1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2016-2021 isis agora lovecruft
// Copyright (c) 2016-2019 Henry de Valence
// See LICENSE for licensing information.
//
// Authors:
// - Isis Agora Lovecruft <isis@patternsinthevoid.net>
// - Henry de Valence <hdevalence@hdevalence.ca>
//! Field arithmetic modulo \\(p = 2\^{255} - 19\\).
//!
//! The `curve25519_dalek::field` module provides a type alias
//! `curve25519_dalek::field::FieldElement` to a field element type
//! defined in the `backend` module; either `FieldElement51` or
//! `FieldElement2625`.
//!
//! Field operations defined in terms of machine
//! operations, such as field multiplication or squaring, are defined in
//! the backend implementation.
//!
//! Field operations defined in terms of other field operations, such as
//! field inversion or square roots, are defined here.
use core::cmp::{Eq, PartialEq};
use cfg_if::cfg_if;
use subtle::Choice;
use subtle::ConditionallyNegatable;
use subtle::ConditionallySelectable;
use subtle::ConstantTimeEq;
use crate::backend;
use crate::constants;
cfg_if! {
if #[cfg(curve25519_dalek_backend = "fiat")] {
#[cfg(curve25519_dalek_bits = "32")]
pub use backend::serial::fiat_u32::field::*;
#[cfg(curve25519_dalek_bits = "64")]
pub use backend::serial::fiat_u64::field::*;
/// A `FieldElement` represents an element of the field
/// \\( \mathbb Z / (2\^{255} - 19)\\).
///
/// The `FieldElement` type is an alias for one of the platform-specific
/// implementations.
///
/// Using formally-verified field arithmetic from fiat-crypto.
#[cfg(curve25519_dalek_bits = "32")]
pub type FieldElement = backend::serial::fiat_u32::field::FieldElement2625;
/// A `FieldElement` represents an element of the field
/// \\( \mathbb Z / (2\^{255} - 19)\\).
///
/// The `FieldElement` type is an alias for one of the platform-specific
/// implementations.
///
/// Using formally-verified field arithmetic from fiat-crypto.
#[cfg(curve25519_dalek_bits = "64")]
pub type FieldElement = backend::serial::fiat_u64::field::FieldElement51;
} else if #[cfg(curve25519_dalek_bits = "64")] {
pub use crate::backend::serial::u64::field::*;
/// A `FieldElement` represents an element of the field
/// \\( \mathbb Z / (2\^{255} - 19)\\).
///
/// The `FieldElement` type is an alias for one of the platform-specific
/// implementations.
pub type FieldElement = backend::serial::u64::field::FieldElement51;
} else {
pub use backend::serial::u32::field::*;
/// A `FieldElement` represents an element of the field
/// \\( \mathbb Z / (2\^{255} - 19)\\).
///
/// The `FieldElement` type is an alias for one of the platform-specific
/// implementations.
pub type FieldElement = backend::serial::u32::field::FieldElement2625;
}
}
impl Eq for FieldElement {}
impl PartialEq for FieldElement {
fn eq(&self, other: &FieldElement) -> bool {
self.ct_eq(other).into()
}
}
impl ConstantTimeEq for FieldElement {
/// Test equality between two `FieldElement`s. Since the
/// internal representation is not canonical, the field elements
/// are normalized to wire format before comparison.
fn ct_eq(&self, other: &FieldElement) -> Choice {
self.as_bytes().ct_eq(&other.as_bytes())
}
}
impl FieldElement {
/// Determine if this `FieldElement` is negative, in the sense
/// used in the ed25519 paper: `x` is negative if the low bit is
/// set.
///
/// # Return
///
/// If negative, return `Choice(1)`. Otherwise, return `Choice(0)`.
pub fn is_negative(&self) -> Choice {
let bytes = self.as_bytes();
(bytes[0] & 1).into()
}
/// Determine if this `FieldElement` is zero.
