;
h[4] += h[3] >> 25;
h[3] &= LOW_25_BITS;
h[5] += h[4] >> 26;
h[4] &= LOW_26_BITS;
h[6] += h[5] >> 25;
h[5] &= LOW_25_BITS;
h[7] += h[6] >> 26;
h[6] &= LOW_26_BITS;
h[8] += h[7] >> 25;
h[7] &= LOW_25_BITS;
h[9] += h[8] >> 26;
h[8] &= LOW_26_BITS;
// ... but instead of carrying the value
// (h[9] >> 25) = q*2^255 into another limb,
// discard it, subtracting the value from h.
debug_assert!((h[9] >> 25) == 0 || (h[9] >> 25) == 1);
h[9] &= LOW_25_BITS;
let mut s = [0u8; 32];
s[0] = (h[0] >> 0) as u8;
s[1] = (h[0] >> 8) as u8;
s[2] = (h[0] >> 16) as u8;
s[3] = ((h[0] >> 24) | (h[1] << 2)) as u8;
s[4] = (h[1] >> 6) as u8;
s[5] = (h[1] >> 14) as u8;
s[6] = ((h[1] >> 22) | (h[2] << 3)) as u8;
s[7] = (h[2] >> 5) as u8;
s[8] = (h[2] >> 13) as u8;
s[9] = ((h[2] >> 21) | (h[3] << 5)) as u8;
s[10] = (h[3] >> 3) as u8;
s[11] = (h[3] >> 11) as u8;
s[12] = ((h[3] >> 19) | (h[4] << 6)) as u8;
s[13] = (h[4] >> 2) as u8;
s[14] = (h[4] >> 10) as u8;
s[15] = (h[4] >> 18) as u8;
s[16] = (h[5] >> 0) as u8;
s[17] = (h[5] >> 8) as u8;
s[18] = (h[5] >> 16) as u8;
s[19] = ((h[5] >> 24) | (h[6] << 1)) as u8;
s[20] = (h[6] >> 7) as u8;
s[21] = (h[6] >> 15) as u8;
s[22] = ((h[6] >> 23) | (h[7] << 3)) as u8;
s[23] = (h[7] >> 5) as u8;
s[24] = (h[7] >> 13) as u8;
s[25] = ((h[7] >> 21) | (h[8] << 4)) as u8;
s[26] = (h[8] >> 4) as u8;
s[27] = (h[8] >> 12) as u8;
s[28] = ((h[8] >> 20) | (h[9] << 6)) as u8;
s[29] = (h[9] >> 2) as u8;
s[30] = (h[9] >> 10) as u8;
s[31] = (h[9] >> 18) as u8;
// Check that high bit is cleared
debug_assert!((s[31] & 0b1000_0000u8) == 0u8);
s
}
#[rustfmt::skip] // keep alignment of z* calculations
fn square_inner(&self) -> [u64; 10] {
// Optimized version of multiplication for the case of squaring.
// Pre- and post- conditions identical to multiplication function.
let x = &self.0;
let x0_2 = 2 * x[0];
let x1_2 = 2 * x[1];
let x2_2 = 2 * x[2];
let x3_2 = 2 * x[3];
let x4_2 = 2 * x[4];
let x5_2 = 2 * x[5];
let x6_2 = 2 * x[6];
let x7_2 = 2 * x[7];
let x5_19 = 19 * x[5];
let x6_19 = 19 * x[6];
let x7_19 = 19 * x[7];
let x8_19 = 19 * x[8];
let x9_19 = 19 * x[9];
/// Helper function to multiply two 32-bit integers with 64 bits
/// of output.
#[inline(always)]
fn m(x: u32, y: u32) -> u64 {
(x as u64) * (y as u64)
}
// This block is rearranged so that instead of doing a 32-bit multiplication by 38, we do a
// 64-bit multiplication by 2 on the results. This is because lg(38) is too big: we would
// have less than 1 bit of headroom left, which is too little.
let mut z = [0u64; 10];
z[0] = m(x[0], x[0]) + m(x2_2, x8_19) + m(x4_2, x6_19) + (m(x1_2, x9_19) + m(x3_2, x7_19) + m(x[5], x5_19)) * 2;
z[1] = m(x0_2, x[1]) + m(x3_2, x8_19) + m(x5_2, x6_19) + (m(x[2], x9_19) + m(x[4], x7_19) ) * 2;
z[2] = m(x0_2, x[2]) + m(x1_2, x[1]) + m(x4_2, x8_19) + m(x[6], x6_19) + (m(x3_2, x9_19) + m(x5_2, x7_19)) * 2;
z[3] = m(x0_2, x[3]) + m(x1_2, x[2]) + m(x5_2, x8_19) + (m(x[4], x9_19) + m(x[6], x7_19) ) * 2;
z[4] = m(x0_2, x[4]) + m(x1_2, x3_2) + m(x[2], x[2]) + m(x6_2, x8_19) + (m(x5_2, x9_19) + m(x[7], x7_19)) * 2;
z[5] = m(x0_2, x[5]) + m(x1_2, x[4]) + m(x2_2, x[3]) + m(x7_2, x8_19) + m(x[6], x9_19) * 2;
z[6] = m(x0_2, x[6]) + m(x1_2, x5_2) + m(x2_2, x[4]) + m(x3_2, x[3]) + m(x[8], x8_19) + m(x7_2, x9_19) * 2;
z[7] = m(x0_2, x[7]) + m(x1_2, x[6]) + m(x2_2, x[5]) + m(x3_2, x[4]) + m(x[8], x9_19) * 2;
z[8] = m(x0_2, x[8]) + m(x1_2, x7_2) + m(x2_2, x[6]) + m(x3_2, x5_2) + m(x[4], x[4]) + m(x[9], x9_19) * 2;
z[9] = m(x0_2, x[9]) + m(x1_2, x[8]) + m(x2_2, x[7]) + m(x3_2, x[6]) + m(x4_2, x[5]) ;
z
}
/// Compute `self^2`.
pub fn square(&self) -> FieldElement2625 {
FieldElement2625::reduce(self.square_inner())
}
/// Compute `2*self^2`.
pub fn square2(&self) -> FieldElement2625 {
let mut coeffs = self.square_inner();
for coeff in &mut coeffs {
*coeff += *coeff;
}
FieldElement2625::reduce(coeffs)
}
}