///
/// # Return
///
/// If zero, return `Choice(1)`. Otherwise, return `Choice(0)`.
pub fn is_zero(&self) -> Choice {
let zero = [0u8; 32];
let bytes = self.as_bytes();
bytes.ct_eq(&zero)
}
/// Compute (self^(2^250-1), self^11), used as a helper function
/// within invert() and pow22523().
#[rustfmt::skip] // keep alignment of explanatory comments
fn pow22501(&self) -> (FieldElement, FieldElement) {
// Instead of managing which temporary variables are used
// for what, we define as many as we need and leave stack
// allocation to the compiler
//
// Each temporary variable t_i is of the form (self)^e_i.
// Squaring t_i corresponds to multiplying e_i by 2,
// so the pow2k function shifts e_i left by k places.
// Multiplying t_i and t_j corresponds to adding e_i + e_j.
//
// Temporary t_i Nonzero bits of e_i
//
let t0 = self.square(); // 1 e_0 = 2^1
let t1 = t0.square().square(); // 3 e_1 = 2^3
let t2 = self * &t1; // 3,0 e_2 = 2^3 + 2^0
let t3 = &t0 * &t2; // 3,1,0
let t4 = t3.square(); // 4,2,1
let t5 = &t2 * &t4; // 4,3,2,1,0
let t6 = t5.pow2k(5); // 9,8,7,6,5
let t7 = &t6 * &t5; // 9,8,7,6,5,4,3,2,1,0
let t8 = t7.pow2k(10); // 19..10
let t9 = &t8 * &t7; // 19..0
let t10 = t9.pow2k(20); // 39..20
let t11 = &t10 * &t9; // 39..0
let t12 = t11.pow2k(10); // 49..10
let t13 = &t12 * &t7; // 49..0
let t14 = t13.pow2k(50); // 99..50
let t15 = &t14 * &t13; // 99..0
let t16 = t15.pow2k(100); // 199..100
let t17 = &t16 * &t15; // 199..0
let t18 = t17.pow2k(50); // 249..50
let t19 = &t18 * &t13; // 249..0
(t19, t3)
}
/// Given a slice of public `FieldElements`, replace each with its inverse.
///
/// When an input `FieldElement` is zero, its value is unchanged.
#[cfg(feature = "alloc")]
pub fn batch_invert(inputs: &mut [FieldElement]) {
// Montgomery’s Trick and Fast Implementation of Masked AES
// Genelle, Prouff and Quisquater
// Section 3.2
let n = inputs.len();
let mut scratch = vec![FieldElement::ONE; n];
// Keep an accumulator of all of the previous products
let mut acc = FieldElement::ONE;
// Pass through the input vector, recording the previous
// products in the scratch space
for (input, scratch) in inputs.iter().zip(scratch.iter_mut()) {
*scratch = acc;
// acc <- acc * input, but skipping zeros (constant-time)
acc.conditional_assign(&(&acc * input), !input.is_zero());
}
// acc is nonzero because we skipped zeros in inputs
assert!(bool::from(!acc.is_zero()));
// Compute the inverse of all products
acc = acc.invert();
// Pass through the vector backwards to compute the inverses
// in place
for (input, scratch) in inputs.iter_mut().rev().zip(scratch.into_iter().rev()) {
let tmp = &acc * input;
// input <- acc * scratch, then acc <- tmp
// Again, we skip zeros in a constant-time way
let nz = !input.is_zero();
input.conditional_assign(&(&acc * &scratch), nz);
acc.conditional_assign(&tmp, nz);
}
}
/// Given a nonzero field element, compute its inverse.
///
/// The inverse is computed as self^(p-2), since
/// x^(p-2)x = x^(p-1) = 1 (mod p).
///
/// This function returns zero on input zero.
#[rustfmt::skip] // keep alignment of explanatory comments
#[allow(clippy::let_and_return)]
pub fn invert(&self) -> FieldElement {
// The bits of p-2 = 2^255 -19 -2 are 11010111111...11.
//
// nonzero bits of exponent
let (t19, t3) = self.pow22501(); // t19: 249..0 ; t3: 3,1,0
let t20 = t19.pow2k(5); // 254..5
let t21 = &t20 * &t3; // 254..5,3,1,0
t21
}
/// Raise this field element to the power (p-5)/8 = 2^252 -3.
#[rustfmt::skip] // keep alignment of explanatory comments
#[allow(clippy::let_and_return)]
fn pow_p58(&self) -> FieldElement {
// The bits of (p-5)/8 are 101111.....11.
//
// nonzero bits of exponent
let (t19, _) = self.pow22501(); // 249..0
let t20 = t19.pow2k(2); // 251..2
let t21 = self * &t20; // 251..2,0
t21
}
/// Given `FieldElements` `u` and `v`, compute either `sqrt(u/v)`
/// or `sqrt(i*u/v)` in constant time.
///
/// This function always returns the nonnegative square root.
///
/// # Return
///
/// - `(Choice(1), +sqrt(u/v)) ` if `v` is nonzero and `u/v` is square;
/// - `(Choice(1), zero) ` if `u` is zero;
/// - `(Choice(0), zero) ` if `v` is zero and `u` is nonzero;
/// - `(Choice(0), +sqrt(i*u/v))` if `u/v` is nonsquare (so `i*u/v` is square).
///
pub fn sqrt_ratio_i(u: &FieldElement, v: &FieldElement) -> (Choice, FieldElement) {
// Using the same trick as in ed25519 decoding, we merge the
// inversion, the square root, and the square test as follows.
//
// To compute sqrt(α), we can compute β = α^((p+3)/8).
// Then β^2 = ±α, so multiplying β by sqrt(-1) if necessary
// gives sqrt(α).
//
// To compute 1/sqrt(α), we observe that
// 1/β = α^(p-1 - (p+3)/8) = α^((7p-11)/8)
// = α^3 * (α^7)^((p-5)/8).
//
// We can therefore compute sqrt(u/v) = sqrt(u)/sqrt(v)
// by first computing
// r = u^((p+3)/8) v^(p-1-(p+3)/8)
// = u u^((p-5)/8) v^3 (v^7)^((p-5)/8)
// = (uv^3) (uv^7)^((p-5)/8).
//
// If v is nonzero and u/v is square, then r^2 = ±u/v,
// so vr^2 = ±u.
// If vr^2 = u, then sqrt(u/v) = r.
// If vr^2 = -u, then sqrt(u/v) = r*sqrt(-1).
//
// If v is zero, r is also zero.
let v3 = &v.square() * v;
let v7 = &v3.square() * v;
let mut r = &(u * &v3) * &(u * &v7).pow_p58();
let check = v * &r.square();
let i = &constants::SQRT_M1;
let correct_sign_sqrt = check.ct_eq(u);
let flipped_sign_sqrt = check.ct_eq(&(-u));
let flipped_sign_sqrt_i = check.ct_eq(&(&(-u) * i));
let r_prime = &constants::SQRT_M1 * &r;
r.conditional_assign(&r_prime, flipped_sign_sqrt | flipped_sign_sqrt_i);
// Choose the nonnegative square root.
let r_is_negative = r.is_negative();
r.conditional_negate(r_is_negative);
let was_nonzero_square = correct_sign_sqrt | flipped_sign_sqrt;
(was_nonzero_square, r)
}
/// Attempt to compute `sqrt(1/self)` in constant time.
///
/// Convenience wrapper around `sqrt_ratio_i`.
///
/// This function always returns the nonnegative square root.
///
/// # Return
///
/// - `(Choice(1), +sqrt(1/self)) ` if `self` is a nonzero square;
/// - `(Choice(0), zero) ` if `self` is zero;
/// - `(Choice(0), +sqrt(i/self)) ` if `self` is a nonzero nonsquare;
///
pub fn invsqrt(&self) -> (Choice, FieldElement) {
FieldElement::sqrt_ratio_i(&FieldElement::ONE, self)
}
}
#[cfg(test)]
mod test {
use crate::field::*;
use subtle::ConditionallyNegatable;
/// Random element a of GF(2^255-19), from Sage
/// a = 1070314506888354081329385823235218444233221\
/// 2228051251926706380353716438957572
static A_BYTES: [u8; 32] = [
0x04, 0xfe, 0xdf, 0x98, 0xa7, 0xfa, 0x0a, 0x68, 0x84, 0x92, 0xbd, 0x59, 0x08, 0x07, 0xa7,
0x03, 0x9e, 0xd1, 0xf6, 0xf2, 0xe1, 0xd9, 0xe2, 0xa4, 0xa4, 0x51, 0x47, 0x36, 0xf3, 0xc3,
0xa9, 0x17,
];
/// Byte representation of a**2
static ASQ_BYTES: [u8; 32] = [
0x75, 0x97, 0x24, 0x9e, 0xe6, 0x06, 0xfe, 0xab, 0x24, 0x04, 0x56, 0x68, 0x07, 0x91, 0x2d,
0x5d, 0x0b, 0x0f, 0x3f, 0x1c, 0xb2, 0x6e, 0xf2, 0xe2, 0x63, 0x9c, 0x12, 0xba, 0x73, 0x0b,
0xe3, 0x62,
];
/// Byte representation of 1/a
static AINV_BYTES: [u8; 32] = [
0x96, 0x1b, 0xcd, 0x8d, 0x4d, 0x5e, 0xa2, 0x3a, 0xe9, 0x36, 0x37, 0x93, 0xdb, 0x7b, 0x4d,
0x70, 0xb8, 0x0d, 0xc0, 0x55, 0xd0, 0x4c, 0x1d, 0x7b, 0x90, 0x71, 0xd8, 0xe9, 0xb6, 0x18,
0xe6, 0x30,
];
/// Byte representation of a^((p-5)/8)
static AP58_BYTES: [u8; 32] = [
0x6a, 0x4f, 0x24, 0x89, 0x1f, 0x57, 0x60, 0x36, 0xd0, 0xbe, 0x12, 0x3c, 0x8f, 0xf5, 0xb1,
0x59, 0xe0, 0xf0, 0xb8, 0x1b, 0x20, 0xd2, 0xb5, 0x1f, 0x15, 0x21, 0xf9, 0xe3, 0xe1, 0x61,
0x21, 0x55,
];
#[test]
fn a_mul_a_vs_a_squared_constant() {
let a = FieldElement::from_bytes(&A_BYTES);
let asq = FieldElement::from_bytes(&ASQ_BYTES);
assert_eq!(asq, &a * &a);
}
#[test]
fn a_square_vs_a_squared_constant() {
let a = FieldElement::from_bytes(&A_BYTES);
let asq = FieldElement::from_bytes(&ASQ_BYTES);
assert_eq!(asq, a.square());
}
#[test]
fn a_square2_vs_a_squared_constant() {
let a = FieldElement::from_bytes(&A_BYTES);
let asq = FieldElement::from_bytes(&ASQ_BYTES);
assert_eq!(a.square2(), &asq + &asq);
}
#[test]
fn a_invert_vs_inverse_of_a_constant() {
let a = FieldElement::from_bytes(&A_BYTES);
let ainv = FieldElement::from_bytes(&AINV_BYTES);
let should_be_inverse = a.invert();
assert_eq!(ainv, should_be_inverse);
assert_eq!(FieldElement::ONE, &a * &should_be_inverse);
}
#[test]
#[cfg(feature = "alloc")]
fn batch_invert_a_matches_nonbatched() {
let a = FieldElement::from_bytes(&A_BYTES);
let ap58 = FieldElement::from_bytes(&AP58_BYTES);
let asq = FieldElement::from_bytes(&ASQ_BYTES);
let ainv = FieldElement::from_bytes(&AINV_BYTES);
let a0 = &a - &a;
let a2 = &a + &a;
let a_list = vec![a, ap58, asq, ainv, a0, a2];
let mut ainv_list = a_list.clone();
FieldElement::batch_invert(&mut ainv_list[..]);
for i in 0..6 {
assert_eq!(a_list[i].invert(), ainv_list[i]);
}
}
#[test]
fn sqrt_ratio_behavior() {
let zero = FieldElement::ZERO;
let one = FieldElement::ONE;
let i = constants::SQRT_M1;
let two = &one + &one; // 2 is nonsquare mod p.
let four = &two + &two; // 4 is square mod p.
// 0/0 should return (1, 0) since u is 0
let (choice, sqrt) = FieldElement::sqrt_ratio_i(&zero, &zero);
assert!(bool::from(choice));
assert_eq!(sqrt, zero);
assert!(bool::from(!sqrt.is_negative()));
// 1/0 should return (0, 0) since v is 0, u is nonzero
let (choice, sqrt) = FieldElement::sqrt_ratio_i(&one, &zero);
assert!(bool::from(!choice));
assert_eq!(sqrt, zero);
assert!(bool::from(!sqrt.is_negative()));
// 2/1 is nonsquare, so we expect (0, sqrt(i*2))
let (choice, sqrt) = FieldElement::sqrt_ratio_i(&two, &one);
assert!(bool::from(!choice));
assert_eq!(sqrt.square(), &two * &i);
assert!(bool::from(!sqrt.is_negative()));
// 4/1 is square, so we expect (1, sqrt(4))
let (choice, sqrt) = FieldElement::sqrt_ratio_i(&four, &one);
assert!(bool::from(choice));
assert_eq!(sqrt.square(), four);
assert!(bool::from(!sqrt.is_negative()));
// 1/4 is square, so we expect (1, 1/sqrt(4))
let (choice, sqrt) = FieldElement::sqrt_ratio_i(&one, &four);
assert!(bool::from(choice));
assert_eq!(&sqrt.square() * &four, one);
assert!(bool::from(!sqrt.is_negative()));
}
#[test]
fn a_p58_vs_ap58_constant() {
let a = FieldElement::from_bytes(&A_BYTES);
let ap58 = FieldElement::from_bytes(&AP58_BYTES);
assert_eq!(ap58, a.pow_p58());
}
#[test]
fn equality() {
let a = FieldElement::from_bytes(&A_BYTES);
let ainv = FieldElement::from_bytes(&AINV_BYTES);
assert!(a == a);
assert!(a != ainv);
}
/// Notice that the last element has the high bit set, which
/// should be ignored
static B_BYTES: [u8; 32] = [
113, 191, 169, 143, 91, 234, 121, 15, 241, 131, 217, 36, 230, 101, 92, 234, 8, 208, 170,
251, 97, 127, 70, 210, 58, 23, 166, 87, 240, 169, 184, 178,
];
#[test]
fn from_bytes_highbit_is_ignored() {
let mut cleared_bytes = B_BYTES;
cleared_bytes[31] &= 127u8;
let with_highbit_set = FieldElement::from_bytes(&B_BYTES);
let without_highbit_set = FieldElement::from_bytes(&cleared_bytes);
assert_eq!(without_highbit_set, with_highbit_set);
}
#[test]
fn conditional_negate() {
let one = FieldElement::ONE;
let minus_one = FieldElement::MINUS_ONE;
let mut x = one;
x.conditional_negate(Choice::from(1));
assert_eq!(x, minus_one);
x.conditional_negate(Choice::from(0));
assert_eq!(x, minus_one);
x.conditional_negate(Choice::from(1));
assert_eq!(x, one);
}
#[test]
fn encoding_is_canonical() {
// Encode 1 wrongly as 1 + (2^255 - 19) = 2^255 - 18
let one_encoded_wrongly_bytes: [u8; 32] = [
0xee, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0x7f,
];
// Decode to a field element
let one = FieldElement::from_bytes(&one_encoded_wrongly_bytes);
// .. then check that the encoding is correct
let one_bytes = one.as_bytes();
assert_eq!(one_bytes[0], 1);
for byte in &one_bytes[1..] {
assert_eq!(*byte, 0);
}
}
#[test]
#[cfg(feature = "alloc")]
fn batch_invert_empty() {
FieldElement::batch_invert(&mut []);
}
}